Nucleobases are N-heterocycles which are the informational subunits of DNA and RNA. They include pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in several meteorites [1–4], although no N-heterocycles have been observed in space to date [5,6]. Laboratory experiments showed that the ultraviolet (UV) irradiation of pyrimidine in pure H$_2$O ice at low temperature (≤ 20 K) leads to the formation of pyrimidine derivatives including the nucleobase uracil and its precursor 4(3H)-pyrimidone [7]. These results were confirmed by quantum chemical calculations [8]. When pyrimidine is mixed with combinations of H$_2$O, NH$_3$, CH$_3$OH, and CH$_4$ ices under similar conditions, uracil and cytosine are formed [9]. In the present work we study the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in H$_2$O ice with high-energy UV photons (Lyman α, He I, and He II lines) provided by a synchrotron source. The photo-destruction of pyrimidine in these H$_2$O ices as well as the formation yields for 4(3H)-pyrimidone and uracil are compared with our previous results in order to study the photo-stability of pyrimidine and the production efficiency of uracil as a function of the photon energy.

References