Effects of Type and Strength of Force Feedback on Movement Time in a Target Selection Task

Prepared For:

Human Factors and Ergonomics Society International Annual Meeting 2013

San Diego, CA

R. Conrad Rorie¹, Kim-Phuong L. Vu², Panadda Marayong², Jose Robles², Thomas Z. Strybel² & Vernol Battiste¹

¹San Jose State University Research Center

²Center for Human Factors in Advanced Aeronautics Technologies

California State University, Long Beach
NextGen Flight Decks

- Future flight decks will require advanced onboard avionics
 - E.g., the Cockpit Display of Traffic Information (or CDTI)
 - Allows pilots to view surrounding airspace and manipulate routes in real time
 - Would require direct interaction from the pilot (e.g., item selection)
 - There will be constraints on the implementation of these new tools onto the flight deck:
 - The limited space in the cockpit will necessitate small interfaces
 - The instability of the cockpit will make traditional HCI input devices unlikely (e.g., mouse, touch screen)
Force Feedback

• Additional technologies may be necessary to ensure optimal performance
 • *Force feedback has been found to enhance performance in difficult HCI tasks (Griffiths and Gillespie, 2005)*
 • Force feedback works to actively assist or resist operator movement during a task (e.g., target selection)
 • An attractive or repulsive force will help pull or push an operator’s selection tool towards or away from a given target
 • Attractive forms of force feedback are commonly referred to as “virtual fixtures” or “gravity wells”
 • *According to Ahlstrom (2005), force feedback reduces:*
 • Task completion times
 • Operator musculoskeletal discomfort
 • Error rates
Force Feedback

• Akamatsu & MacKenzie (1996) and Hwang et al. (2003) divided target selection tasks into 2 primary components:
 • *Approach Time & Selection Time*
 • Akamatsu and MacKenzie found that force feedback reduced Selection Time
 • Used a friction-based force feedback (only engaged once inside target)
 • Hwang et al. found that force feedback reduced Approach Time
 • Used an attractive force feedback (engaged before reaching target)
 • *Neither study manipulated the strength or type of force feedback*
Force Feedback

- Rorie et al. (2012) examined the effect of force feedback and movement direction on overall movement time
 - Presented targets on a CDTI-like display
 - Manipulated direction, size and distance of target
 - The presence of force feedback was found to disproportionately improve the selection of small and close targets
 - Overall, force feedback reduced target selection times by 47%
 - Only 1 level and type of force feedback was utilized
Force Feedback

- Little research has been done to study the optimal level of force feedback for a given task
 - I.e., what’s the ideal strength of the attractive or repulsive force?
- The primary criticism of the implementation of force feedback is the effect of “distractors”
 - Therefore, the goal should be to find the lowest level of force feedback that produces greatest benefits
Purpose

- To examine the effect of multiple levels and types of force feedback in a CDTI display environment

 - Extension of Rorie et al. (2012):
 - Examines multiple levels of two different types of force feedback:
 - Gravitational Force Feedback
 - Acts as an attractive force that pulls participant’s cursor towards the target when outside of it
 - Spring Force Feedback
 - Acts a rubber band-type force that makes it hard to leave the target once the participant is inside
 - Applies Akamatsu and MacKenzie’s (1996) movement time components:
 - Approach Time
 - Time in Target
Method

• **Subjects**
 • 12 participants (7 female, 5 male; M = 25.83 years old) from NASA Ames and San Jose State University
 • Right handed, normal or corrected-to-normal vision

• **Apparatus**
 • Standard Logitech laser mouse
 • Novint Falcon force feedback device
 • 4” x 4” x 4” operational workspace
 • Capable of providing up to 2lbs of force
Method

- **Two force feedback models:**
 - *(Modified) Newton’s Gravitational Law Model:*
 - $F = \{K_1 / ||d||^2\} \cdot \hat{d}$ (when $||d|| > r$)
 - K_1 units = Newtons Pixels2 (NPS)
 - **3 Gain Levels of Gravitational Force Feedback Used**
 - $K_1 = 100$ NPS, 300 NPS, & 500 NPS
 - **Spring Force Model:**
 - $F = \{K_2 * ||d||\} \cdot \hat{d}$ (when $||d|| \leq r$)
 - K_2 units = Newtons Per Pixel (NP)
 - **2 Gain Levels of Spring Force Feedback Used**
 - $K_2 = 0.1$ NP & 0.3 NP
Method

- **2 x 2 x 2 x 3 x 12 Within-Subjects Design**
 - 144 trials (i.e., target selections) per experimental block
 - 20 experimental blocks with the Novint Falcon
 - 2 experimental blocks with Mouse
 - 3,168 total target selections per participant

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Size</td>
<td>0.5cm & 1cm</td>
</tr>
<tr>
<td>Target Distance</td>
<td>3.5cm & 8.5cm</td>
</tr>
<tr>
<td>Spring Force Level</td>
<td>0.1 NP & 0.3 NP</td>
</tr>
<tr>
<td>Gravitational Force Level</td>
<td>100 NPS, 300 NPS & 500 NPS</td>
</tr>
<tr>
<td>Target Direction</td>
<td>0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, & 330°</td>
</tr>
</tbody>
</table>
Method

• Procedure
 • *Point-and-Click task*
 • Start icon remained constant size (0.75cm) and location (center)
 • All independent variables were manipulated randomly within each experimental trial
 • *Dependent Variables*
 • Overall Movement Time (ms)
 • Approach Time (AT)
 • Time Inside Target (TI)
Results

• **Approach Time**
 • *Main Effect of Gravitational Force Level*
 • 300 & 500 NPS both resulted in significantly faster approach times than the 100 NPS Gravitational Force Level
 • *Gravitational Force X Spring Force*
 • 0.3 NP Spring Force Level only had an effect at the lowest Gravitational Force Level
Results

• Approach Time
 • Main Effect of Target Distance
 • Smaller approach times for closer targets
 • Compared to performance with the mouse:
 • 100 NPS significantly worse
 • 300 and 500 NPS Gravitational Force Levels were equal or better
Results

• Time in Target
 • Main Effect of Spring Force Level
 • The 0.3 NP Spring Force Level led to significantly less time spent inside the target than the 0.1 Spring Force Level
 • No Main Effect of Gravitational Force Level, Target Distance or Target Size
Results

- **Time in Target**
 - **Gravitational Force Level x Spring Force Level x Target Size**
 - For the 300 & 500 NPS Gravitational Force Levels, Spring Force Level only had a significant effect for *large* targets.
Discussion

• Approach Time was shown to be a negatively accelerating function of Gravitational Force Level
 • 300 NPS reduced approach times by 14% when compared to the 100 NPS Gravitational Force Level
 • 500 NPS, by contrast, only reduced approach times by 18% when compared to the 100 NPS Gravitational Force Level
 • A slight improvement over the 300NPS level
• 300 NPS and 500 NPS were both shown to produce Approach Times similar to the computer mouse
 • Note that participants had no prior experience with the Novint Falcon
Discussion

• Spring Force Level was found to only have a main effect on Time Inside Target
 • Consistent with Akamatsu and MacKenzie (1996), the stronger Spring Force Level reduced selection times
 • The stronger Spring Force Level also reduced Time Inside Target to a level comparable to the mouse for large targets at the higher Gravitational Force Levels
 • Suggests higher Gravitational Force Levels may need a stronger Spring Force Value to keep the participant within the target’s boundaries
Design Implications

• Results suggest future CDTI designs can utilize a lower level of gravitational force (i.e., 300 NPS)
 • *Will allow for more operator control over the device*
 • May mitigate the negative effects of target distractors
 • *The 300 NPS level did not require the higher spring force level (as seen with 500 NPS)*

• Lack of training with Spring & Gravitational force levels highlights the substantial benefit of force feedback
 • *Led to comparable performance to the much more familiar computer mouse*
Limitations

- Novint Falcon is not intended for use in commercial cockpits
 - Future studies will need to incorporate a greater number of input devices
- No baseline condition (i.e., no force feedback) for Novint Falcon
 - Rorie et al. (2012) demonstrated ineffectiveness of Falcon without force feedback
Questions?