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Abstract

Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural

sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an

initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network

of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon

dioxide concentration ([CO2]), temperature, and water. As a demonstration of the C3MP protocols and enabled analy-

ses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for

Henry County, Alabama, to evaluate responses to the range of plausible [CO2], temperature changes, and precipita-

tion changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive

crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a

broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca.

2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections

from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest

(<10%) median yield losses in the middle of the 21st century accelerating to more severe (>20%) losses and larger

uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This pro-

jection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the

local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3

and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response sur-

face and emulator approach.
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Introduction

Climate change is projected to impact agricultural sys-

tems most directly through changes in temperature, pre-

cipitation, and carbon dioxide concentration ([CO2]),

with crop responses varying across farms depending on

the cultivar, management, soil, and baseline climate.

Additional factors (including pests, diseases, weeds,

extreme climate events, water resources, soil degrada-

tion, agrotechnological development, and economic

pressures) will also influence the fate of future agricultural

production and deserve scrutiny. There is much to be

learned in examining the response of agricultural sys-

tems to the core carbon dioxide, temperature, and water

(CTW) changes, however (Hatfield et al., 2011).

Crop models provide a biophysical process-based

tool to investigate crop responses in light of environ-

mental conditions and farm management, and have

been applied to climate impact assessment using a vari-

ety of methods (see review by White et al., 2011). The

utility of these climate change applications is hindered,

however, by the small (1 ha) scale of most process-

based crop models, the considerable effort required to

achieve satisfactory calibration at a given site, methodo-

logical uncertainties, errors in historical climate datasets
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(Lobell, 2013; Watson & Challinor, 2013), and the lack

of agreement among various crop models’ responses to

CTW changes (R€otter et al., 2011). Most importantly, to

date there has not been a coordinated effort to perform

climate impacts analyses with a large number of crops,

crop models, and detailed crop modeling sites around

the world.

While the execution of a single site’s crop model is

relatively cheap, the coordination of agricultural

impacts assessments at larger scales require consistent

and timely contributions from a large number of crop

modelers, and this effort cannot be duplicated each

time a new global climate model (GCM), downscaling

technique, or scenario result is created. In addition,

evaluation of a subset of GCM simulations is not suffi-

cient to separate important interactions in crop model

response. A mechanism is therefore needed to rapidly

assess the climate impacts across a wide envelope of

climate change space to enable an investigation of

uncertainties from any single-GCM or multi-GCM and

multi-RCM ensemble (Deser et al., 2012).

The Agricultural Model Intercomparison and Imp-

rovement Project (AgMIP; Rosenzweig et al., 2013) was

created to substantially improve the climate, crop, and

economic simulation tools that are used to characterize

the agricultural sector, to assess future world food secu-

rity under changing climate conditions, and to enhance

adaptation capacity in both developing and developed

countries. AgMIP has led detailed model intercompari-

sons at highly observed field sites for wheat (Asseng

et al., 2013), rice (Li et al., unplublished data), maize

(Bassu et al., unpublished data), and sugarcane (Singels

et al., 2013), finding largely consistent response patterns

across models. It is also clear that crop model selection

can be an important factor in an assessment of climate

impacts for any given location due to the processes and

mechanisms emphasized in the modeling approach.

AgMIP is also employing global gridded crop models

(GGCMs) to simulate global agricultural production

(e.g., Rosenzweig et al., in press, compare 7 GGCMs on

a global ½ degree grid) relying on large geodatasets of

soil and climate as well as biophysical algorithms to

determine likely grid cell inputs for management and

cultivars.

The following sections describe a new AgMIP initia-

tive that is coordinating detailed crop model simula-

tions on a global network for climate change impact

assessments. To demonstrate the utility of the simula-

tions that will be run at each site and establish a com-

mon methodology of evaluation, we present results

from a prototype peanut modeling site in Henry

County, Alabama, USA. Henry County is a major

producer at the center of the Southeastern US peanut

belt, and quality soil, meteorology, and management

information allow for a robust simulation of yield

impacts in light of a changing climate. Results from

Henry County are used to discuss the potential benefits

of this prototype approach being repeated across a

large number of locations, crop species, and crop mod-

els to enable more comprehensive climate impacts

analysis.

Materials and methods

The Coordinated Climate-Crop Modeling Project (C3MP)

The Coordinated Climate-Crop Modeling Project (C3MP;

http://www.agmip.org/c3mp) was created as an AgMIP ini-

tiative to provide consistent information about crop yield

response to CTW changes across a large, distributed, and glo-

bal network of established crop modeling sites to facilitate cli-

mate impacts assessments. The work builds on earlier efforts

at the site scale (R€ais€anen & Ruokalainen, 2006; Ferrise et al.,

2011; Ruane et al., 2013) and at the regional scale (Howden &

Crimp, 2005; Crimp et al., 2008; Iizumi et al., 2010) that com-

bine crop model sensitivity tests with crop response emulators

(statistical representations of models) across a wide uncer-

tainty space.

All C3MP participants follow a set of common protocols in

which contributors register to participate in a crop modeling

experiment to execute 99 sensitivity tests, generated using a

Latin Hypercube approach, which explore the plausible

range of [CO2], temperature, and precipitation changes pro-

jected to occur out at the 2070–2099 time period (Table 1; full

protocols are available at http://www.agmip.org/

c3mp-downloads). These ranges include the projected

extremes from the Fifth Coupled Model Intercomparison

Project (CMIP5; Taylor et al., 2009) over the vast majority of

agricultural lands and, in fact, are intended to extend slightly

beyond this range to ensure that C3MP results remain

relevant in the event that more extreme projections become

plausible (Fig. 1). In addition to the range of projected tem-

perature increases, sensitivity tests extend to a 1 °C cooling

to understand optimal growing conditions which may be

cooler than the historical baseline. As the C3MP protocols

require the same sensitivity tests for all crop modeling loca-

tions, the range of precipitation changes is limited to �50%

to prevent the sensitivity tests from being too sparse in the

precipitation change space simply to accommodate arid

regions where projections indicate large percentage changes

to small historical precipitation totals. It is important to

mention that changes in rainfall are restricted to changes in

intensity, and changes in the frequency of precipitation

events are not taken into account in this study, even though

they potentially play an important role in final yields (Baigor-

ria et al., 2007). Whereas the final years of the 21st century

have [CO2] higher than 900 ppm in the highest Representa-

tive Concentration Pathway (RCP8.5; Moss et al., 2010), the

end-of-century time period (2070–2099) has a central year

[CO2] of 801 ppm. The 330 ppm lower limit of the [CO2]

range helps resolve CO2 sensitivities around the 1980–2010

historical baseline’s central year [CO2] in 1995 = 360 ppm).
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The sensitivity tests are generated by modifying each day in

the 1980–2010 climate series to achieve each test’s temperature

change (through addition), precipitation change (through a

multiplicative factor), and [CO2] (via an imposed concentra-

tion), resulting in 2970 (99 tests 9 30 years) yields per simula-

tion set. The mean yield (Y) is then calculated for each

sensitivity test and associated with the [CO2], temperature,

and water changes that defined each test. To understand how

climate changes may affect yield variability (Osborne &

Wheeler, 2013), the coefficient of variation for yield (CV;

across the 30 years) is also calculated. This enables the least-

squares fitting of a quadratic crop model emulator for Y and

CV for any given simulation location as a function of carbon

dioxide concentration (CO2), temperature change (T), and

precipitation change (P) to determine coefficients a–k in each of:

YðCO2;T;PÞ ¼ aþbðTÞþcðTÞ2þdðPÞþeðPÞ2þ fðCO2ÞþgðCO2Þ2
þhðT�PÞþ iðT�CO2Þþ jðP�CO2ÞþkðT�P�CO2Þ;

ð1Þ
and

CVðCO2;T;PÞ ¼ aþ bðTÞ þ cðTÞ2 þ dðPÞ þ eðPÞ2 þ fðCO2Þ
þ gðCO2Þ2 þ hðT � PÞ þ iðT � CO2Þ þ jðP � CO2Þ
þ kðT � P � CO2Þ:

ð2Þ
As the emulators for mean yield and yield CV are fit sepa-

rately, the values of coefficients a–k in Eqn (1) will not be the

same as a–k in Eqn (2). In addition, the impacts response

surfaces defined by these emulators are a better subject of com-

parison than the values of specific coefficients (the response to

any climatic change is represented in multiple coefficients).

The formulation of this crop model emulator will be an impor-

tant area of ongoing research in C3MP, as it is possible that

some locations’ mean yield or yield CV responses may be bet-

ter captured by other forms (e.g., polynomials of a different

order or logarithmic functions). Howden & Crimp (2005) used

a simpler linear emulator, but then Crimp et al. (2008) modified

this to include quadratics with different orders of polynomials

for [CO2] (to the fourth order), temperature (to the third order),

and precipitation (to the second order). Ruane et al. (2013) uti-

lized second-order polynomials to emulate impacts response

surfaces for maize in Panama to mimic a yield curve peaking at

Table 1 Limits of CTW space, relative to baseline climate

conditions, explored by sensitivity tests. Corresponding base-

line April–August growing season values for Henry County,

Alabama, are 24 °C, 581 mm, and 360 ppm, respectively

Climate metric

Lower

bound

Upper

bound

Temperature change (ΔT) �1 °C +8 °C
Precipitation change (ΔP) �50% +50%
Carbon Dioxide Concentration

([CO2])

330 ppm 900 ppm

(a) (b)

(c) (d)

Fig. 1 Percentage of 20 CMIP5 GCMs with daily output where regional annual temperature (a, b) or precipitation (c, d) changes fall

outside of the range of C3MP sensitivity tests in the 2070–2099 end-of-century time slice under RCP4.5 (a, c) and RCP8.5 (b, d).

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 394–407
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optimal conditions with diminishing returns for increasing

[CO2], but to this point these studies have not included the

cross-variable terms in Eqns (1) and (2). These terms allow for

non-orthogonal curvature in the crop response space resulting

from interactions in the way crop models respond to multiple,

simultaneously changing climate variables. These cross-terms

are additionally helpful in understanding how correlated

climate variables affect yields (Sheehy et al., 2006). Ramankutty

et al. (2013) tested linear, nonlinear, and spline fits for a grass-

land site in Australia, which could be repeated for any site par-

ticipating in C3MP. It should also be noted that these climate

impact emulators are derived from 30-year climatological crop

model results rather than the year-by-year historical climate

variability that is often used to develop statistical crop models

(e.g., Schlenker & Roberts, 2009; Schlenker & Lobell, 2010). The

use of process-based crop models for impacts analysis has the

added benefit of including directly resolved interactions

between various terms and [CO2] that may be outside of the

range of recent observations in a given region. Lobell & Burke

(2010) performed a similar regression using crop model simu-

lations (although based on crop model simulations of interan-

nual variability), finding that quadratic regressions

outperformed linear models.

To ensure consistency across sites and encourage the contri-

bution of crop modeling simulations from regions where cli-

mate information does not exist or is not available, C3MP

provides an estimated daily climate series for the 1980–2010

historical baseline period. Based on the outputs of the NASA

Modern Era Retrospective Analysis for Research and Applica-

tions (MERRA; Rienecker et al., 2011) and MERRA-Land

(Reichle et al., 2011) outputs, these AgMERRA data (A.C. Ru-

ane, unpublished data) were developed for agricultural

impacts applications and are shifted to eliminate apparent

monthly biases in comparison to an ensemble of gridded

observational data from weather stations and satellites (CRU

TS3.10, Harris et al., 2013; Willmott & Matsuura, 1995; GPCC,

Rudolf & Schneider, 2004; CMORPH, Joyce et al., 2004; PERSI-

ANN, Hsu et al., 1997; TRMM 3B-42, Huffman et al., 2007).

AgMERRA also incorporates the NASA-GEWEX Solar Radia-

tion Budget daily radiation data (Zhang et al., 2007) which

have been shown to be highly useful for agricultural modeling

(White et al., 2008), and is stored at a resolution of ¼ degree.

Where complete and well-vetted station data are available,

C3MP participants are encouraged to run both the observa-

tional and the AgMERRA climate series through their crop

models to gage uncertainties stemming from the selection of

baseline climate series.

White et al. (2011) summarized the substantial contributions

of crop modeling assessments of climate change impacts

around the world, finding studies in 69 countries (dominated

by North America and Europe) and using 68 crop models.

There are many missed opportunities for collaboration, how-

ever, because for any given region it is difficult to discover the

extent of work that has been completed and to contact crop

modelers with experience over the range of agricultural

systems. Many sites and models have also been calibrated

for operational use, but have never appeared in the peer-

reviewed literature. In some cases differences between various

modeling studies lead to confusion among the stakeholder

and policymaker communities, as multiple assessments in the

same region can occasionally produce results that appear

contradictory. C3MP is therefore designed to build the

network of crop modelers and crop modeling sites around the

world to conduct climate vulnerability analyses, enable inter-

comparison of consistent results, increase communication,

and facilitate future collaborations among participants.

A prototype demonstration of the C3MP protocols and

enabled analyses is provided below to describe the methods

and analyses enabled that are envisioned for all C3MP simula-

tion set locations.

C3MP prototype simulation of peanut yield in Henry
County, Alabama

For this prototype simulation set, the core response of peanut

yields to climate change was simulated in Henry County, Ala-

bama, which is located near the heart of a productive peanut-

growing belt in the Southeastern United States (Fig. 2). An

additional site was also configured in nearby Washington

County, Florida, for the purposes of regional comparison, but

Henry County will be the primary focus of this study.

Peanut simulations were conducted using CROPGRO-

Peanut (Boote et al., 1998), which is an element of the Deci-

sion Support System for Agrotechnology Transfer Cropping

System Model (DSSAT-CSM; Jones et al., 2003). The sensitiv-

ity tests were facilitated by the use of DSSAT’s Environ-

mental Modifications function, which modifies historical

climate data to achieve each test’s temperature, precipita-

tion, and [CO2]. The key details of the crop model configu-

ration are summarized in Table 2, and describe a rain-fed

peanut simulation with planting on April 1st. The simula-

tions use the Georgia Green cultivar, which was calibrated

for phenology, biomass, and yield components at field trials

2008 County-Level peanut production

Fig. 2 Location of simulation sites in Southeastern US peanut

production region. The symbols indicate Henry County, Ala-

bama (red star), and Washington County, Florida (red circle).

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 394–407
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in Tifton, Georgia, and included in DSSAT v4.5 (Hoogenboom

et al., 2003). Weather data from 1980 to 2010 were collected

from the Florida Climate Center (Office of the State Clima-

tologist, 2012), with radiation estimated from daily tempera-

tures and precipitation. The soil profile was drawn from a

reanalyzed soil dataset (Romero et al., 2012), and manage-

ment followed common local practices. To gage the uncer-

tainty of this configuration and test some of the C3MP

analysis methods below, additional simulation sets were

also configured. These include a nearly identical simulation

set that utilizes an irrigation rule whereby 12 mm applica-

tions of irrigation are applied whenever soil water content

drops below 70% of plant available water in the top 50 cm

of the soil profile. Simulations at Washington County, Flor-

ida, were also run that differ only in their use of a local

baseline climate series and soil profile. Lastly, the same

simulations were run for Henry County using baseline cli-

mate series drawn from AgMERRA’s corresponding grid

box. Note that MERRA likely incorporates a version of the

state climatologist data in its underlying data assimilation,

so the skill of AgMERRA in this region may be higher than

in regions where no local weather stations exist. Peanut

simulations in the US Southeast were also conducted by

Shin et al. (2010) with a focus on interannual variability.

Results

Historical baseline evaluation

A comparison between simulated peanut yields and

the 1980–2010 county-level yields reported by the US

Department of Agriculture’s National Agricultural Sta-

tistics Service (NASS; USDA, 2012) reveals a high level

of agreement for the rain-fed simulations driven by the

state climatologist observations (Fig. 3; correlation coef-

ficient r = 0.52; significant at 0.01 level using t-test).

Rain-fed simulations driven by the AgMERRA dataset

produced nearly identical correlations (r = 0.5; signifi-

cant at 0.01 level). Irrigated correlations were not signif-

icant for either climate series due to the low prevalence

of irrigation systems in the region. The performance of

rain-fed simulations is particularly strong given that

the county-level yields integrate across a variety of

management types, soil characteristics, cultivars, and

applications across Henry County. Washington County

correlations were lower than Henry County, but better

for AgMERRA (r = 0.29) than for state climatologist

observations (r = 0.19), likely due to heterogeneous

farming practices blurred together in aggregated NASS

yield data. The crop model also assumes that pests,

diseases, and weeds are perfectly controlled, which is

not always the case in the real world.

CTW response surfaces

The emulators fit by Eqns (1) and (2) allow for the esti-

mation of crop model response to any point in the

CTW change space for Henry County peanuts. To test

the skill of this emulator against the direct simulation

of a given scenario, each of the sensitivity tests was esti-

mated using the emulator and compared to the crop

model’s simulation of that test, resulting in root mean

square deviations (RMSD, as a percentage of mean

1980–2010 yield) of 1.90% and 1.96% for rain-fed condi-

tions with the observed climate and AgMERRA, respec-

tively, and Pearson’s correlations (r2) greater than 0.99.

For irrigated conditions mean yield RMSD were

slightly smaller (1.25% and 2.3% for the two climate

series). Omitting 20 of these sensitivity tests randomly

did not substantially change the emulator, with RMSD

changing by less than 0.1% of the mean yields and r2

remaining above 0.99. Yield CV had higher emulator

RMSD in the rain-fed conditions (2.30% and 3.37%;

r2 > 0.99), and much higher RMSD for irrigated condi-

tions (9.36% and 6.96%; r2 > 0.98), although the latter is

a result of the much smaller CV for irrigated conditions

that face little or no interannual water stresses. Overall,

the emulators appear to be robustly capturing the core

response of the crop model regardless of the baseline

climate series utilized. These emulators may technically

be extrapolated outside of the C3MP climate change

limits defined in Table 2; however, this must be done

with caution as the statistical properties of the moder-

ate-to-large climate changes may not hold in the case of

more extreme climate changes.

The three-dimensional CTW space is most easily

examined by looking at cross sections where one of the

Table 2 Overview of the rain-fed peanut model simulation

set for Henry County, Alabama. A simulation set with irriga-

tion (but otherwise identical) was also conducted, and both

simulations were also run for Washington County, Florida,

using a local climate series and soil profile. This is the mini-

mum information to be collected for each crop modeling simu-

lation set in C3MP

Simulation set latitude 31.367°N

Simulation set longitude 274.667°E (85.333°W)

Simulation set elevation 112.8 m

Weather data source State Climatologist

Planting month April (Julian Day 91)

Typical harvest month August

Crop model and version DSSAT v4.5.1.023

Cultivar Georgia Green

Irrigation applied None (rain-fed)

Nitrogen applied 0 kg ha�1

Soil profile latitude 31.2°N
Soil profile longitude 274.92°E (85.07°W)

Soil profile source Reanalyzed soils

(Romero et al., 2012)

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 394–407
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climate change metrics is kept at the baseline level

(Fig. 4). The general response of rain-fed Henry County

mean yields is as might be expected, but the general

decrease in yields under warmer and drier conditions

with lower [CO2], as well as the increase in yields in

cooler, wetter, and higher [CO2] environments may now

be quantified. Yield CV responds most strongly to pre-

cipitation (wetter conditions leading to lower CV and

more consistent interannual yields), although warmer

conditions have the potential to offset CV decreases

fromwetter conditions, probably through a combination

of increased evapotranspiration and a closer proximity

to damaging high-temperature thresholds.

These emulators enhance our understanding of crop

model responses in their ability to identify nonlineari-

ties in crop response, explore interactions in CTW

response, and quickly assess climate change scenarios.

For example, if [CO2] is held at the baseline levels

(Fig. 4a), the sensitivity of mean yield to rising temper-

atures is higher under wet conditions than under drier

conditions, indicating that peanut is more responsive to

heat stress when there is no competing water stress.

Likewise, if temperatures are held at the baseline levels

(Fig. 4c and d), an increase in [CO2] to 700 ppm can off-

set mean yield losses resulting from a 30% decrease in

growing season precipitation, although the yield CV

will increase by about 25%. Finally, if precipitation is

held constant (Fig. 4e), peanut responds to rising [CO2]

in a nearly linear fashion if temperatures do not change

but shows diminishing returns and very little response

beyond about 600 ppm when temperatures increase by

more than 5 °C.
To further explore the robustness of these emulators

and the potential for broader C3MP analysis, Fig. 5 pre-

sents differences between the impacts response cross

sections calculated using different climate series (left

column), different locations (middle column), and dif-

ferent irrigation regimes (right column). There is very

little difference between an emulator based on the

sensitivity tests applied to the observational climate

dataset and that created from sensitivity tests applied to

the AgMERRA dataset. A comparison between Figs 4c

and 5c suggests that the use of the AgMERRA climate

dataset leads to slightly less optimistic simulations of

the yield benefits when both [CO2] and precipitation

rise dramatically, but the overall pattern of response is

very similar. The AgMERRA dataset is therefore a suit-

able alternative for the C3MP exercise for peanut simu-

lations in Henry County, which encourages its further

application in regions where observational data are not

available. Differences between the observed weather

data and the AgMERRA estimates will also elucidate

agricultural regions where gridded climate datasets

may be missing key agroclimatic processes.

Although Henry and Washington Counties are only

ca. 100 km apart and have small differences in mean

climate, lower root zone soil saturation levels in Henry

County lead to unique CTW responses. This is apparent

Fig. 3 Simulated rain-fed and irrigated yields in comparison to the National Agricultural Statistics Service (NASS) reported peanut

yields for Henry County, Alabama.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 394–407
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in the baseline period CVs, which are nearly twice as

high in Henry County (0.47) as they are in Washington

County (0.26) due to a higher sensitivity to drought

conditions (correlations between rain-fed yield and

growing season precipitation are 0.79 and 0.62, respec-

tively; both significant at P = 0.001 level). The overall

pattern of impacts response in Henry and Washington

Counties is consistent (Fig. 5, center column), although

Washington County is less sensitive to changes in

precipitation. This highlights the role of water stress as

the major difference between these locations’ CTW

responses, and their differences look very similar to

(although weaker than) the differences between rain-

fed and irrigated conditions at Henry County (Fig. 5,

right column; which represent a nearly complete elimi-

nation of water stress). A comparison between the

rain-fed and irrigated conditions also helps quantify

the benefits of irrigation as an adaptation for future cli-

mate changes. Both respond in a similar fashion when

temperature increases are above 4 °C and precipitation

is at least as much as in the present climate. Rain-fed

conditions at Henry County are also more responsive

to the benefits of elevated [CO2] than Washington

County and the irrigated Henry County simulations,

illustrating the effects of improved water retention in

high-CO2 environments (Kimball, 2010).

Instantaneous sensitivities

The framework allows for the calculation of the instan-

taneous sensitivity to changes in carbon, temperature,

and water by calculating the slope of the emulated

Fig. 4 Cross sections of crop model emulators based upon sensitivity test results for percent changes (relative to baseline conditions) of

mean peanut yield (a, c, e; left color bar) and changes in the coefficient of variation for yield (b, d, f; right color bar) in Henry County,

Alabama, for (a–b) temperature and precipitation response at baseline [CO2]; (c–d) precipitation and [CO2] at baseline temperature;

and (e–f) temperature and [CO2] at baseline precipitation. The black stars in each panel represent baseline conditions (no change in

temperature or precipitation and 360ppm [CO2]).

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 394–407
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yield response surface at any given point. If we assume

that the response of peanut yield to temperature and

precipitation changes takes the shape of a curved sur-

face that peaks at optimum conditions, the optimal

growing season climate is found where the slope of this

temperature–water surface is zero (crops are assumed

to respond favorably to increased [CO2] in all climates).

In general, yields are expected to fall off at an accelerat-

ing pace as the climate moves away from these optimal

conditions, but the historical baseline climate is not

necessarily optimal. It is important to note that the

sensitivities calculated from the C3MP emulators are

based on 30-year climate shifts, which likely differ from

yield sensitivities to interannual climate shifts (Ruane

et al., 2013).

The instantaneous sensitivities of peanut simulations

in Henry County to changes away from its historical

baseline climate (marked with a star in Figs 4 and 5)

indicate that optimal conditions are somewhat cooler

and wetter than the 1980–2009 climate. Yields decrease

by 11.7% per 1 °C rise in mean growing season tempera-

ture, and increase by 8.5% per 10% increase in mean

growing season rainfall. Under irrigated conditions

mean yield decreases 8.6% per 1 °C rise and there is no

response to increasing rainfall (indicating that irrigation

acts as optimal water conditions). Rain-fed and irrigated

peanuts respond to a 100 ppm increase in [CO2] with

similar 12.8% and 11.2% increases in yield, respectively.

Probabilistic Analysis of CMIP5 projections

The C3MP impacts response surfaces also extend the

utility of the 99 sensitivity tests by enabling specific

scenarios to be rapidly explored. As any scenario can

be summarized by its growing season [CO2], temperature

change, and precipitation change from the historical

baseline period, these CTW changes can be plugged

into the emulators to estimate agricultural impacts.

Fig. 5 Differences (as percent of baseline) between emulated responses for mean peanut yield (following Fig. 4a, c, e) between the

AgMERRA and observed climate series for rain-fed conditions at Henry County (left); Henry and Washington Counties using the

observed climate series under rain-fed conditions (center); and rain-fed and irrigated conditions at Henry County using the observed

climate series.
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As an illustration, Fig. 6a shows the projected

changes in temperature and precipitation for Henry

County, Alabama, across various time slices in an

ensemble of 20 GCMs that contributed to CMIP5. These

20 GCMs are the subset that had posted (as of October,

2012) daily output through at least 2099 for RCPs

reflecting higher (RCP8.5) and lower (RCP4.5) [CO2].

The projections agree on progressive warming over the

course of the 21st century; however, the rate of that

warming is highly dependent on the RCP and there is

little agreement on the direction of precipitation

changes. Incorporating [CO2] determined for any given

time slice from the RCP, each GCM time-slice projec-

tion was emulated to produce probabilistic estimates of

particular yield and yield CV thresholds according to

the CMIP5 ensemble (Table 3).

Examining an extreme yield threshold defined by

mean 30-year yields that are only 80% of the mean

yields in the historical baseline, the CMIP5 GCMs sug-

gest that farmers in Henry County do not face a 20%

mean yield decrease until the end-of-century (2070–
2099) period under RCP4.5 (when only 17 of the 20

models have emulated mean yields above this thresh-

old). Under RCP8.5, however, this level of threat is

reached in the mid-century (2040–2069) and a minority

of the GCMs project yields above this threshold during

the end-of-century time slice. On the other end of the

spectrum, farmers hoping for even modest mean yield

increases (>105% of the baseline) find only a 25% proba-

bility in the near-term (2010–2039) under RCP4.5 and

then a 10% change beyond that period. Results are simi-

lar for irrigated peanut, although the probability of

yield increases is slightly lower (5%).

Yield CV is also projected to increase with very high

probability. For rain-fed conditions only 40% of models

project CVs less than the baseline period in the near

term, with probabilities declining in future periods in

both RCPs. CVs are projected to increase to more than

120% of their baseline value by the midcentury period

with high probability under irrigated conditions (where

CV is already quite small), with all models projecting

higher than 40% increases in CV at the RCP8.5 end of

century.

Comparison of CMIP5 and CMIP3 projections

To compare between the current state of the art and the

projections used for a large number of previous climate

change impact studies, Fig. 6b shows a comparison in

projected growing season mean temperature and

precipitation changes among the same 20 CMIP5 GCMs

under RCP8.5 and 16 GCMs from the higher emissions

scenario (A2; SRES, 2000) of the previous-generation

CMIP3 (Meehl et al., 2007). CMIP3 and CMIP5 results

potentially disagree due to updates in GCM resolu-

tions, parameterizations, and processes, as well as dif-

ferences between the RCP8.5 and A2 scenarios’

evolution of greenhouse gas concentrations. RCP8.5

reaches higher [CO2] by the end-of-century period than

does A2 (801 ppm and 734 ppm in 2085, respectively),

although values are much closer in the near-term

(432 ppm and 434 ppm in 2025) and mid-century

(571 ppm and 556 ppm in 2055). Even with a larger

number of models, the CMIP5 projections are in stron-

ger agreement as to Henry County temperature and

precipitation changes than are the CMIP3 projections,

although the most extreme temperature changes are

projected under CMIP5’s higher [CO2] RCP8.5 scenario.

(a)

(b)

Fig. 6 Projected changes in growing season (April–August)

mean temperature and precipitation for Henry County, Ala-

bama, for three 30-year time slices relative to the 1980–2009

baseline from (a) 20 CMIP5 GCMs run with a higher (RCP8.5)

and lower (RCP4.5) concentrations pathway, and (b) the same

CMIP5 points from the higher concentrations pathway in addi-

tion to 16 GCMs from CMIP3’s higher (A2) emissions scenario

experiments.
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In general, GCMs in a given time period projecting

larger precipitation decreases also project greater

warming, indicating a shift in the ratio of latent and

sensible energy fluxes as surface moisture changes.

The emulated yield change distributions presented in

Figure 7 show that the general message of climate

impact projections for rain-fed and irrigated peanut

production in Henry County has not changed dramati-

cally from CMIP3 to CMIP5, with both ensembles sug-

gesting yield declines by midcentury and accelerating

losses into the end-of-century period. CMIP5 RCP8.5

projections suggest slightly larger yield losses than do

the CMIP3 A2 simulations; however, the CMIP3 ensem-

ble shows larger uncertainties in the end-of-century

period. The latest CMIP5 projections are therefore more

consistent and more pessimistic than would have been

assessed in previous-generation CMIP3 impact studies,

resulting in CMIP3’s most severe and most optimistic

end-of-century projections being eliminated.

Comparison of simulated and emulated climate change
impact projections

As a final check on the efficacy of the C3MP sensitivity

tests and emulator approach for Henry County

peanuts, Figure 8 presents a comparison between the

distribution of CMIP5 yield change projections using

the C3MP emulators and the distribution resulting

from an impacts assessment using the more traditional

“delta method” (Wilby et al., 2004; White et al., 2011).

In the latter approach, changes in mean monthly tem-

peratures and precipitation (calculated by comparing

the climatologies of a future time slice with the histori-

cal baseline period in a given GCM) are imposed on the

observed historical period climate series and then used

to drive crop model simulations.

The emulated yield change distributions and directly

simulated yield change distributions indicate the same

general response of Henry County peanuts to CMIP5

climate changes, with yields declining modestly to the

mid-century and then accelerating losses by the end-of-

century period. Median yield change projections (red

lines in Fig. 8a–d) are similar; however, the emulated

yields underestimate the spread in uncertainty sug-

gested by the delta method simulations. Direct compar-

ison between the emulated and simulated yield change

projections across all GCMs and time periods (Fig.

8e–h) reveals that the emulators tend to be somewhat

conservative, underestimating the most extreme yield

decreases and increases (a similar underestimation was

found by Lobell & Burke, 2010). In this case the discrep-

ancy is likely a combination of the least-squares fitting

of the emulator as well as differences between using

mean growing season temperature and precipitation

Table 3 Probabilistic threshold analysis of CMIP5 results under rain-fed (a, c) and irrigated (b, d) conditions for peanut. Results

indicate the percentage of GCMs where emulators project that a given threshold will be surpassed for mean yield (a, b) and yield

CV (c, d), and are color coded with white = 100%, light gray = 70–99%, medium gray = 30–69%, and dark gray = 0–29%

RCP4.5 RCP8.5

Near-term Mid-century End-of-century Near-term Mid-century End-of-century

(a) Rain fed

Mean Yield > 80% of Baseline 100 100 85 100 85 45

Mean Yield > 90% of Baseline 85 60 55 90 50 30

Mean Yield > 100% of Baseline 40 25 35 45 30 10

Mean Yield > 105% of Baseline 25 10 10 15 15 5

(b)Irrigated

Mean Yield > 80% of Baseline 100 100 95 100 95 55

Mean Yield > 90% of Baseline 100 85 70 100 75 20

Mean Yield > 100% of Baseline 25 15 10 20 10 10

Mean Yield > 105% of Baseline 5 5 5 5 5 0

(c) Rain fed

CV < 95% of Baseline 20 10 5 5 0 0

CV < 100% of Baseline 40 20 25 40 25 15

CV < 120% of Baseline 100 100 100 100 95 95

CV < 140% of Baseline 100 100 100 100 100 100

(d) Irrigated

CV < 95% of Baseline 0 0 0 0 0 0

CV < 100% of Baseline 0 0 0 0 0 0

CV < 120% of Baseline 75 15 5 75 0 0

CV < 140% of Baseline 100 75 45 100 45 0
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changes for the emulator and monthly changes for the

delta method simulations. Several GCMs have substan-

tial variation in the way that climate changes within a

growing season; however, these changes do not have as

dramatic an impact when averaged over a longer grow-

ing season. As C3MP is designed to require only a

small set of sensitivity tests from its global participants,

investigation of these subseasonal impacts is left to

follow-on studies.

Discussion

The prototype study at Henry County, Alabama,

reveals the potential insight and analyses enabled by

the execution of C3MP sensitivity tests. With only a rel-

atively small set of simulations, crop modelers around

the world are able to provide the crucial carbon diox-

ide, temperature, and water responses that govern the

main agricultural response to climate change. Analysis

of GCM projections and the CTW impacts response sur-

faces at Henry County reveal modest yield losses accel-

erating beyond the middle of the 21st century, with

temperature and water stresses overwhelming the ben-

efits of enhanced [CO2]. Generalized crop model emu-

lators provide a robust fit to the sensitivity tests, and

results are consistent between this approach and the

more involved delta method approach. These emula-

tors allow future scenarios to be rapidly assessed for

Henry and Washington County peanuts as was done

here for various RCPs, GCMs, and time periods. Yield

(or CV) change threshold analysis also facilitates risk

management either by probabilistic projection (Table 3)

or in terms of identifying the types of climate changes

that cross important change contours in Fig. 4. Simula-

tions based on the AgMERRA climate data also satisfac-

torily reproduce those based on the state climatologist

observations, motivating expanded applications of

these data where local observations are not available.

This analysis at the Henry County site is informative,

but the coordination of a global network of C3MP sites

enables larger analyses including the identification of

vulnerable subregions and cropping systems in a given

region, the relative sensitivities to immediate changes

in temperature or precipitation, the forms of emulators

that are robust in various farming systems, and the gen-

eral agreement between crop models or sites with

slightly different cultivars and/or farm management.

C3MP results will also increase our ability to gage

uncertainties across regions, scenarios, and crop mod-

els, as well as providing points of comparison for global

gridded crop model improvement and examinations of

scale dependency in impacts assessment. When C3MP

crop model emulators are combined with climate

model emulators under development in the

climate modeling community that produce regional

temperature and precipitation changes based on carbon

dioxide concentrations (e.g., Castruccio et al., in

review), the combination will allow for rapid statistical

assessment of regional climate impacts based on green-

house gas emissions simulated by integrated assess-

ment models.

It is also important to recognize limitations in the

C3MP approach. A focus on growing season tempera-

ture and precipitation changes neglects the likelihood

of subseasonal changes in the frequency, distribution,

and extremes of these variables, which could substan-

tially affect regional yield changes. C3MP also neglects

to differentiate between changes in minimum tempera-

ture and maximum temperature despite a strong physi-

cal basis to expect the former to slightly outpace the

latter. C3MP assumes that current management prac-

tices will persist under future climate conditions, lead-

ing to a more pessimistic projection that is better used

to recognize the risk of ignoring climate impacts. In

light of these limitations, C3MP will be of most use for

rapid assessment of new scenarios and to identify
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Fig. 7 Comparison of mean yield changes from three future

time slices (near term, midcentury, and end of century relative

to baseline mean) between the higher [CO2] scenarios of 20

CMIP5 GCMs (RCP8.5) and 16 CMIP3 GCMs (A2) for (a) rain-

fed and (b) irrigated conditions.
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major vulnerabilities and responses that merit more

comprehensive investigation by regional experts.

C3MP increases (and encourages) collaboration

among the global network of participants and moti-

vates further studies that can be designed to answer

specific questions of crop response to particular stresses

or differences between various crop model perfor-

mances in a given farming system. High-quality experi-

ments, free-air carbon enrichment (FACE; Kimball,

2010) facilities, and other field trials are still required to

most accurately quantify CTW sensitivities and

improve these model simulations and the associated

emulators. AgMIP research projects are underway to

improve regional impacts assessment and increase the

number of calibrated crop modeling sites around the

world, as well as to connect the lessons learned from

C3MP and other initiatives to future assessments of

food security at local, regional, and global scales.
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Fig. 8 Comparison of mean peanut yield changes from three future time slices (near term, midcentury, and end of century relative to

baseline mean from left to right in each panel) between directly simulated delta scenarios (sim) and the corresponding emulator-based

estimates (emu) across 20 CMIP5 GCMs for the RCP4.5 (a, c) and RCP8.5 (b, d) concentrations pathways and for rain-fed (a–b) and irri-

gated (c–d) conditions. Panels (e–h) show the direct comparison of all GCMs and time slices for (e, g) RCP4.5 and (f, h) RCP8.5 under

(e–f) rain-fed and (g–h) irrigated conditions, along with a 1 : 1 line for comparison.
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