
1

Distributed Prognostics Based on Structural Model
Decomposition

Matthew J. Daigle, Member, IEEE, Anibal Bregon, Member, IEEE, and Indranil Roychoudhury, Member, IEEE

Abstract—Within systems health management, prognostics fo-
cuses on predicting the remaining useful life of a system. In
the model-based prognostics paradigm, physics-based models
are constructed that describe the operation of a system and
how it fails. Such approaches consist of an estimation phase,
in which the health state of the system is first identified, and a
prediction phase, in which the health state is projected forward
in time to determine the end of life. Centralized solutions to
these problems are often computationally expensive, do not scale
well as the size of the system grows, and introduce a single
point of failure. In this paper, we propose a novel distributed
model-based prognostics scheme that formally describes how to
decompose both the estimation and prediction problems into
independent local subproblems whose solutions may be easily
composed into a global solution. The decomposition of the prog-
nostics problem is achieved through structural decomposition
of the underlying models. The decomposition algorithm creates
from the global system model a set of local submodels suitable
for prognostics. Independent local estimation and prediction
problems are formed based on these local submodels, resulting in
a scalable distributed prognostics approach that allows the local
subproblems to be solved in parallel, thus offering increases in
computational efficiency. Using a centrifugal pump as a case
study, we perform a number of simulation-based experiments to
demonstrate the distributed approach, compare the performance
with a centralized approach, and establish its scalability.

Index Terms—model-based prognostics, distributed prognos-
tics, structural model decomposition

ABBREVIATIONS & ACRONYMS

EOL end of life

PRMSE percent root mean square error

RA relative accuracy

RPM revolutions per minute

RSD relative standard deviation

RUL remaining useful life

UKF unscented Kalman filter

UT unscented transform

Corresponding author. M. J. Daigle is with NASA Ames Research Center,
Moffett Field, CA 94035 USA (e-mail: matthew.j.daigle@nasa.gov).

A. Bregon is with the Department of Computer Science, University of
Valladolid, Valladolid, Spain (e-mail: anibal@infor.uva.es).

I. Roychoudhury is with Stinger Ghaffarian Technologies, at NASA
Ames Research Center, Moffett Field, CA 94035 USA (e-mail: in-
dranil.roychoudhury@nasa.gov).

M. Daigle and I. Roychoudhury’s work has been partially supported by
the NASA System-wide Safety Assurance (SSAT) Project within the Aviation
Safety Program (ASP) under the Aeronautics Mission Directorate (ARMD),
and the NASA Autonomous Cryogenic Loading Operations (ACLO) Project
under the Office of the Chief Technologies (OCT). A. Bregon’s work has been
partially supported by Spanish MCI TIN2009-11326 grant.

NOTATION

x state vector

θ parameter vector

u input vector

y output vector

r performance requirement

R set of performance requirements

ω rotational velocity

τ torque

p pressure or probability

Q volumetric flow

T temperature

r friction coefficient

w wear parameter

M model/submodel

v variable

V voltage or set of variables

X set of states

Θ set of parameters

U set of inputs

Y set of outputs

c constraint

C set of constraints

εc equation of constraint c
α causal assignment

A set of causal assignments

I. INTRODUCTION

Systems health management is an engineering discipline

that seeks to improve the design and operation of complex

systems in the presence of faults and degradations. Prognostics

is an essential technology for systems health management

that centers on predicting the useful life of components,

subsystems, or systems. This information may be used to slow

damage progression, prolong system life, and optimize mainte-

nance activities. Model-based prognostics approaches capture

knowledge of how a system and its components fail through

the use of physics-based models that describe the underlying

physical phenomena [1]–[7]. These algorithms consist of two

parts: (i) estimation, which computes the current joint state-

parameter estimate of the system to determine the current

health state, and (ii) prediction, which projects the current joint

state-parameter estimate forward in time to determine end of

life (EOL) and/or remaining useful life (RUL).

To date, virtually all prognostics approaches employ a

centralized architecture. However, centralized approaches have

several drawbacks: they embody a single point of failure,

are computationally expensive, and do not scale well as the

2

size of the system increases. Distributed architectures, on

the other hand, offer several advantages. In particular, im-

plementation platforms are becoming increasingly distributed,

involving systems of smart sensors and smart components, in

addition to multi-core processors [8]. Distributed approaches

naturally take advantage of these new architectural paradigms,

and hence improve scalability and computational efficiency.

Distributed implementations on large systems are also easier

to maintain when components are added or removed from the

system.

Specifically, we propose a novel distributed prognostics

approach that exploits structural model decomposition [9]. In

a model-based prognostics paradigm, the prognostics problem

is defined by the underlying model. So, by decomposing

the system model, we decompose the model-based prognos-

tics problem. Several methods for structural model decom-

position have, in fact, been developed for the purposes of

diagnosis [10]–[13], but none for prognosis. In this work,

we adopt the model decomposition framework developed

previously in [14]. Like other structural model decomposition

approaches, the key feature of the derived submodels is that

they are computationally independent. Therefore, local prog-

nostics problems based on the submodels can be solved in-

dependently. As a result, solution of the subproblems requires

no communication between the algorithms. This approach also

provides more flexibility, allowing different algorithms to be

applied to each subproblem, and, thus, each subproblem can

be solved with the most appropriate strategy. The proposed

approach to distributed prognostics developed in this paper is

a fundamentally different approach from previous distributed

prognostics approaches, e.g. [15], [16]. In such approaches,

the global problem is still solved, and the computation is

simply distributed, whereas in our approach, the approach

is distributed by decomposing the global problem into local

subproblems that are solved in parallel.

In earlier work [17], preliminary results were presented in

which only the estimation problem was decomposed using

structural model decomposition as described in [10]. In this

paper, we show how the more general model decomposition

framework of [14] can be used to decompose both the esti-

mation and prediction problems for model-based prognostics.

The work of [14] shows how the estimation and prediction

problems can be decomposed, however, it does not provide

any algorithms for distributed prognostics. In this paper, we

develop a distributed prognostics architecture based on the

derived submodels, and includes the algorithms for distributed

prognostics. The model decomposition corresponds to a set of

local estimation and prediction problems that are smaller, and,

therefore, easier to solve and require less computation than the

global problem. Each local estimator computes a local joint

state-parameter estimate. The local predictors use the outputs

of the local estimators as inputs to their prediction routine,

yielding local EOL/RUL predictions. Global EOL/RUL pre-

dictions are then determined based on the local EOL/RUL

predictions.

We demonstrate our distributed prognostics methodology on

a centrifugal pump that is used for liquid oxygen transfer in

spacecraft fueling operations at Kennedy Space Center [2]. We

derive submodels for local estimation and for local prediction,

forming a distributed prognostics architecture for the pump.

We perform a number of simulation-based experiments, and

show that our distributed approach performs comparably to

the centralized approach in terms of accuracy and precision

of the life predictions, and at decreased computational cost.

In addition, since the value of a distributed approach is only

readily apparent with large-scale systems, we demonstrate the

improved scalability of the distributed approach using a large-

scale system composed of multiple pumps.

The contributions of the paper are as follows: (i) a novel

distributed model-based prognostics framework based upon

structural model decomposition, including algorithms for dis-

tributed estimation and prediction and the merging of local

results into global results; (ii) the application of the distributed

prognostics approach to a centrifugal pump with comprehen-

sive simulation-based experimental results that validate the

approach and compare to a centralized approach; and (iii)
a proof that the distributed approach is more efficient and

scalable than the centralized approach, with corroborating

experimental results.

The paper is organized as follows. Section II formally de-

fines the prognostics problem, describes the centralized prog-

nostics architecture, and introduces our proposed distributed

architecture. Section III describes the modeling methodol-

ogy and develops the centrifugal pump model. Section IV

overviews the model decomposition framework. Section V

formulates the distributed prognostics problem using model

decomposition, and provides an architecture for the pump.

Section VI describes distributed estimation, and Section VII

describes distributed prediction. Section VIII provides results

from simulation-based experiments, evaluates the approach,

and shows its scalability. Section IX compares our approach

with related work, and Section X concludes the paper.

II. MODEL-BASED PROGNOSTICS

In this section we first formulate the model-based prognos-

tics problem. We then describe the typical centralized prog-

nostic architecture, followed by our proposal for a distributed

architecture.

A. Problem Formulation

The goal of prognostics is the prediction of the EOL and/or

RUL of a system. We assume the system model may be

generally defined as

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)),

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ R
nx is the state vector, θ(t) ∈ R

nθ is the

unknown parameter vector, u(t) ∈ R
nu is the input vector,

v(t) ∈ R
nv is the process noise vector, f is the state

equation, y(t) ∈ R
ny is the output vector, n(t) ∈ R

nn is

the measurement noise vector, and h is the output equation.1

In prognostics, we are interested in the time at which the

performance of a system lies outside some desired region

1Bold typeface denotes vectors, and na denotes the length of a vector a.

3

of acceptable behavior. Outside this region, we say that the

system has failed. The desired performance is expressed

through a set of nr requirements, R = {ri}nr
i=1, where

ri : R
nx×R

nθ×R
nu → B maps a given point in the joint state-

parameter space given the current inputs, (x(t),θ(t),u(t)), to

the Boolean domain B � {0, 1}, where ri(x(t),θ(t),u(t)) =
1 if the requirement is satisfied, and ri(x(t),θ(t),u(t)) = 0
if the requirement is not satisfied.

These individual requirements are combined into a single

threshold function TEOL : Rnx × R
nθ → B, defined as

TEOL(x(t),θ(t),u(t)) =

{
1, 0 ∈ {ri(x(t),θ(t),u(t))}nr

i=1

0, otherwise.

That is, TEOL evaluates to 1, i.e., the system has failed, when

any of the requirements are violated [2]. EOL is then defined

as

EOL(tP) �
inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t),u(t)) = 1},

i.e., EOL is the earliest time point at which TEOL is met. RUL

is expressed using EOL as

RUL(tP) � EOL(tP)− tP .

B. Centralized Architecture

In order to compute EOL, we need the current state of

the system, which is unknown. Therefore, in the model-based

prognostics paradigm, the problem of predicting EOL/RUL

is split into two sequential problems: (i) estimation, which

computes the state-parameter estimate, and (ii) prediction,

which simulates the current joint state-parameter estimate

forward in time to determine EOL/RUL [1], [2], [4].

The centralized architecture implementing the model-based

prognostics approach works as follows. In discrete time k,

the system receives inputs uk and provides measured outputs

yk. With the system model, the estimation module uses this

information to compute an estimate p(xk,θk|y0:k), accounting

for the presence of process noise v(t) and sensor noise n(t).
Given this state-parameter estimate, the prediction algorithm

uses the model to simulate this distribution out to EOL

to compute p(EOLkP
|y0:kP

) and p(RULkP
|y0:kP

) at given

prediction times kP . In order to do this, the prediction step

must hypothesize the future inputs to the system uk for

k ≥ kP .

The centralized approach solves the global prognostics

problem by solving global estimation and prediction problems.

Centralized approaches, however, introduce a host of potential

problems. Aside from the fact that most modern computa-

tional architectures are distributed, be it through multi-core

processors or networked systems, the most significant issue is

scalability. As the size of the problem increases, the methods

to solve it become more and more costly, and can suffer from

problems such as convergence of the estimates. We therefore

propose a distributed approach that solves the global problem

through a set of local subproblems.

C. Distributed Architecture

The key idea of the distributed approach is to decompose

the global model into a set of local submodels, with each local

submodel defining a local estimation or prediction subproblem.

For a given model, we generate a set of submodels with

local variables xi ⊆ x, θi ⊆ θ, ui ⊆ u, yi ⊆ y,

Ri ⊆ R, and with local equations f i, hi, and T i
EOL. Once

the submodels have been defined, the distributed architecture

works as follows. In discrete time k, the system is provided

with inputs uk and provides measured outputs yk. The inputs

uk and the outputs yk are split into local inputs ui
k and

outputs yi
k. Local estimators compute p(xi

k,θ
i
k|yi

0:k). From

the local estimates, the inputs to the local predictors are

constructed. The local predictors compute local EOL/RUL

predictions p(EOLi
kP

|yi
0:kP

) and p(RULi
kP

|yi
0:kP

) at given

prediction times kP . Local predictions are then merged into

global predictions p(EOLkP
|y0:kP

) and p(RULkP
|y0:kP

).
Models are decomposed by selecting some set of variables

as local inputs in addition to the global inputs u to form ui.

In this way, we can derive submodels that can be computed

independently of other submodels given the local inputs. This

means that local estimation and prediction subproblems are

independent and can be solved in parallel without communi-

cation. For the estimation phase, the measured sensor signals

can be used as additional inputs, exploiting the redundancy

they provide [18]. For the prediction phase, the insight is to

select, as local inputs, variables that can be predicted a priori

(e.g., a controlled quantity). The sets of local inputs chosen for

estimation and prediction may be different, in which case the

resulting submodels used for estimation and prediction will

be different, so the estimates required for prediction must be

reconstructed from the results of the local estimators.

Because the subproblems are smaller than the global prob-

lem and can be solved in parallel, this approach is more

efficient and scalable than a centralized approach, as will be

shown in Section VIII. However, the distributed approach does

have some limitations. For the estimation phase, information

will be lost due to the decomposition (specifically, the covari-

ance of decoupled variables), and noisy sensor signals will be

used as local inputs. Therefore, the distributed approach will

not obtain the same exact answer as the centralized approach.

We will show in Section VIII that, despite these limitations,

the performance of the distributed approach is comparable to

the performance of the centralized approach. Before presenting

the details of the distributed prognostics approach, in the next

section, we introduce the pump case study and its model.

III. CENTRIFUGAL PUMP MODELING

In this work, we use a centrifugal pump as a case study. The

particular pump under study is used to transfer liquid oxygen

for spacecraft fueling operations, the model for which was

originally presented in [2]. In practice, distributed prognostics

may not be warranted for a single component, but we use the

pump as a case study here because it is a complex but small

enough system to fully describe and demonstrate our approach.

In Section VIII, we will investigate the scalability properties

of our approach using a large-scale multi-pump system.

4

Fig. 1. Centrifugal pump.

In order to apply model-based prognostics, we must develop

a model of the system under consideration. This includes

identifying the state vector x(t), the parameter vector θ(t), the

input vector u(t), the output vector y(t), the state equation f ,

the output equation h, and the set of performance requirements

R. In this section, we summarize the main features of the

pump model, first describing the nominal model, and then

describing its damage progression models.

A. Nominal Model

Centrifugal pumps are used for the delivery of fluids in a

system. A schematic is shown in Fig. 1. Fluid enters the inlet,

and the impeller rotation, driven by an electric motor, forces

it through the outlet. Bearings help minimize friction along

the shaft, and are lubricated by oil residing in the bearing

housing. The pump state includes ω(t), the rotational velocity

of the pump; Q(t), the discharge flow; Tt(t), the thrust bearing

temperature; Tr(t) the radial bearing temperature; and To(t),
the oil temperature.

The rotational velocity of the pump is described using a

torque balance,

ω̇ =
1

J
(τe − rω − τL) , (1)

where J is the lumped motor/pump inertia, τe is the electro-

magnetic torque provided by the motor, r is the lumped friction

parameter, and τL is the load torque. We assume the pump is

driven by an induction motor, in which torque is produced

only when there is a slip, s, between the synchronous speed

of the supply voltage, ωs and the mechanical rotation, ω:

s =
ωs − ω

ωs
. (2)

The expression for the torque τe is derived from an equivalent

circuit representation for a three-phase induction motor [19]:

τe =
npR2

sωs

V 2

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
, (3)

where R1 is the stator resistance, L1 is the stator inductance,

R2 is the rotor resistance, L2 is the rotor inductance, n is the

number of phases (typically 3), p is the number of magnetic

pole pairs, and V is the applied rms motor voltage. The

dependence of torque on slip creates a feedback loop that

causes the rotor to follow the rotation of the magnetic field.

Rotor speed is controlled by changing ωs, e.g., through the

use of a variable-frequency drive, which will also change V
to manage power usage.

Load torque τL is a polynomial function of the pump flow

rate and the impeller rotational velocity [20], [21]:

τL = a0ω
2 + a1ωQ− a2Q

2, (4)

where a0, a1, and a2 are coefficients derived from the pump

geometry [21].

The rotation of the impeller creates a pressure difference

from the inlet to the outlet of the pump, which drives the

pump flow, Q. The pump pressure is computed as

pp = b0ω
2 + b1ωQ− b2Q

2, (5)

where b0, b1, and b2 are coefficients derived from the pump

geometry. The parameter b0 is proportional to impeller area

A [22]. Flow through the impeller, Qi, is computed using the

pressure differences:

Qi = c
√
|ps + pp − pd|sign(ps + pp − pd), (6)

where c is a flow coefficient, ps is the suction pressure, and

pd is the discharge pressure. To account for fluid inertia, the

discharge flow is described by

Q̇ =
1

JQ
(Qo −Qi), (7)

where JQ is the flow inertia.

Pump temperatures are often monitored as indicators of

pump condition. The oil heats up due to the radial and thrust

bearings and cools to the environment:

Ṫo =
1

Jo
(Ho,1(Tt − To) +Ho,2(Tr − To)−Ho,3(To − Ta)),

(8)

where Jo is the thermal inertia of the oil, and the Ho,i terms

are heat transfer coefficients. The thrust bearings heat up due

to the friction between the pump shaft and the bearings, and

cool to the oil and the environment:

Ṫt =
1

Jt
(rtω

2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)), (9)

where Jt is the thermal inertia of the thrust bearings, rt is

the friction coefficient for the thrust bearings, and the Ht,i

terms are heat transfer coefficients. The radial bearings behave

similarly:

Ṫr =
1

Jr
(rrω

2 −Hr,1(Tr − To)−Hr,2(Tr − Ta)), (10)

where Jr is the thermal inertia of the radial bearings, rr is the

friction coefficient for the radial bearings, and the Hr,i terms

are heat transfer coefficients.

The overall input vector u is given by

u(t) =
[
ps(t) pd(t) Ta(t) V (t) ωs(t)

]T
. (11)

The available pump sensors form the measurement vector

y given by

y(t) =
[
ω(t) Q(t) To(t) Tt(t) Tr(t)

]T
. (12)

5

0 1 2 3

380

400

420

440

460
V

ol
ta

ge
 (V

)

Time (hours)

Input Voltage

0 1 2 3
360
380
400
420
440
460

V
el

oc
ity

 (r
ad

/s
)

Time (hours)

Rotational Velocity

0 1 2 3

0.11

0.12

0.13

0.14

Fl
ow

 (m
3 /s

)

Time (hours)

Discharge Flow

0 1 2 3

300

325
Te

m
pe

ra
tu

re
 (K

)

Time (hours)

Thrust Bearing Temperature

0 1 2 3
290

300
310
320
330

Te
m

pe
ra

tu
re

 (K
)

Time (hours)

Radial Bearing Temperature

0 1 2 3
290

300

310

320

Te
m

pe
ra

tu
re

 (K
)

Time (hours)

Bearing Oil Temperature

Fig. 2. Nominal pump operation.

Fig. 2 shows nominal pump operation, with the parameters

given in Table I. The input voltage and line frequency are

varied to control the pump speed (commanded line frequency

is equal to the observed pump speed). Initially, slip is 1 so

an electromagnetic torque is produced, causing a rotation of

the motor to match the rotation of the magnetic field, with

a small amount of slip remaining. The pump rotation creates

fluid flow and heats up the bearings.

B. Damage Modeling

The performance requirements of the pump are specified by

efficiency and temperature limits:

η > η− (13)

To < T+
o (14)

Tt < T+
t (15)

Tr < T+
r , (16)

where the − superscript denotes a minimum and the +

superscript denotes a maximum, and efficiency η is defined

as η = V I
(pd−ps)Q

for nominal inputs (I is rms motor current).

We take η− = 0.75η0, where η0 is the nominal efficiency.

When the maximum temperatures are reached, irreversible

damage occurs. Here, we use T+
o = 333 K, T+

t = 370 K,

and T+
r = 370 K.

The most significant damage mechanism for pumps is

impeller wear. It is represented as a decrease in impeller area

A [22], [23]. Since the impeller area is proportional to b0,

a decrease in impeller area causes a decrease in the pump

pressure, and, hence, the pump efficiency. We use the erosive

TABLE I
NOMINAL PUMP PARAMETERS

Parameter Value
ω(0) 376 rad/s

J 50 kg m2

r 8.0× 10−3 N m s
n 3 phases
p 1 pole pair

R1 3.6× 10−1 Ω
R2 7.6× 10−2 Ω
L1 + L2 6.3× 10−4 H

Q(0) 0 m3/s

a0 1.5× 10−3 kg m2

a1 5.8 kg/m

a2 9.2× 103 kg/m4

b0(0) 12.7 kg/m

b1 1.8× 104 kg/m4

b2 0 kg/m7

c 8.2× 10−5 m7/2/kg1/2

cl 1.0× 10−10 m7/2/kg1/2

JQ 5.0 s−1

To(0) 290 K

Jo 8.0× 103 K/J/s
Ho,1 1.0 W/K
Ho,2 3.0 W/K
Ho,3 1.5 W/K
Tr(0) 290 K
Jr 2.4 K/J/s

rr(0) 1.8× 10−6 N m s

Hr,1 1.8× 10−3 W/K

Hr,2 2.0× 10−2 W/K
Tt(0) 290 K
Jt 7.3 K/J/s

rt(0) 1.4× 10−6 N m s

Ht,1 3.4× 10−3 W/K

Ht,2 2.6× 10−2 W/K

wear equation [24] to describe how the impeller area changes

over time. The erosive wear rate is proportional to fluid

velocity times friction force. Fluid velocity is proportional to

volumetric flow rate, and friction force is proportional to fluid

velocity. We lump the proportionality constants into the wear

coefficient wA to obtain [2]

Ȧ = −wAQ
2
i . (17)

Because A is proportional to b0, then ḃ0 = kȦ = −kwAQ
2
i ,

so we estimate b0 and wb0 = kwA.

Another significant damage mechanism for pumps is bear-

ing wear, which is captured as an increase in the friction co-

efficient. Sliding and rolling friction generate wear of material

which increases the coefficient of friction [2], [3], [24]:

ṙt = wtrtω
2, (18)

ṙr = wrrrω
2, (19)

where wt and wr are the wear coefficients. The slip com-

pensation provided by the electromagnetic torque generation

masks small changes in friction, so it is only with very large

increases that a change in ω will be observed. Changes in

friction manifest more strongly in the bearing temperatures,

eventually driving them to the temperature limits.

6

So, the full state vector is

x(t) =
[
ω(t) Q(t) To(t) Tt(t) Tr(t) b0(t) rt(t) rr(t)

]T
.

(20)

The initial conditions for b0, rt, and rr are given in Table I.

The wear parameters form the unknown parameter vector, i.e.,

θ(t) =
[
wb0 wt wr

]T
. (21)

IV. MODEL DECOMPOSITION

To decompose the problem of model-based prognostics, we

decompose the underlying structural model. We use the model

decomposition framework described in [14], but simplify it,

without loss of generality, by removing the notion of auxiliary

variables (intermediate variables derived from the states, pa-

rameters, and inputs). This simplifies the model decomposition

algorithm and allows us to make guarantees of the minimality

of the derived submodels.

We introduce the requisite notation and concepts of the

model decomposition framework in the following. Additional

details and the full version of the framework can be found

in [14]. We begin with the definition of a model.

Definition 1 (Model). A model M∗ is a tuple M∗ = (V,C),
where V is a set of variables, and C is set of constraints. V
consists of four disjoint sets, namely, the set of state variables,

X; the set of parameters, Θ; the set of inputs, U ; and the set

of outputs, Y . Each constraint c = (εc, Vc) ∈ C consists of

an equation εc involving variables Vc ∈ V .

Input variables u ∈ U are known or measured, and cor-

respond to the input signals u(t). The subset of the outputs

corresponding to the (measured) sensor signals y(t) are de-

noted as Y ∗ ⊆ Y . Parameters θ ∈ Θ include explicit model

parameters corresponding to θ(t) that are used in the model

constraints. Θ consists only of those parameters that are to be

made explicit for joint state-parameter estimation.

As shown in Defn. 1, a constraint c = (εc, Vc) includes

an equation εc over the set of variables Vc. These constraints

are essentially representative of the vector functions f and h,

along with the requirements R. We associate explicit variables

for the evaluation of the performance requirements, e.g., ei =
ri(x(t),θ(t),u(t)). Note that, typically, a given ri is only a

function of a subset of the states, parameters, and inputs. Here,

the ei variables become part of Y , and are not included in

Y ∗. We denote by E ⊂ Y the variable set associated with the

performance requirement evaluations.

For the pump model, we have the variable sets X = {ω,
Q, To, Tt, Tr, b0, rt, rr}, Θ = {wb0 , wt, wr}, U = {ps, pd,
Ta, V, ωs}, and Y = {ω∗, Q∗, T ∗

o , T
∗
t , T

∗
r , e1, e2, e3, e4}.

Here, Y ∗ = {ω∗, Q∗, T ∗
o , T

∗
t , T

∗
r } and E = {e1, e2, e3, e4},

where the variables e1 to e4 correspond to the requirements

described in Eq. 13 to 16. The ∗ superscript is used on output

variables that are associated with sensors.

The notion of a causal assignment is used to specify the

computational causality for a constraint c, by defining which

v ∈ Vc is the dependent variable in equation εc.

Definition 2 (Causal Assignment). A causal assignment α
to a constraint c = (εc, Vc) is a tuple α = (c, voutc), where

voutc ∈ Vc is assigned as the dependent variable in εc.

We write a causal assignment of a constraint using its

equation in a causal form, with := to denote explicitly the

causal (i.e., computational) direction.
We say that a set of causal assignments A, for a model M∗

is valid if

• For all v ∈ U ∪ Θ, A does not contain any α such that

α = (c, v).
• For all v ∈ Y , A does not contain any α = (c, voutc)

where v ∈ Vc − {voutc }.

• For all v ∈ V −U−Θ, A contains exactly one α = (c, v).

A causal model is a model extended with a valid set of

causal assignments.

Definition 3 (Causal Model). Given a model M∗ = (V,C),
a causal model for M∗ is a tuple M = (V,C,A), where A
is a set of valid causal assignments for M∗.

For the pump model, the causal constraints are as follows.

For the states, we have

ω :=

∫ t

0

ω̇ dt, (α1)

Q :=

∫ t

0

Q̇ dt, (α2)

To :=

∫ t

0

Ṫo dt, (α3)

Tt :=

∫ t

0

Ṫt dt, (α4)

Tr :=

∫ t

0

Ṫr dt, (α5)

b0 :=

∫ t

0

−wb0Q
2
i dt (α6)

rt :=

∫ t

0

ṙt dt, (α7)

rr :=

∫ t

0

ṙr dt, (α8)

where ω̇ is given by Eq. 1, Q̇ by Eq. 7, Ṫo by Eq. 8, Ṫt by

Eq. 9, Ṫr by Eq. 10, Qi by Eq. 6, rt by Eq. 18, and rr by

Eq. 19. The initial conditions are provided in Table I. For the

outputs, we have

ω∗ := ω (α9)

Q∗ := Q, (α10)

T ∗
o := To, (α11)

T ∗
t := Tt, (α12)

T ∗
r := Tr. (α13)

For the performance requirements, we have

e1 := (η > η−), (α14)

e2 := (To < T+
o), (α15)

e3 := (Tt < T+
t), (α16)

e4 := (Tr < T+
r). (α17)

7

wb Qb0

rt

rr

ω

Tt

To

Tr

wt

wr

0

ps

pd

V ωs
Tt*

To*

Tr*

Q*

ω*e1

e3

e2

e4

Ta

Fig. 3. Causal graph for the pump model.

We visualize a causal model M using a directed graph G =
(N,A), where N is the set of nodes corresponding directly

to the variables V in M, and A is the set of arcs, where

for every (c, voutc) ∈ A, we include an arc (v′, voutc) for each

v′ ∈ Vc−{voutc }. The causal graph corresponding to the pump

model is given in Fig. 3. In the graph, we mark inputs with

dashed circles and states with dashed squares.
In order to decompose a model into submodels, we need to

break internal variable dependencies. We do this by selecting

certain variables as local inputs. Given the set of potential local

inputs (in general, selected from V) and the set of variables

to be computed by the submodel (selected from V −U −Θ),

we create from a causal model M a causal submodel Mi, in

which a subset of the variables in V are computed using a

subset of the constraints in C. In this way, each submodel

computes its variable values independently from all other

submodels. Further, if the local input values are exactly the

same as the corresponding variables in the global model, the

values of local outputs for the submodel will exactly reproduce

the values of the corresponding variables in the global model.

A causal submodel can be defined as follows.

Definition 4 (Causal Submodel). A causal submodel Mi of

a causal model M = (V,C,A) is a tuple Mi = (Vi, Ci,Ai),
where Vi ⊆ V , Ci ⊆ C, and Ai ∩ A
= ∅.

When using outputs (from Y ∗) as local inputs, the causality

of these constraints must be reversed, and so, in general, Ai

is not a subset of A. All remaining causal assignments in Ai

will still be found in A.
The procedure for generating a submodel from a causal

model is given as Algorithm 1. Given a causal model M, a set

of variables that are considered as local inputs U∗, and a set

of variables to be computed V ∗, the GenerateSubmodel
algorithm derives a causal submodel Mi that computes V ∗ us-

ing U∗. We provide here a simplified version of the algorithm

presented in [14], and refer the reader to [14] for the extended

algorithm and additional details. We briefly summarize the

Algorithm 1 Mi = GenerateSubmodel(M, U∗, V ∗)
1: Vi ← V ∗

2: Ci ← ∅

3: Ai ← ∅

4: variables ← V ∗

5: while variables �= ∅ do
6: v ← pop(variables)
7: c ← GetBestConstraint(v, Vi, U

∗,A)
8: Ci ← Ci ∪ {c}
9: Ai ← Ai ∪ {(c, v)}

10: for all v′ ∈ Vc do
11: if v′ /∈ Vi and v′ /∈ Θ and v′ /∈ U∗ then
12: variables ← variables ∪ {v′}
13: end if
14: Vi ← Vi ∪ {v′}
15: end for
16: end while
17: Mi ← (Vi, Ci,Ai)

algorithm below.

In Algorithm 1, the variables queue represents the set of

variables that have been added to the submodel but have not

yet been resolved, i.e., they cannot yet be computed by the

submodel. This queue is initialized to V ∗, the set of variables

that must be computed by the submodel. The algorithm then

iterates until this queue has been emptied, i.e., the submodel

can compute all variables in V ∗ using only variables in

U∗. For each variable v that must be resolved, we use the

GetBestConstraint subroutine (Subroutine 2) to find the

constraint that should be used to resolve v in the minimal (in

the number of constraints) way.

The GetBestConstraint subroutine (simplified

from [14]) tries to find a constraint that completely resolves

the variable, i.e., resolves v without further backward

propagation (all other variables involved in the constraint

are in Vi ∪ Θ ∪ U∗). Such a constraint may be the one that

computes v in the current causality, if all needed variables are

already in the submodel (in Vi) or are available local inputs

8

Subroutine 2 c = GetBestConstraint(v, Vi, U
∗,A)

1: cv ← find c where (c, v) ∈ A
2: if (Vcv − {v}) ⊆ Vi ∪ U∗ then
3: return cv
4: else
5: for all y ∈ Y ∗ ∩ U∗ do
6: cy ← find c where (c, y) ∈ A
7: if v ∈ Vcy and (Vcy − {v}) ⊆ Vi ∪ U∗ then
8: return cy
9: end if

10: end for
11: end if
12: return cv

(in U∗); or such a constraint may be one that computes a

measured output y∗ ∈ U∗, in which case the causality will be

modified such that y∗ becomes an input, i.e., the constraint in

the new causality will compute v rather than y∗. If no such

constraint exists, then the constraint that computes v in the

current causal assignment is chosen, and further backward

propagation will be necessary.

For example, consider generating a submodel for the pump

with U∗ = {V, ωs, Q
∗} and V ∗ = {ω∗}. We first try to resolve

ω∗ (see Fig. 3). To compute ω∗ in the given causality we

need to include ω in the submodel. To compute ω we need

to include V , ωs, Q, and ω. Both V and ωs are in U∗, and

ω is in V , so these variables are resolved. To compute Q,

we have two options: compute using pd, b0, ps, Q, and ω,

or compute using Q∗ with the corresponding constraint in the

causality such that Q is computed. The minimal resolution is

the second option, so Q∗ is added to the submodel and the

causality of the involved constraint is modified. Since Q∗ is

in U∗, it is resolved. Now all variables in the submodel are

resolved and the algorithm is complete.

Clearly, there are many submodels that compute any given

V ∗ using a given U∗. The global model is one such solution.

Algorithm 1 finds a minimal submodel that satisfies this, which

is guaranteed in Subroutine 2 by resolving a variable without

further backward propagation whenever possible. There may

be multiple submodels that are equally minimal (i.e., due to a

choice of which local input to use), and the algorithm returns

the first that it finds.

The algorithm also generates only complete submodels, i.e.,

the submodels contain at least the variables needed to compute

its V ∗. This is guaranteed because the algorithm only stops

propagation at variables included in Vi ∪Θ ∪ U∗ [14].

In the worst case, the algorithm must visit all variables and

constraints. On each variable, Subroutine 2 is called, which in

the worst case considers all variables in Y ∩U∗. So the overall

worst-case time complexity is O((|V |+ |E|) · |Y ∩U∗|). Since

(Y ∩U∗) ⊂ V , the algorithm is polynomial in the model size.

On average some amount of decomposition will be possible

so the complexity will be much lower in practice.

In the next section we describe how this model decomposi-

tion algorithm is used to decompose a model for the explicit

purposes of distributed estimation and distributed prediction.

V. DISTRIBUTED PROGNOSTICS ARCHITECTURE

The distributed model-based prognostics architecture is

based on structural model decomposition, with local estimation

and prediction subproblems based on derived local submodels.

For estimation, we construct minimal submodels, one for

each output of the model that corresponds to a sensor, i.e.,

for each y∗ ∈ Y ∗. As discussed in Section II-C, we use

measured sensor signals as local inputs in addition to U .

For each output y∗ ∈ Y ∗, we create a submodel using

GenerateSubmodel(M, U ∪ (Y ∗ − {y∗}), {y∗}), i.e., we

use as local inputs the inputs to the global model along with all

sensor outputs except for y∗, and the only local output is y∗.

We define a local estimator based on that local submodel (e.g.,

Kalman filter, unscented Kalman filter, particle filter, etc.).

Using noisy sensors as local inputs to the estimation sub-

problems may, of course, result in a loss of accuracy and

robustness of the local estimators. This is the cost of deriving

independent local estimators. Without sensor noise, the local

estimators would produce the same results as a centralized

estimator, and as noise is added, performance may degrade.

Note of course that the centralized estimator must deal also

with sensor noise and so its performance will degrade as

well. In Section VIII we investigate the effects of increased

sensor noise on estimation performance for both the distributed

and centralized cases. In the situation where some sensors

are unreliable or extremely noisy, they can be removed from

the set of local inputs. To improve robustness, multi-output

estimators can also be derived, instead of the proposed single-

output estimators, but setting V ∗ ⊆ Y ∗ (the global model can

be recovered by setting V ∗ = Y ∗).

The causal graphs for the resulting submodels for the pump

are shown in Fig. 4. We obtain five submodels. The submodel

for ω∗ has X = {ω} and Θ = ∅; the submodel for Q∗ has

X = {Q, b0} and Θ = {wb0}; the submodel for T ∗
o has X =

{To} and Θ = ∅; the submodel for T ∗
t has X = {Tt, rt} and

Θ = {wt}; and the submodel for T ∗
r has X = {Tr, rr} and

Θ = {wr}. Note that the estimation submodels do not contain

the performance requirements, as these are not required to

compute the outputs, so are not included in the submodels

derived by the decomposition algorithm.

If the measurement set changed, then the resulting local sub-

models for estimation would change also. For example, con-

sider a reduced measurement set of Y ∗ = {ω∗, Q∗, T ∗
t , T

∗
r },

i.e., T ∗
o is no longer measured. Then only four submodels

would result, one for each sensor. The submodels for w∗ and

Q∗ remain the same, but since T ∗
o can no longer be used

as a local input, the T ∗
t and T ∗

r submodels would have to

include the To state and instead use T ∗
r and T ∗

t as local inputs,

respectively. The corresponding causal graphs are shown in

Fig. 5.

Prediction requires hypothesizing future inputs to the sys-

tem. Therefore, when selecting local inputs for model de-

composition, we can select only those variables that can be

predicted a priori. For example, for the pump, we can use

ω as a local input because it is a controlled variable, and

we know what the future controlled values are. On the other

hand, Tr cannot be used, since it is evolving due to rt, which

9

Q ω

V ωs
Q*

ω*

(a) Causal graph for ω estima-
tion submodel.

wb Qb0 ω
0

ps

pd Q*

ω*

(b) Causal graph for Q estimation submodel.

Tt

To

Tr

Tt*

To*

Tr*

Ta

(c) Causal graph for To estimation sub-
model.

rtω Tt

To

Tt*

To*ω* Ta

wt

(d) Causal graph for Tt estimation submodel.

rrω

To

Tr

wr

To*

Tr*

ω* Ta

(e) Causal graph for Tr estimation submodel.

Fig. 4. Causal graphs for pump estimation submodels.

is changing in time depending on wt, and To, which is in

turn affected by Tt and rt which are changing in time due

to wt. The fault propagation among the pump temperatures

prohibits the use of any of the temperature variables being

used as local inputs. If no variables exist that can be predicted

a priori outside of U , then the prediction problem cannot be

decomposed, and the global model must be used for prediction.

Besides U , local inputs can come from X or Y . In

some cases, it is advantageous to add additional “virtual”

outputs if these variables can be predicted a priori but are

not already in X or Y , to include in U∗. We construct

for each performance requirement a submodel that evaluates

the requirement. Because EOL is reached when any one of

the performance requirements are violated, we can evaluate

them independently to obtain local EOL distributions and

then take the minimum to get the global EOL distribution.

For each variable e ∈ E, we create a submodel using

GenerateSubmodel(M, UP , {e}), where UP ⊆ X ∪ U ∪
Y ⊇ U is the set of variables that can be predicted a priori.

For the pump model, UP consists of U and ω, as just

mentioned. The causal graphs for the resulting submodels are

shown in Fig. 6. We obtain one submodel associated with the

efficiency requirement, and three submodels associated with

the temperature requirements. For the temperature require-

ments, however, aside from the performance requirement in-

cluded, each submodel is exactly the same (e.g., the submodel

for e2 is that corresponding to the causal graph in Fig. 6b with

the e3 and e4 variables and constraints removed). This means

that the temperatures cannot be decomposed (due to the fault

propagation between them). Therefore, we merge these three

submodels into one submodel, to avoid unnecessary computa-

tion, using GenerateSubmodel(M, UP , {e2, e3, e4}).
As in the centralized scheme, the prediction algorithm

uses the state-parameter estimates as input. So, the required

estimates must be constructed from the local estimates of the

submodels used for estimation. A prediction submodel has a

set of states Xi and parameters Θi, and must construct a local

distribution p(xi
k,θ

i
k|yi

0:k) from the estimates provided by the

local estimators. To do this, we assume that the local state-

parameter estimates may be sufficiently represented by a mean

μi and covariance matrix Σi. For each prediction submodel

i, we combine the estimates from estimation submodels that

estimate states and parameters in Xi ∪Θi into μi and covari-

ance Σi. If there is overlap in the state-parameter estimates,

i.e., if two submodels both estimate the same state variable x
or parameter θ, then we take the average value for common

means and covariances (alternate strategies may also be used).

Some covariance information lost due to the decoupling will

appear as zeros in the recovered covariance matrix. Each

prediction submodel i computes a local EOL/RUL distribution,

i.e., p(EOLi
kP

|yi
0:kP

) and p(RULi
kP

|yi
0:kP

). The global EOL

is determined by the minimum of all the local distributions,

since TEOL is 1 whenever any of the local constraints are

violated.

The distributed prognostics architecture for the pump is

shown in Fig. 7. Here we had derived five submodels for the

10

Fig. 7. Distributed prognostics architecture for the pump.

rt Tt

To

Tr

wt

Tt*

Tr*

Ta

ω

ω*

(a) Causal graph for Tt estimation submodel.

rr

Tt

To

Tr

wr

Tt*

Tr*

Ta

ω

ω*

(b) Causal graph for Tr estimation submodel.

Fig. 5. Causal graphs for pump estimation submodels when T ∗
o is not

measured.

purposes of estimation, and two for prediction. We find that

the submodel estimating ω∗ is actually not needed, because

the only state it estimates is ω (see Fig. 4a), and this state is

not required by any of the prediction submodels (see Fig. 6).

Therefore, we need only four submodels on which to base our

local estimators, M1
E that estimates Q∗, M2

E that estimates

T ∗
o , M3

E that estimates T ∗
t , and M4

E that estimates T ∗
r . For

wb Qb0 ω
0

ps

pd Q*

ω*e1
(a) Causal graph for flow prediction submodel.

rt

rr

ω

Tt

To

Tr

wr

ω*

e3

e2

e4

Ta

wt

(b) Causal graph for temperature requirements submodel.

Fig. 6. Causal graphs for pump prediction submodels.

prediction, we have M1
P that predicts the violation of the

efficiency requirement, and M2
P that predicts the violation

of the temperature requirements.

The global inputs and outputs are first split into the local

inputs and outputs based on the Ui and Yi of the submodels

derived for estimation. For example, M1
E uses as inputs ps,

pd, and ω∗ (the measured value of ω), and computes a single

output, Q∗. The local estimates are computed. M2
P builds its

11

local state using the estimates of To from the M2
E estimator,

wt, rt, and Tt from the M3
E estimator, and wr, rr, and Tr

from the M4
E estimator. The local predictors compute the local

EOL/RUL predictions, with the predictor for M1
P computing

the EOL for the efficiency requirement, and the predictor for

M2
P computing the EOL for the temperature requirements.

The local predictions are then merged into the global predic-

tion. The next two sections describe the algorithms used for

local estimation and local prediction.

VI. DISTRIBUTED ESTIMATION

As described in Section V, in our distributed estimation

scheme, the local estimator for each submodel Mi
E produces

a local estimate p(xi
k,θ

i
k|y0:k), where xi

k ⊆ xk and θi
k ⊆ θk.

Any suitable algorithm may be used for joint state-parameter

estimation on any of the local subproblems.

In this paper, we use an unscented Kalman filter (UKF) [25],

[26] with a variance control algorithm [27] for the estimation

problems. The UKF assumes the general nonlinear form of

the state and output equations described in Section II, but

restricted to additive Gaussian noise. The pump model satisfies

these constraints.

We review here the UKF, and refer the reader to [25], [26]

for details. The UKF approximates a distribution using the

unscented transform (UT). The UT takes a random variable

x ∈ R
nx , with mean x̄ and covariance Pxx, which is related

to a second random variable y by some nonlinear function

y = g(x), and computes the mean ȳ and covariance Pyy using

a (small) set of deterministically selected weighted samples,

called sigma points [25]. X i denotes the ith sigma point from

x and wi denotes its weight. The sigma points are always

chosen such that the mean and covariance match those of the

original distribution, x̄ and Pxx. Each sigma point is passed

through g to obtain new sigma points Y , i.e.,

Y i = g(X i)

with mean and covariance calculated as

ȳ =
∑
i

wiY i

Pyy =
∑
i

wi(Y i − ȳ)(Y i − ȳ)T .

We use here the symmetric unscented transform, in which

2nx + 1 sigma points are selected symmetrically about the

mean in the following way:

wi =

⎧⎪⎨
⎪⎩

κ

(nx + κ)
, i = 0

1

2(nx + κ)
, i = 1, . . . , 2nx

X i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x̄, i = 0

x̄+
(√

(nx+κ)Pxx

)i

,i = 1, . . . , nx

x̄−
(√

(nx+κ)Pxx

)i

,i = nx+1, . . . , 2nx,

where
(√

(nx + κ)Pxx

)i

refers to the ith column of the

matrix square root of (nx + κ)Pxx [26]. The number κ is

a free parameter that can be used to tune the higher order

moments of the distribution. Note that the sigma point weights

do not directly represent probabilities, so are not restricted to

the interval [0, 1]. If x is assumed Gaussian, then selecting

κ = 3 − nx is recommended [25]. A smaller value of κ will

bring the sigma points closer together than a larger value.

In the filter, first, ns sigma points X̂ k−1|k−1 are derived

from the current mean x̂k−1|k−1 and covariance estimates

Pk−1|k−1 using the sigma point selection algorithm of choice.

The prediction step is:

X̂ i

k|k−1 = f(X̂ i

k−1|k−1,uk−1), i = 1, . . . , ns

Ŷ i

k|k−1 = h(X̂ i

k|k−1), i = 1, . . . , ns

x̂k|k−1 =

ns∑
i

wiX i
k|k−1

ŷk|k−1 =

ns∑
i

wiY i
k|k−1

Pk|k−1 = Q+
ns∑
i

wi(X i
k|k−1 − x̂k|k−1)(X i

k|k−1 − x̂k|k−1)
T ,

where Q is the process noise covariance matrix. The update

step is:

Pyy = R+

ns∑
i

wi(Y i
k|k−1 − ŷk|k−1)(Y i

k|k−1 − ŷk|k−1)
T

Pxy =

ns∑
i

wi(X i
k|k−1 − x̂k|k−1)(Y i

k|k−1 − ŷk|k−1)
T

Kk = PxyP
−1
yy

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KkPyyK
T
k ,

where R is the sensor noise covariance matrix.

Joint state-parameter estimation can be accomplished in the

UKF by augmenting the state vector with the unknown pa-

rameters. The corresponding diagonal elements of the process

noise matrix, Q, for the parameters θ are set to nonzero values.

In this way, the parameter estimates become time-varying and

are modified by the filter using the measured outputs. The

variance values assigned to the parameters determine both the

rate of parameter estimation convergence and the estimation

performance once convergence is achieved. Therefore, several

heuristic approaches have been developed to tune this value

online to optimize performance, e.g., [2], [27]–[29]. We adopt

the approach presented in [2], [27], in which the algorithm

modifies the variance in order to control the variance of the

parameter estimate to a user-specified range. Note that the

purpose of the algorithm is to adapt only the (artificial) process

noise terms associated with the parameters, and process noise

associated with the states and sensor noise is assumed to be

known and the associated variance values are not adjusted.

The algorithm for the adaptation of the variance vector

associated with θ, vθ, is given as Algorithm 3 (see [27]

for details), and is called at each time step. We assume that

12

Algorithm 3 vθ Adaptation

Inputs: p(xk,θk|y0:k)
State: vθ,k−1, l ← 1
Outputs: vθ,k

for all j ∈ {1, 2, . . . , nθ} do
vj ← RelativeSpread(p(θk(j)|y0:k))
if vj < tj(s(j)) then

s(j) ← s(j) + 1
end if
vθ,k(j) ← vθ,k−1(j)

(
1−Pj(s(j))

vj − v∗
j (s(j))

v∗
j (s(j))

)

end for
vθ,k−1 ← vθ,k

the variance values are tuned initially based on the minimum

expected EOLs. The adaptation proceeds in stages, maintained

with the sj variable for each parameter (with j referring to

the parameter index). The relative spread is computed as vj .

If this value is below the threshold value for the the current

stage, tj(s(j)), then the stage number is increased. Then the

new variance vθ,k(j) is computed. The error between the

the actual and the desired spread value for the current stage,

vj − v∗
j (s(j)), is normalized by v∗

j (s(j)). This normalized

error is then multiplied by the proportional gain term for

the current stage, Pj(s(j)), and the corresponding variance

vθ,k−1(j) is increased or decreased by that percentage to

compute the new variance value vθ,k(j). Tuning of the al-

gorithm parameters is necessary, but we have found that the

number of stages Sj = 2 with v∗
j = [50, 10], tj = [60, 0],

and Pj = [1× 10−3, 1× 10−4] for all j works well in many

cases. In the first stage, the variance is kept large to allow for

convergence, and in the second stage, once convergence has

begun, the variance is kept small for accurate tracking.

VII. DISTRIBUTED PREDICTION

Each local prediction module takes as input local state-

parameter estimates formed from the local estimators, as

discussed in Section V. Given the mean and covariance

information, we represent the distribution with a set of sigma

points derived using the unscented transform. Then, as in [30],

each sigma point is simulated forward to EOL, and we recover

the statistics of the EOL distribution given by the sigma points.

The prediction algorithm is executed for each submodel,

deriving local EOL predictions using its local threshold func-

tion. The pseudocode for the prediction procedure is given as

Algorithm 4 [3]. For a given submodel Mi
P , each sigma point

j is propagated forward until TEOL(x
i(j)
k ,θ

i(j)
k , ûi

k) evaluates

to 1. The algorithm hypothesizes future inputs of the system,

ûk. In this work, we consider only the situation where a

single future input trajectory is known, because the pump

in our application undergoes a strict pumping schedule [31].

Approaches to handle the case with uncertain future inputs are

described in [32], [33].

As discussed in Section V, the global EOL prediction

is taken as the minimum of the local EOL predictions. To

compute this, we sample from each local EOL distribution

and take the minimum of the local samples. This is repeated

Algorithm 4 EOL Prediction

Inputs: {(xi(j)
kP

,θ
i(j)
kP

), w
i(j)
kP

}Nj=1

Outputs: {EOL
i(j)
kP

, w
i(j)
kP

}Nj=1

for j = 1 to N do
k ← kP
x
i(j)
k ← x

i(j)
kP

θ
i(j)
k ← θ

i(j)
kP

Predict ûi
k

while T i
EOL(x

i(j)
k ,θ

i(j)
k , ûi

k) = 0 do
Predict ûi

k

θ
i(j)
k+1 ∼ p(θi

k+1|θi(j)
k)

x
i(j)
k+1 ∼ p(xi

k+1|xi(j)
k ,θ

i(j)
k , ûi

k)
k ← k + 1
x
i(j)
k ← x

i(j)
k+1

θ
i(j)
k ← θ

i(j)
k+1

end while
EOL

i(j)
kP

← k
end for

many times and the statistics of the global EOL distribution

are computed.

Note that prediction for some submodels may complete

(i.e., simulate all their sigma points to EOL) before others,

because the damage progression is faster in one submodel

than in another. To avoid the distributed approach simulating

beyond the point where a centralized approach would stop,

we may run the local predictors simultaneously, and terminate

all predictors whenever the first completes. The unfinished

samples in the predictors can be ignored, since when taking

the minimum, they would not be selected anyways. Prediction

on some submodels may also be avoided altogether if the wear

rate is clearly dominated by the wear rates on other submodels.

VIII. RESULTS

We performed a number of simulation-based experiments

to analyze the performance of the distributed prognostics

approach compared to a centralized prognostics approach

for the pump case study. For the distributed approach, we

implemented the architecture given in Fig. 7. In this section,

we first provide a demonstration of the approach, followed by

a summary of a large number of experiments to compare the

two approaches. We then argue for the improved scalabilty of

the distributed approach and provide experimental results in

support of it.

A. Demonstration of Approach

Here, we use percent root mean square error (PRMSE) as a

measure of estimation accuracy, relative accuracy (RA) [34] as

a measure of prediction accuracy (computed as the difference

in true and predicted RUL over the true RUL, and expressed

as a percentage), and RSD as a measure of spread. Each

prediction metric is averaged over multiple prediction points

(one every hour of usage) for a single scenario (see [2], [34]

for the mathematical definitions of the metrics used here).

As an example scenario, consider the case where wb0 = 1×
10−3, wt = 2×10−11, and wr = 2.5×10−11 with the nominal

noise level. Estimation results for the wear parameters for the

13

TABLE II
CENTRALIZED ESTIMATION AND PREDICTION PERFORMANCE

n PRMSEwb0
PRMSEwt PRMSEwr RSDwb0

RSDwt RSDwr RA RSDRUL

1 3.04 1.90 3.36 9.44 9.55 9.37 96.32 6.95

10 3.79 2.28 3.97 9.84 9.49 9.56 96.07 7.16

100 4.15 2.83 4.15 11.11 9.21 10.15 95.26 7.27

1000 3.59 3.21 4.50 11.78 9.37 10.78 94.98 7.49

TABLE III
DISTRIBUTED ESTIMATION AND PREDICTION PERFORMANCE

n PRMSEwb0
PRMSEwt PRMSEwr RSDwb0

RSDwt RSDwr RA RSDRUL

1 2.98 1.85 4.10 10.39 10.49 10.30 96.21 8.12

10 3.77 2.35 5.28 10.79 10.42 10.55 95.78 7.99

100 4.28 2.88 5.69 11.81 10.14 11.02 95.32 7.75

1000 3.76 3.55 5.39 13.09 10.23 12.11 94.25 7.99

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2
x 10−3

t (hours)

w
b
0
(s
/m

4
) Mean(ŵb0

)
Min(ŵb0

) and Max(ŵb0
)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4
x 10−11

t (hours)

w
t
(s
)

Mean(ŵt)
Min(ŵt) and Max(ŵt)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

x 10−11

t (hours)

w
r
(s
)

Mean(ŵr)
Min(ŵr) and Max(ŵr)

Fig. 8. Centralized estimation results for wb0 = 1×10−3, wt = 2×10−11,
and wr = 2.5× 10−11.

centralized and distributed approaches are shown in Figs. 8

and 9, respectively. Note that the minimum and maximum

values shown are those from the sigma points. Clearly, both

approaches do very well, and there is no discernible difference

between the two approaches. Due to the variance control

algorithm, both approaches converge very quickly to the true

values of the wear parameters, and remain close to the true

values with small variance. In both cases, PRMSE for all

unknown parameters is within 2–3%, with RSD of the wear

parameters within 9–10% for the centralized case and within

10–11% for the distributed case.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2
x 10−3

t (hours)

w
b
0
(s
/m

4
) Mean(ŵb0
)

Min(ŵb0
) and Max(ŵb0

)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4
x 10−11

t (hours)

w
t
(s
)

Mean(ŵb0
)

Min(ŵt) and Max(ŵb0
)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

x 10−11

t (hours)

w
r
(s
)

Mean(ŵb0
)

Min(ŵr) and Max(ŵb0
)

Fig. 9. Distributed estimation results for wb0 = 1×10−3, wt = 2×10−11,
and wr = 2.5× 10−11.

For the same scenario, prediction results are given in

Figs. 10 and 11 for the centralized and distributed approaches,

respectively, as α-λ plots. The α-λ metric requires that at a

given prediction point (λ), β of the predicted RUL distribution

must come within α of the true RUL [34]. Here, we use

α = 0.1 and β = 0.5 for all λ, i.e., we require that at

each prediction point, 50% of the distribution lies within

10% of ground truth. Both approaches pass the test at all

prediction points, so either approach will obtain the desired

performance. Figs. 10 and 11 show the result of the test and

the percentage of the distribution lying within the α-bounds.

14

90.6%

True

75.5%

True

70.4%

True

73.6%

True

93.6%

True

83.7%

True

77.9%

True

100.0%

True

t (hours)

R
U
L

(h
ou

rs
)

0 5 10 15 20 25
0

5

10

15

20

25

30

35
RUL∗
[(1− α)RUL∗, (1 + α)RUL∗]

Fig. 10. Centralized prognosis results for wb0 = 1×10−3, wt = 2×10−11,
and wr = 2.5× 10−11 with α = 0.1 and β = 0.5.

87.4%

True

67.8%

True

77.5%

True

80.8%

True

60.5%

True

67.1%

True

78.4%

True

100.0%

True

t (hours)

R
U
L

(h
ou

rs
)

0 5 10 15 20 25
0

5

10

15

20

25

30

35
RUL∗
[(1− α)RUL∗, (1 + α)RUL∗]

Fig. 11. Distributed prognosis results for wb0 = 1×10−3, wt = 2×10−11,
and wr = 2.5× 10−11 with α = 0.1 and β = 0.5.

The corresponding RA is 96.90% for the centralized case and

96.54% for the distributed case, with the RSD of the RUL at

7.44% for the centralized case and 6.85% for the distributed

case.

If T ∗
o is not measured (see Section V), both the estimation

and prediction performance are virtually the same. PRMSE is

within 2–3%, being only slightly higher (less than 1%) for

the distributed case. RSD of the wear parameters is again

within 9–10% for the centralized case and within 10–11% for

the distributed case. Prediction results are also similar, with

RA being 96.79% for the centralized case and 96.82% for

the distributed case, with RSD of the RUL being 7.15% for

the centralized case and 6.95% for the distributed case. Since

dropping the T ∗
o measurement does not significantly affect

observability of the system, both centralized and distributed

prognostics still perform well.

B. Prognostics Performance

In a single experiment, combinations of wear parameter

values were selected randomly within the following ranges:

[1×10−3, 3×10−3] for wb0 , in [1×10−11, 3×10−11] for wt,

and in [2× 10−11, 5× 10−11] for wr, such that the maximum

wear rates corresponded to a minimum EOL of 20 hours. For

the variance control algorithm, with relative standard deviation

(RSD) as the measure of spread, we used Sj = 2 with

v∗
j = [50, 10], tj = [60, 0], and Pj = [1 × 10−3, 1 × 10−4]

for all j, in all experiments. Since the local estimators use

measured values as inputs, performance will degrade as sensor

noise is increased, so we varied the sensor noise variance by

factors of 1, 10, 100, and 1000, to explore this situation. We

performed 30 experiments for each sensor noise level for both

the centralized and distributed approaches. We considered the

case where the future input of the pump is known, in order to

limit the uncertainty to only that involved in the noise terms

and that introduced by the filtering algorithms. The pump

operates at two different RPM values, changing every half

hour, as shown in Fig. 2. For the pump model, we used a

first-order discrete-time approximation using a step size of 1 s.

The averaged estimation and prediction performance results

are shown in Table II for the centralized approach, and

Table III for the distributed approach. The column labeled n
lists the sensor noise variance multipliers. Note that all metrics

are expressed as percentages.

We expect that in going from a centralized implementation

to a distributed implementation there will be some loss of

performance, due to the information lost in the decomposition,

but that this performance loss will not be significant. As

shown in Tables II and III, both the centralized and distributed

approaches obtain high accuracy and precision, with RA over

94% and RSDRUL under 9%, and the performance of the

distributed approach is virtually the same as the centralized

approach. The distributed approach yields only small decreases

in prediction accuracy (less than 1%) and small increases in

spread (less than 1.2%). The decrease in performance of the

distributed approach is expected, since the local estimators use

noisy measurement values as inputs. Consequently, estimation

performance decreases slightly and this translates to decreases

in prediction performance. The distributed approach also must

hypothesize the future value of ω, which is not completely

accurate, and therefore also contributing to the slight decrease

in performance.

As expected, both approaches perform worse as sensor

noise increases, but with only small decreases in performance.

The centralized approach loses 1.34% for RA, whereas the

distributed approach loses 1.96% for RA. The decrease in

performance from one noise level to the next higher level is

larger with the distributed approach since the local estimation

approach is more sensitive to noise.

As shown in this specific example and comparing Tables II

and III, for the pump model, the distributed approach achieves

prognostics performance virtually identical to the centralized

approach. Although these results are only empirical, they

15

should extend to other systems as well. For distributed esti-

mation, the covariance information lost due to the decoupling

is, in this case (and likely many others), negligible, and is not

needed for prediction, so only a small loss in performance

is expected, if any. For distributed prediction, the quality

of the predictions will depend on the estimation results, so

errors in estimation will propagate into prediction. Within the

distributed prediction itself though, there is no information loss

due to the decomposition.

C. Computational Efficiency

The distributed approach will always yield more efficient

local estimators and predictors compared to the centralized ap-

proach, as long as some amount of decomposition is achieved,

because each local submodel will be smaller than the global

model, and the complexity of the estimation and prediction

algorithms is a function of the model size. So, if each

local estimator (predictor) is implemented on an independent

processor, the distributed approach will be faster compared to

the centralized approach on a single processor.

In particular, for the UKF, the computational complexity

is polynomial in the state-parameter dimension (O(n3) for

dimension n [35]). Using the symmetric unscented transform,

there are 2n+ 1 sigma points for a state-parameter vector of

size n. For the centralized approach, the state-parameter vector

is of size 11, yielding 23 sigma points. For the distributed

approach, the state-parameter vectors are of size 3, 3, 3, and

1, yielding 7, 7, 7, and 3 sigma points, respectively. In the

implementation for the pump experiments, on average, we find

that a single local estimator operates around 14% faster.2

For the prediction algorithm, using the sigma points as

the sample set, each local predictor has less samples than

the global predictor, so, all things being equal, will be faster

than the centralized predictor. Overall computational efficiency

depends also on the spread of the samples, i.e., a sample with

a wear rate value closer to zero will take longer to simulate to

EOL than one with a larger wear rate value, given the same

inputs [30]. If the distributed approach can achieve the same

spread, then, it should be faster than the centralized approach

since less samples are simulated forward. For the pump, the

centralized approach uses the 24 sigma points obtained by the

global estimator. The distributed approach has two submodels

with state-parameter vectors of size 3 and 7, yielding 7 and

15 sigma points. The centralized and distributed approaches

do achieve approximately the same amount of spread (e.g.,

compare Figs. 8 and 9), and we find that the distributed

approach is, on average, about 15% faster.

D. Scalability

As the size of the system increases, we expect that the

computational cost of the distributed approach grows more

2We find the performance gain of the distributed approach smaller than
expected due to both the overhead associated with the UKF implementation,
and the fact that the implementation platform, MATLAB R©, is very efficient at
matrix multiplications; for relatively small matrices the performance difference
is quite small.

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of Pumps

C
om

pu
ta

tio
n

Ti
m

e
Pe

r S
te

p
(s

) Centralized
Distributed

(a) Estimation.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

x 10−3

Number of Pumps

C
om

pu
ta

tio
n

Ti
m

e
Pe

r S
te

p
(s

) Centralized
Distributed

(b) Prediction.

Fig. 12. Scalability of centralized and distributed approaches.

slowly than that of the centralized approach, i.e., the dis-

tributed approach is more scalable. For the case of UKF

estimation, assume we have the least possible decomposition,

where for global model dimension n the largest local submodel

has dimension n − 1. Then the complexities are O(n3) and

O((n − 1)3), and if the size of the system increases by

one state, the complexities are O((n + 1)3) and O((n)3),
and the complexity of the centralized approach grows by

a larger margin than the distributed approach, therefore the

distributed approach is more scalable. The argument is similar

for distributed prediction.

The improved scalability is confirmed experimentally also.

As a large-scale system we adopted a system consisting of

n pumps. In this case, the decomposition results remain the

same, where each pump results in 4 submodels for estimation

and 2 submodels for prediction. For example, for a 5-pump

system, there are 20 submodels for estimation and 10 for

prediction. The scalability results for estimation are shown

in Fig. 12a. As the size of the system increases, the amount

of computation time required per step increases exponentially

for the centralized approach. The distributed approach, on the

other hand, stays constant, because even though there are

more submodels, they are all operating in parallel. Even if

the distributed approach was implemented sequentially on a

single processor, the total amount of computation would grow

only linearly, since each new pump adds 4 new submodels of

fixed size. The scalability results for prediction are shown in

Fig. 12b, and the results are similar to the case for estimation.

16

IX. RELATED WORK

Model-based prognostics approaches have been developed

previously and applied to other components and fault modes,

such as batteries [4], [36], fatigue cracks [37], [38], and

automotive suspension systems [5]. Most model-based ap-

proaches are based on using filters for state estimation. Kalman

filters have been used for prognostics of electrolytic capacitors

in [39]. A model-based prognostics methodology is developed

in [5] using an interacting multiple model filter for state-

parameter estimation and prediction. An application of the

approach of [5] to a centrifugal pump is developed in [23],

but considers only a single degradation mode. Particle filters

have been the most popular and have been used in [4], [37],

[38], [40], [41], among others.

Some distributed prognostics approaches have also been

explored. A distributed prognostics approach based on particle

filters is developed in [15], and one based on Gaussian

process regression in [16]. In contrast to our approach, these

approaches still solve the global problem, and distribute only

the computation. We propose a fundamentally different and

novel distributed architecture, in which the global problem

is decomposed into subproblems that can be solved inde-

pendently and computation trivially distributed. This type of

architecture is favorable, because there may be parts of the

global problem that are not relevant to prognostics, and do not

need to be solved (e.g., estimation of ω in the pump model). In

a global approach where only the computation is distributed,

these parts of the problem are still being solved. The local

subproblems themselves can then be solved in a distributed

fashion using an approach such as that described in [15].

The idea of using model decomposition to distribute state

and parameter estimation is not new. Subspace methods [42],

[43] have been used for solving identification problems in

large dimensional systems by employing QR-factorization

and singular-value decomposition [44]. These methods have

been successfully used for linear systems, but face robust-

ness problems when applied to nonlinear systems. Moreover,

methods to automatically derive the decomposition directly

from the system model have not been proposed. Regarding

structural model decomposition, in [9], Williams and Millar

propose an approach for decomposing a system model into

smaller hierarchically organized subsystems, called dissents,

applied to learning problems. Similar techniques, like Analyti-

cal Redundancy Relations (ARRs) [45] and Possible Conflicts

(PCs) [10], both used for diagnosis, are also based on the

idea of model decomposition. Dissents, ARRs and PCs are

all conceptually equivalent [10]. PCs have been previously

applied to generate a more robust and computationally simpler

parameter estimation approach for fault identification [18].

Simulation results in that case showed an improvement in

estimation accuracy while having a faster convergence to true

solutions. Similar work was proposed in [46] using a dynamic

Bayesian network (DBN) modeling framework, in which an

automatic approach for model decomposition into submodels

based on structural observability was developed for efficient

state estimation and fault identification. We instead use a

more general model decomposition framework, distributing

the estimation problem in a way similar to these previous

approaches, but distributing also the prediction problem in a

novel way.

X. CONCLUSIONS

In this paper, we developed a novel distributed model-based

prognostics approach based on structural model decomposi-

tion. The global model of a system is decomposed into a set of

local submodels, from which independent local estimation and

prediction problems are posed to solve the global prognostics

problem in a distributed fashion that scales well. We applied a

general model decomposition framework to generate minimal

submodels for estimation and prediction. The local estimators

compute local state-parameter estimates that define the system

health state, and this information is used as an input to the local

predictors, which compute EOL and RUL predictions for their

submodels. The system EOL prediction can then be formed

as the minimum of the local EOL predictions.

A centrifugal pump model was used for a simulation-

based case study, demonstrating that, for all practical purposes,

the distributed scheme has identical prognostics performance

to the centralized scheme. Minor decreases in performance

are observed, as expected, since the distributed scheme de-

composes the models by using noisy sensor values as local

submodel inputs, however, the impact was not significant and

did not increase significantly as sensor noise increased. The

distributed approach also offers improvements in computa-

tional efficiency and scalability in both the estimation and

prediction steps.

In future work, we will apply this framework to system-level

prognosis of large-scale systems. Further, the amount of model

decomposition that can be achieved, for the estimation prob-

lem, is dependent on the number of sensors and where they

are placed, so algorithms are needed for optimal placement of

sensors to achieve the best model decompositions, and, hence,

the best decomposition of the prognostics problem.

REFERENCES

[1] M. Orchard and G. Vachtsevanos, “A particle filtering approach for on-
line fault diagnosis and failure prognosis,” Transactions of the Institute
of Measurement and Control, no. 3-4, pp. 221–246, June 2009.

[2] M. J. Daigle and K. Goebel, “Model-based prognostics with concurrent
damage progression processes,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, to appear.

[3] M. Daigle and K. Goebel, “Model-based prognostics under limited
sensing,” in 2010 IEEE Aerospace Conference, Mar. 2010.

[4] B. Saha and K. Goebel, “Modeling Li-ion battery capacity depletion in
a particle filtering framework,” in Proceedings of the Annual Conference
of the Prognostics and Health Management Society 2009, Sept. 2009.

[5] J. Luo, K. R. Pattipati, L. Qiao, and S. Chigusa, “Model-based prognostic
techniques applied to a suspension system,” IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 38,
no. 5, pp. 1156 –1168, Sept. 2008.

[6] P. Lall, R. Lowe, and K. Goebel, “Extended kalman filter models and
resistance spectroscopy for prognostication and health monitoring of
lead-free electronics under vibration,” IEEE Transactions on Reliability,
vol. 61, no. 4, pp. 858–871, Dec. 2012.

[7] P. Baraldi, F. Mangili, and E. Zio, “A kalman filter-based ensemble ap-
proach with application to turbine creep prognostics,” IEEE Transactions
onReliability, vol. 61, no. 4, pp. 966–977, Dec. 2012.

[8] H. Thompson, “Parallel processing architectures for aerospace applica-
tions,” Control Engineering Practice, vol. 2, no. 3, pp. 509–520, 1994.

17

[9] B. Williams and B. Millar, “Decompositional model-based learning and
its analogy to diagnosis,” in Proc. of the Fifteenth National Conference
on Artificial Intelligence, 1998, pp. 197–204.

[10] B. Pulido and C. Alonso-González, “Possible conflicts: a compilation
technique for consistency-based diagnosis,” IEEE Trans. on Systems,
Man, and Cybernetics, Part B, Special Issue on Diagnosis of Complex
Systems, vol. 34, no. 5, pp. 2192–2206, 2004.

[11] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and
Fault-Tolerant Control. Springer, 2006.

[12] L. Travé-Massuyès, T. Escobet, and X. Olive, “Diagnosability analysis
based on component supported analytical redundancy relations,” IEEE
Trans. on Systems, Man, and Cybernetics, Part A, vol. 36, no. 6, 2006.

[13] M. Krysander, J. Åslund, and M. Nyberg, “An efficient algorithm for
finding minimal over-constrained sub-systems for model-based diagno-
sis,” IEEE Trans. on Systems, Man, and Cybernetics, Part A, vol. 38,
no. 1, 2008.

[14] I. Roychoudhury, M. Daigle, A. Bregon, and B. Pulido, “A structural
model decomposition framework for systems health management,” in
Proceedings of the 2013 IEEE Aerospace Conference, Mar. 2013.

[15] B. Saha, S. Saha, and K. Goebel, “A distributed prognostic health
management architecture,” in Proceedings of the 2009 Conference of
the Society for Machinery Failure Prevention Technology, 2009.

[16] S. Saha, B. Saha, A. Saxena, and K. Goebel, “Distributed prognostic
health management with Gaussian process regression,” in Aerospace
Conference, 2010 IEEE, Mar. 2010.

[17] M. Daigle, A. Bregon, and I. Roychoudhury, “Distributed damage
estimation for prognostics based on structural model decomposition,”
in Proceedings of the Annual Conference of the Prognostics and Health
Management Society 2011, Sept. 2011, pp. 198–208.

[18] A. Bregon, G. Biswas, and B. Pulido, “A decomposition method for
nonlinear parameter estimation in TRANSCEND,” IEEE Trans. on
Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 42,
no. 3, pp. 751–763, May 2012.

[19] S. E. Lyshevski, Electromechanical Systems, Electric Machines, and
Applied Mechatronics. CRC, 1999.

[20] A. Wolfram, D. Fussel, T. Brune, and R. Isermann, “Component-based
multi-model approach for fault detection and diagnosisof a centrifugal
pump,” in Proceedings of the 2001 American Control Conference, vol. 6,
2001, pp. 4443–4448.

[21] C. Kallesøe, “Fault detection and isolation in centrifugal pumps,” Ph.D.
dissertation, Aalborg University, 2005.

[22] G. Biswas and S. Mahadevan, “A hierarchical model-based approach
to systems health management,” in Proc. of the 2007 IEEE Aerospace
Conference, Mar. 2007.

[23] F. Tu, S. Ghoshal, J. Luo, G. Biswas, S. Mahadevan, L. Jaw, and
K. Navarra, “PHM integration with maintenance and inventory man-
agement systems,” in Proc. of the 2007 IEEE Aerospace Conference,
Mar. 2007.

[24] I. M. Hutchings, Tribology: friction and wear of engineering materials.
CRC Press, 1992.

[25] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter
to nonlinear systems,” in Proc. of the 11th Intl. Symp. on Aerospace/
Defense Sensing, Simulation and Controls, 1997, pp. 182–193.

[26] ——, “Unscented filtering and nonlinear estimation,” Proceedings of the
IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004.

[27] M. Daigle, B. Saha, and K. Goebel, “A comparison of filter-based
approaches for model-based prognostics,” in Proceedings of the 2012
IEEE Aerospace Conference, Mar. 2012.

[28] J. Liu and M. West, “Combined parameter and state estimation in
simulation-based filtering,” Sequential Monte Carlo Methods in Practice,
pp. 197–223, 2001.

[29] M. Orchard, F. Tobar, and G. Vachtsevanos, “Outer feedback correction
loops in particle filtering-based prognostic algorithms: Statistical per-
formance comparison,” Studies in Informatics and Control, no. 4, pp.
295–304, Dec. 2009.

[30] M. Daigle and K. Goebel, “Improving computational efficiency of
prediction in model-based prognostics using the unscented transform,”
in Proc. of the Annual Conference of the Prognostics and Health
Management Society 2010, Oct. 2010.

[31] C. Goodrich, S. Narasimhan, M. Daigle, W. Hatfield, R. Johnson,
and B. Brown, “Applying model-based diagnosis to a rapid propellant
loading system,” in Proceedings of the 20th International Workshop on
Principles of Diagnosis, June 2009, pp. 147–154.

[32] M. Daigle, A. Saxena, and K. Goebel, “An efficient deterministic
approach to model-based prediction uncertainty estimation,” in Annual
Conference of the Prognostics and Health Management Society 2012,
Sept. 2012, pp. 326–335.

[33] S. Sankararaman, M. Daigle, A. Saxena, and K. Goebel, “Analytical al-
gorithms to quantify the uncertainty in remaining useful life prediction,”
in Proceedings of the 2013 IEEE Aerospace Conference, Mar. 2013.

[34] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel, “Metrics for
offline evaluation of prognostic performance,” International Journal of
Prognostics and Health Management, vol. 1, no. 1, 2010.

[35] F. Daum, “Nonlinear filters: beyond the Kalman filter,” IEEE Aerospace
and Electronic Systems Magazine, vol. 20, no. 8, pp. 57–69, 2005.

[36] M. Abbas, A. A. Ferri, M. E. Orchard, and G. J. Vachtsevanos, “An
intelligent diagnostic/prognostic framework for automotive electrical
systems,” in 2007 IEEE Intelligent Vehicles Symp., 2007, pp. 352–357.

[37] M. E. Orchard, “A particle filtering-based framework for on-line fault
diagnosis and failure prognosis,” Ph.D. dissertation, Georgia Institute of
Technology, 2007.

[38] E. Zio and G. Peloni, “Particle filtering prognostic estimation of the
remaining useful life of nonlinear components,” Reliability Engineering
& System Safety, vol. 96, no. 3, pp. 403–409, 2011.

[39] J. R. Celaya, C. Kulkarni, G. Biswas, S. Saha, and K. Goebel, “A
model-based prognostics methodology for electrolytic capacitors based
on electrical overstress accelerated aging,” in Proceedings of the Annual
Conference of the Prognostics and Health Management Society 2011,
Sept. 2011, pp. 31–39.

[40] N. Bolander, H. Qiu, N. Eklund, E. Hindle, and T. Rosenfeld, “Physics-
based remaining useful life prediction for aircraft engine bearing prog-
nosis,” in Proceedings of the Annual Conference of the Prognostics and
Health Management Society 2010, Oct. 2010.

[41] M. Daigle and K. Goebel, “A model-based prognostics approach applied
to pneumatic valves,” International Journal of Prognostics and Health
Management, vol. 2, no. 2, Aug. 2011.

[42] T. Katayama, Subspace Methods for System Identification. Springer,
2005.

[43] M. Viberg, “Subspace-based state-space system identification,” Circuits,
Systems, and Signal Processing, vol. 21, no. 1, pp. 23–37, 2002.

[44] P. Overschee and B. D. Moor, Subspace Identification for Linear
Systems. Boston, MA, USA: Kluwer Academic Publishers, 1996.

[45] M. Staroswiecki and P. Declerck, “Analytical redundancy in nonlinear
interconnected systems by means of structural analysis,” in IFAC Symp.
on Advanced Information Processing in Automatic Control, July 1989.

[46] I. Roychoudhury, G. Biswas, and X. Koutsoukos, “Factoring dynamic
Bayesian networks based on structural observability,” in Proc. of the 48th
IEEE Conference on Decision and Control, Dec. 2009, pp. 244–250.

Matthew J. Daigle (S’07–M’08) received the B.S. degree in Computer
Science and Computer and Systems Engineering from Rensselaer Polytechnic
Institute, Troy, NY, in 2004, and the M.S. and Ph.D. degrees in Computer
Science from Vanderbilt University, Nashville, TN, in 2006 and 2008,
respectively.

From September 2004 to May 2008, he was a Graduate Research Assistant
with the Institute for Software Integrated Systems and Department of Elec-
trical Engineering and Computer Science, Vanderbilt University, Nashville,
TN. From June 2008 to December 2011, he was an Associate Scientist with
the University of California, Santa Cruz, at NASA Ames Research Center.
Since January 2012, he has been with NASA Ames Research Center as a
Research Computer Scientist. His current research interests include physics-
based modeling, model-based diagnosis and prognosis, simulation, and hybrid
systems.

Dr. Daigle is a recipient of two Staff Recognition and Development Awards
from the University of California, Santa Cruz, a best paper award at the
Annual Conference of the Prognostics and Health Management Society, an
Ames Contractor Council Excellence Award, and a NASA Ames Research
Center Group Achievement Award. He is a member of the Prognostics and
Health Management Society and the IEEE.

Anibal Bregon (S’08-M’10) received his B.Sc., M.Sc., and Ph.D. degrees
in Computer Science from the University of Valladolid, Valladolid, Spain, in
2005, 2007, and 2010, respectively.

18

From September 2005 to June 2010, he was a Graduate Research Assistant
with the Intelligent Systems Group, at the Department of Computer Science,
University of Valladolid, Spain. Dr. Bregon has been a visiting researcher with
the Institute for Software Integrated Systems, Vanderbilt University, Nashville,
TN, USA, with the Department of Electrical Engineering, Linköping Univer-
sity, Linköping, Sweden, and with the Diagnostics and Prognostics Group,
NASA Ames Research Center, Moffett Field, CA, USA. Currently he is
Assistant Professor and Research Assistant with the Department of Computer
Science, University of Valladolid.

Dr. Bregon is a member of the Prognostics and Health Management Society
and the IEEE. His current research interests include model-based reasoning
for diagnosis, prognostics, health-management, and distributed diagnosis and
prognostics of complex physical systems.

Indranil Roychoudhury (S’07–M’08) received the B.E. (Hons.) degree in
Electrical and Electronics Engineering from Birla Institute of Technology and
Science, Pilani, Rajasthan, India in 2004, and the M.S. and Ph.D. degrees in
Computer Science from Vanderbilt University, Nashville, Tennessee, USA, in
2006 and 2009, respectively.

Since August 2009, he has been with Stinger Ghaffarian Technologies, at
NASA Ames Research Center as a Computer Scientist. His research interests
include hybrid systems modeling, model-based diagnostics and prognostics,
distributed diagnostics and prognostics, and Bayesian diagnostics of complex
physical systems.

Dr. Roychoudhury is the recipient of the ISRDS Team Recognition Award
from Stinger Ghaffarian Technologies and a best paper award at the Annual
Conference of the Prognostics and Health Management Society. He is a
member of the Prognostics and Health Management Society and the IEEE.

