Flight Tests of a Supersonic Natural Laminar Flow Airfoil

Mike Frederick, Dan Banks
NASA Armstrong Flight Research Center
Edwards, CA USA
Andres Garzon, Jason Matisheck
Aerion Corporation
Reno, NV USA

16th International Symposium on Flow Visualization
Okinawa, Japan
June 2014
Outline

- Background and previous research
- F-15B IR system
- Experiment overview
- Flight test results
  - Transition with Mach number
  - Transition with Reynolds number
  - Transition due to roughness elements
- Summary
- Questions
NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft.

Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency.
- Tradeoffs work best for business jet class at M<2

Conventional high-speed designs minimize inviscid drag at the expense of viscous drag.
- Existence of strong spanwise pressure gradient leads to crossflow (CF) while adverse chordwise pressure gradients amplifies and Tollmien-Schlichting (TS) instabilities

Aerion Corporation has patented a S-NLF wing design (US Patent No. 5322242)
- Low sweep to control CF
- dp/dx < 0 on both wing surfaces to stabilize TS
- Thin wing with sharp leading edge to minimize wave drag increase due to reduction in sweep

NASA and Aerion have partnered to study S-NLF since 1999.

Series of S-NLF experiments flown on the NASA F-15B research test bed airplane.

Infrared (IR) thermography used to characterize transition.
- Non-intrusive, global, good spatial resolution
- Captures significant flow features well
Previous Research

- Supersonic Natural Laminar Flow (SSNLF)
  - Bi-convex test article
  - Demonstrated extended runs of S-NLF up to $Re_c = 10$ million at Mach 1.8

- Supersonic Boundary Layer Transition (SBLT)
  - Large chord flat-plate test article
  - Measured plate pressures and local inflow conditions up to Mach 2.0
  - Pressure data used to help design follow on S-NLF test article
F-15B IR System

- Camera
  - L3 Cincinnati 640x512 NC
  - 640x512 Indium-Antimonide (InSb) focal plane array with 28 micron pitch
  - Mid-wave (3-5 micron spectral range)
  - 13 mm lens
  - Simultaneous 14-bit digital and RS-170 analog output

- Camera pod
  - Streamlined pod mounted on starboard armament rail
  - Silicon window with anti-reflection coating
  - Right-angle prism to redirect image to camera

- Onboard Recorders
  - 8 mm (Hi-8) recorder for analog output
  - Digital Design Corp. VAADR-1 unit
S-NLF Test Article

CLIP

RTDs

Splitter plate

LE

40” (102 cm)

80” (204 cm)
Strong Back Side

Conical probe

Strong Back

Instrumentation Bay
F-15B Test Configuration

- CLIP
- IR Camera Pod
- S-NLF Test Article
Roughness Elements

- Roughness elements installed during select flights to investigate effects on transition
- Trip dots
  - 19 dots were installed near leading edge of the test article
  - Dots were formed from aluminum and polyimide adhesive tapes with thicknesses of 2, 3, and 4.5 mil (0.051, 0.076, and 0.114 mm)
- 2-D steps
  - Created from 30 inch (76 cm) strips of 4.5 mil (0.114 mm) thick adhesive backed vinyl film
  - Leading edge located approximately 8.5 inches (21.6 mm) back from leading edge
  - Layered to create addition step heights of 13.5 and 22.5 mil (0.343 and 0.572 mm)
IR Image Transformation

- IR images have perspective distortion (foreshortening)
  - Wide-angle lens
  - Camera pod mount position
- Calibration grid applied to test article for image registration
- Control point pairs used to transform distorted image into reference perspective
- Transformation applied frame-by-frame to IR video

Analog IR image from flight

Target image with control points

IR image with control points
Transformed IR Image

Flight = 452  Mach = 1.714  Hp = 43898  Re_{ft} = 2.805e+06

- Camera Pod Shock
- CF Transition
- Turbulent Wedge
- Shock Train
Transition with Mach Number

M=1.1, 42 kft (12.8 km), accelerating

M=1.4, 49.5 kft (15.09 km), accelerating

M=1.55, 49.5 kft (15.09 km), accelerating

M=1.7, 49.5 kft (15.09 km), steady state
Reynolds Number Effects M=1.7

M=1.7, $Re_t=2.14 \text{ million}/\text{ft}$ (0.652 million/m)

M=1.7, $Re_t=2.67 \text{ million}/\text{ft}$ (0.814 million/m)

M=1.7, $Re_t=3.49 \text{ million}/\text{ft}$ (1.06 million/m)

M=1.71, $Re_t=4.31 \text{ million}/\text{ft}$ (1.31 million/m)
Trip Dots M=1.7

M=1.7, $Re_f=2.21$ million/ft (0.674 million/m)

M=1.68, $Re_f=2.67$ million/ft (0.814 million/m)

M=1.71, $Re_f=3.49$ million/ft (1.06 million/m)

M=1.7, $Re_f=4.31$ million/ft (1.31 million/m)
2-D Steps M=1.7
(upper 0.343 mm, lower 0.114 mm)

M=1.7, Re_{ft}=2.14 million/ft (0.68 million/m)

M=1.69, Re_{ft}=3.49 million/ft (1.06 million/m)

M=1.73, Re_{ft}=2.67 million/ft (0.814 million/m)

M=1.69, Re_{ft}=4.31 million/ft (1.31 million/m)
Flight 452

Mach = 1.102  Hp = 41672 ft  Re = 2.074e+06  T = -5.14 °F

NASA
Flight 454

Mach = 1.100  Hp = 41688 ft  Re_{ft} = 1.974e+06  T_{RTD} = 9.88 °F
Flight 456

Mach = 1.103  Hp = 41882 ft  Re_{ft} = 1.970e+06  T_{RTD} = 9.10 °F
Summary

- IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million.
- Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated.
  - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million.
- IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface.
- A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers.
Questions?