New Directions: Emerging satellite observations of above-cloud aerosols and direct radiative forcing

A B S T R A C T

Aerosols affect the Earth’s energy budget directly by scattering and absorbing the solar radiation in both cloud-free and cloudy conditions, which is referred to the direct radiative forcing (DRF). Advances in passive aerosol remote sensing during the era of Earth Observing System have provided valuable constraints to the estimate of cloud-free DRF (Yu et al., 2006). On the other hand, estimate of cloudy-sky DRF is poorly constrained because conventional aerosol retrievals from passive sensors are performed only in cloud-free conditions. Large inter-model discrepancies exist in the cloudy-sky DRF, with global annual mean values for the top-of-atmosphere (TOA) DRF ranging from -0.16 (cooling) to +0.34 W m⁻² (warming) (Schulz et al., 2006). Unraveling these discrepancies require reliable, observational constraints of both aerosol and cloud properties.

The co-existence of aerosols and clouds in the same atmospheric column complicates the interactions of aerosol with sunlight, because clouds reflect a substantial amount of incident radiation back to space. Compared to that in cloud-free conditions, aerosols would generally intercept more (less) solar radiation if they reside above (beneath) clouds. In particular, when aerosols reside above clouds, aerosol absorption can be substantially amplified due to multiple scattering between aerosol and underlying cloud, leading to a less negative or even positive DRF at TOA. Estimating DRF by aerosols above clouds remains a big challenge because of the interplay of several aerosol and cloud properties, all subject to large uncertainties, including aerosol optical depth (AOD), aerosol single-scattering albedo, cloud fraction, and cloud optical depth (COD). Large-scale measurements of aerosol above clouds and DRF had been unexplored until recently when the A-Train formed. The A-Train is a constellation of several satellites carrying a suite of active and passive sensors with enhanced capabilities, including the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua, the Ozone Measurement Instrument (OMI) on Aura, the Polarization and Directionality of Earth Reflectances (POLDER) on PARASOL, and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on CALIPSO. Aqua, CALIPSO, PARASOL, and Aura overpass the equator each day successively within a few minutes around 1:30 p.m. local time, making it feasible to integrate multi-sensor observations for aerosol and cloud research. The A-Train offers unprecedented opportunities of observing aerosols above clouds and their direct radiative forcing, owing to the utilization of lidar, multi-wavelength, multi-angle, and polarization techniques. CALIOP is the first satellite lidar to provide multi-year continuous measurements of aerosol and cloud profiles on a global scale (Winker et al., 2010). Looking down from space the CALIOP active beam can penetrate through high-level, optically thin clouds and detect the aerosol and cloud layers in middle troposphere and in the boundary layer. Thus CALIOP is unique in providing retrieved profiles of aerosol backscattering and extinction in clear sky and above low-level clouds. Fig. 1 shows seasonal mean above-cloud AOD (ACA0D) in 2007 derived from CALIOP 5-km aerosol and cloud layer products. Clearly shown in this climatology map are hot spots of ACA0D associated with strong sources of biomass burning smoke, desert dust, or industrial pollution. In addition to the conventional lidar AOD retrieval algorithm based on lidar ratio and backscatter observations, research algorithms have also been developed to retrieve above-cloud AOD and particle properties based on the contrast of CALIOP observations of depolarization ratio (Hu et al., 2007) and color ratio (Chand et al., 2008) between clean clouds and clouds contaminated by above-cloud aerosols. Chand et al. (2009) used CALIOP observations of above-cloud AOD and MODIS observations of cloud fraction and cloud optical depth, both aggregated to monthly averages over 5° × 5° boxes, to calculate the direct radiative effect of smoke located above low-level clouds in the southeastern Atlantic off the coast of southern Africa. Such aggregations are required because of CALIOP’s narrow swath. Assumptions implicitly made in this approach include: (1) above-cloud aerosols detected by CALIOP along its track are representative of the 5° × 5° box; (2) the day-to-day co-variation of cloud properties (cloud fraction and optical depth) with ACA0D is negligible; (3) the above-cloud aerosols have negligible impact on the MODIS cloud retrievals. These assumptions are not well

1352-2310/ – see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.atmosenv.2013.02.017
justified, which constitutes unknown sources of error in the forcing estimate.

Measurements from passive sensors also include information content of above-cloud aerosols, although conventional aerosol retrievals have been limited to cloud-free column. Interactions of above-cloud aerosols with solar radiation reflected by underlying clouds and surface can bring about changes in some attributes (spectral variation, and polarization) of radiance that can be well discrimened by several current-generation sensors. Because smoke, pollution, dust aerosols have larger absorption AOD at shorter wavelengths than longer wavelengths (Russell et al., 2010), their perturbations to reflectance by underlying clouds vary with wavelengths. Aerosols can also significantly affect the polarized light reflected by underlying clouds in certain ranges of scattering angles. Fig. 2 shows distinctive signatures induced by smoke above-clouds that are observed by MODIS/Aqua, OMI, and POLDER. CALIOP profiling (Fig. 2a) indicates a smoke layer between 2 and 4 km overlying a cloud deck top at 0.7–1.3 km, which extends from 17°S to 6°S over Atlantic Ocean. In contrast, south of 21°S the air above low-level clouds is relatively clean. MODIS true color image overlaid with the CALIOP track and marked representative smoky region (box S) and clean region (box C) provide a large-scale perspective of aerosol and cloud settings. The smoke above clouds yields a pronounced spectral signature as shown in MODIS reflectance color ratio between 470 nm and 1240 nm (Fig. 2c). In unpolluted clean region C, the color ratio is greater than 1.0 because of the stronger molecular scattering at 470 nm. In the smoky regions (e.g., S) the color ratio is substantially smaller, because the attenuation of cloud reflectance by smoke absorption is much stronger at 470 nm than 1240 nm. The impact of smoke on cloud reflectance is also discernable from OMI observations of absorbing aerosol index (AI) in the UV range, a quantity that reflects spectral variations of the interaction between aerosol absorption and Rayleigh scattering (Herman et al., 1997). While AI has near-zero value for Rayleigh scattering atmosphere, clouds, and non-absorbing aerosols, AI is positive for absorbing aerosols in both clear scenes and above clouds. In this case, AI is 2–3 in the smoky region S, much larger than ~0.5 in unpolluted clean region C. Fig. 2e shows the polarized reflectance at 865 nm observed by POLDER as a function of scattering angle in C (blue dots) and S (red dots) regions. In unpolluted cloudy scene (C), there is a strong peak of polarization around 140° corresponding to the primary cloud-bow and very small levels of polarization at side scattering angles of 80°–130°. Note that when COD > 3, the polarized reflectance by cloud is independent of cloud albedo or “saturated”. In smoke-over-cloud scene (S), the polarized reflectance is attenuated in the primary cloud-bow but enhanced significantly at the side scattering angles. Although non-spherical mineral dust will not significantly enhance the polarization at the side scattering angles, it can attenuate the polarized reflectance in the primary bow (Waquet et al., 2012). The example discussed above clearly demonstrates that aerosols above clouds can be discriminated from the spectral and angular characteristics of reflectance and polarized light by the advanced passive sensors onboard the A-Train. As recently shown in the published literature (Waquet et al., 2009; Torres et al., 2012; Yu et al., 2012a; Jethva et al., in press), these passive sensors provide alternatives for retrieving above-cloud aerosols that can overcome the limitation of CALIOP nadir observations over narrow swath.

Fig. 1. CALIOP seasonal mean AOD (at 532 nm) above low-level clouds (cloud top less than 4 km) for 2007. CALIOP 5-km aerosol and cloud layer products are aggregated into 5° × 4° grids during a season. AOD is set to 0 when CALIOP doesn’t detect aerosol layers above clouds.

Estimating ACAOD and some aerosol properties from the signatures observed by the passive sensors has been explored very recently. Waquet et al. (2009) used the changes of angular distributions of the polarized light at a single wavelength to retrieve ACAOD for a smoke case from POLDER multi-angle polarization measurements. The algorithm has been further extended to the retrievals of ACAOD of both smoke and mineral dust and the particle size parameter using POLDER measurements of the polarized reflections at three wavelengths and at both the primary cloud-bow and a range of side scattering angles (Waquet et al., 2012). Knobelspiesse et al. (2011) showed a capability of simultaneously retrieving ACAOD and cloud optical properties from multi-angle, multi-spectral, passive observations of polarized reflectance from an aircraft prototype of scanning polarimeter designed for the Glory satellite (unfortunately it was not successfully launched). The spectral signatures in the reflected radiation have been
explored to simultaneously retrieve ACAOD and COD of underlying cloud from multi-wavelength sensors like OMI (Torres et al., 2012) and MODIS (Jethva et al., in press) on a basis of case studies. For these algorithms, ACAOD is retrieved with other aerosol properties generally assumed as a priori. While some algorithms show a potential of retrieving some aerosol microphysical properties (Knobelspiesse et al., 2011; Waquet et al., 2012), their uncertainties are likely larger than that for ACAOD. These studies demonstrate that it is promising to retrieve ACAOD with extensive spatial coverage from passive sensors with multi-wavelength and multi-angle polarization capabilities.

Integrating complementary observables from the A-Train sensors could provide an empirical approach to estimating ACAOD with extensive coverage. Al is a semi-quantitative measure of ACAOD because it depends on aerosol height, single-scattering albedo, and cloud albedo. The multiple scattering between aerosol...
layer and underlying cloud deck enhances AI, but reduces the AI
dependence on the height of aerosol layer (Torres et al., 2012; de
Graaf et al., 2005). Yu et al. (2012a) found that for collocated CALIOP
and OMI measurements, OMI AI correlates well with CALIOP
ACAOD when the analysis is stratified with collocated MODIS
COD in the outflow regions of South America and North Africa
dust. Such derived ACAOD-AI relationships could constitute a basis
for potentially developing an empirical approach to deriving daily
above-cloud AOD from OMI semi-quantitative AI and MODIS cloud
measurements with much more extensive spatial coverage over
longer duration than do CALIOP observations. Significant efforts
are needed to further explore this approach, including the charac-
terization of the viewing-geometry dependence of ACAOD-AI rela-
tionship, and quantification of CALIOP AOD bias and uncertainties.

The observations of ACAOD can be used to calculate DRF by
above-cloud aerosols, with aerosol optical properties such as
single-scattering albedo and asymmetry factor being constrained
by in-situ or remote sensing measurements and cloud optical depth
from satellites. Cautions should be exercised when using satellite
measurements of cloud optical depth, because above-cloud aerosols
can contaminate the cloud optical depth retrievals from passive
sensors, such as MODIS, leading to a biased DRF estimation. For
example, a layer of absorbing aerosols above cloud acts to reduce
the cloud reflectance in visible and near IR, which leads to low
bias in COD retrieval (Haywood et al., 2004; Wilcox et al., 2009;
Coddington et al., 2010; Torres et al., 2012). If not corrected, this
COD bias will in turn propagate to the DRF computation. The prob-
lem could be alleviated through using a spectral band that is less
affected by above-cloud aerosols for COD retrieval. In the smoke
over cloud scenario, for example, smoke AOD decreases with wave-
length quickly while COD remains almost constant over the solar
spectrum. As a result, the above-cloud smoke has limited impact
on cloud reflectance in shortwave infrared (SWIR) or longer wave-
lengths, although the impact in visible or near infrared could be sig-
nificant. Recently, Meyer et al. (submitted for publication) used
collocated CALIPSO ACAOD retrieval to estimate and correct the
MODIS COD retrieval bias. They found that the DRF of ACAOD
computed based on the corrected COD retrieval can be up to roughly
10% larger than that based on the uncorrected COD retrieval. The
COD retrieval bias caused by ACAOD could be alleviated through
using a spectral band that is less affected by above-cloud aerosols for
COD retrieval. In the smoke over cloud scenario, for example, smoke
AOD decreases with wavelength quickly while COD remains almost
constant over the solar spectrum. As a result, the above-cloud smoke
has limited impact on cloud reflectance in shortwave infrared
(SWIR) or longer wavelengths, although the impact in visible or
near infrared could be significant (de Graaf et al., 2012). Applying
this approach to above-cloud dust conditions can be further compi-
licated by significant impact of dust scattering in SWIR band,
although impact of dust absorption is much smaller in SWIR than
865 nm band. Most recently, algorithms are being developed for
simultaneous retrieval of both ACAOD and COD using MODIS spec-
tral observations (Jethva et al., in press). A major advantage of these
new algorithms is that the impact of above-cloud aerosol is taken
into account in the COD retrieval. On the other hand, developing
such algorithms involving both aerosol and cloud retrievals may
be challenging, which requires more efforts to explore the algo-
rithms and evaluate/validate the retrievals.

The above-cloud aerosol direct radiative forcing at TOA has also
been estimated from satellite measurements of radiiances/fluxes,
which bypasses assumptions of aerosol optical properties and cloud
optical depth required by the forward calculation discussed above.
Hsu et al. (2003) derived regional TOA DRF induced by smoke aero-
sols of Southeast Asia by contrasting satellite measurements of radi-
ative fluxes between clean and smoke contaminated pixels
identified with AI. Peters et al. (2011) performed multiple linear re-
gressions of satellite measurements to derive statistical relationships
between planetary albedo, cloud liquid water path, and
clear-sky AOD in the presence of low-level liquid water clouds based
on three-year data over tropical and sub-tropical Atlantic Ocean.
They found a decrease of the planetary albedo with increasing
clear-sky AOD for mostly absorbing aerosols. However, the assump-
tion that MODIS clear-sky AOD is representative of ACAOD was not
justified, which could have introduced large uncertainties to the
estimated DRF. Most recently, de Graaf et al. (2012) retrieved the
cloud parameters from a pair of SWIR channels (i.e., 1246/1640 nm) where smoke has relatively small AOD and its effects on
cloud retrievals can be neglected. Using the retrieved cloud param-
eters together with satellite geometrical parameters, and prescribed
surface albedo and ozone profiles, the cloudy-scene TOA reflectance
without aerosol is calculated with a radiative transfer model. A dif-
fERENCE between space-based spectrometer measurements of
reflectance with the model calculated cloudy-scene TOA reflectance
indicates the radiative impacts of smoke above clouds. The advan-
tage of this approach is that it bypasses the assumption of aerosol
microphysical properties and retrieval of ACAOD. On the other
hand, the approach would be subject to large uncertainties when
smoke is so intense that aerosol interference in SWIR cloud retrieval
is not negligible. The approach would not be applied to dust because
of spectrally flat AOD of dust. All these methods only provide esti-
mates of TOA DRF, which is not adequate for fully understanding
aerosol impacts on climate. For example, atmospheric heating rate
induced by above-cloud aerosols is essential to the understanding of
aerosol impacts on the development of underlying clouds (Wilcox, 2010).

In closing, recent developments in both active and passive
remote sensing provide an unprecedented opportunity for quanti-
fying aerosols above clouds and advancing the understanding of
aerosol climate forcing. Future efforts are needed to further explore
these capabilities and improve the accuracy of ACAOD and DRF.
Although the lack of reliable measurements makes it challenging
to conduct rigorous validations of satellite retrievals of ACAOD
and DRF, inter-comparing different methods should be carefully
performed, keeping in mind the strengths and limitations of indi-
vidual methods. In addition to providing observational constraints
for aerosol DRF and impacts on cloud development, satellite obser-
vations of ACAOD can be used to improve the estimate of aerosol
intercontinental transport (Yu et al., 2008, 2012b), because the
cross-ocean transport often occurs above the low-level clouds.

Acknowledgments

HY acknowledge the NASA support via NNX11AH66G and
NNX11AJB1G, both administered by R. Eckman. ZZ acknowledges
the Startup fund from the University of Maryland, Baltimore
County. We thank Hyoun-Myoung Cho for helping in producing
the image and Yuekui Yang and Dan Miller for helpful discussion.
The authors are grateful to NASA for providing A-Train satellite
data used in this study, including MODIS, CALIPSO and OMI prod-
ucts. The authors are grateful to CNES for providing POLDER/
PARASOL data. ZZ thanks the ICARE Data and Services Center for
providing access to the data and for general assistance and develop-
ment support.

References

Quantifying above-cloud aerosol using spaceborne lidar for improved under-
dx.doi.org/10.1029/2007JD009433. D13206.

Hongbin Yu
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
Earth Science Directorate, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Zhibo Zhang
Department of Physics, University of Maryland at Baltimore County, Baltimore, MD 21228, USA
Joint Center for Earth Systems Technology, University of Maryland at Baltimore County, Baltimore, MD 21228, USA
E-mail address: Zhibo.Zhang@umbc.edu

* Corresponding author. Earth Science Directorate, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. Tel.: +1 301 614 6209; fax: +1 301 614 6307.
E-mail addresses: Hongbin.Yu@gmail.com, Hongbin.Yu@nasa.gov

(H. Yu)
New Direction

Emerging Satellite Observations of Above-Cloud Aerosols and Direct Radiative Forcing

Hongbin Yu1,2 and Zhibo Zhang3,4

1Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, 20740, USA
2Earth Science Directorate, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771, USA
3Department of Physics, University of Maryland at Baltimore County, Baltimore, Maryland, 21228, USA
4Joint Center for Earth Systems Technology, University of Maryland at Baltimore County, Baltimore, Maryland, 21228, USA

\textbf{Keywords:} Aerosol above clouds, Radiative forcing, Satellite remote sensing

\textbf{Abstract:} Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

Aerosols affect the Earth’s energy budget directly by scattering and absorbing the solar radiation in both cloud-free and cloudy conditions, which is referred to the direct radiative forcing. Advances in aerosol passive remote sensing during the era of Earth Observing System have provided valuable constraints to the estimate of cloud-free DRF (Yu et al., 2006; Forster et al., 2007). On the other hand, estimate of cloudy-sky DRF is poorly constrained, because conventional aerosol retrievals from passive sensors are performed only in cloud-free conditions. A multi-model assessment showed that large inter-model differences exist in the cloudy-sky DRF, with global annual mean values for the top-of-atmosphere (TOA) DRF ranging from -0.16 to +0.34 Wm-2 (Schulz et al., 2006). In southeastern Atlantic Ocean off the coast of southern Africa particularly, the modeled values of TOA cloudy-sky DRF differ in magnitude and sign, varying from slightly negative to greater than +5 Wm-2 on an annual mean basis (Schulz et al., 2006). Unraveling these inter-model differences require reliable, observational constraints of both aerosol and cloud properties

The co-existence of aerosols and clouds in the same atmospheric column complicates the interactions of aerosol with sunlight, because clouds reflect a substantial amount of incident radiation back to space. Compared to that in cloud-free conditions, aerosols would generally absorb more (less) solar radiation if they reside above (beneath) clouds. In particular, when aerosols reside above clouds, aerosol absorption can be substantially
amplified due to multiple scattering between aerosol layer and underlying cloud, leading to a less negative or even positive DRF (warming) at TOA (Keil and Haywood, 2003; Abel et al., 2005). Estimating DRF by aerosols above clouds remains a big challenge because of the interplay of several aerosol and cloud properties, such as aerosol optical depth (AOD), aerosol single-scattering albedo, cloud fraction, and cloud optical depth (COD), all subject to large uncertainties. Large-scale measurements of aerosol above clouds and DRF had been unexplored until recently when the A-Train formed (Stephens et al., 2002). The A-Train is a constellation of several satellites carrying a suite of active and passive sensors with enhanced capabilities, including the Moderate resolution Imaging Spectroradiometer (MODIS) onboard Aqua, the Ozone Measurement Instrument (OMI) onboard Aura, the Polarization and Directionality of Earth Reflectances (POLDER) onboard the Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL), and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). These satellites overpass the equator each day successively within a few minutes around 1:30 p.m. local time, allowing for integrated studies of multi-sensor observations. The A-Train offers unprecedented opportunities of observing aerosols above clouds and their direct radiative forcing, owing to the utilization of lidar, multi-wavelength, multi-angle, and polarization techniques.

CALIOP is the first satellite lidar to provide multi-year continuous measurements of aerosol and cloud profiles on a global scale (Winker et al., 2009). Looking down from space the CALIOP laser light can penetrate through high-level, optically thin clouds and detect the aerosol and cloud layers in middle troposphere and in the boundary layer. Thus CALIOP is unique in providing retrieved profiles of aerosol backscattering and extinction in clear sky and above low-level clouds (Winker et al., 2010). Figure 1 shows seasonal mean above-cloud AOD (ACAOD) in 2007, which is derived from CALIOP 5-km aerosol and cloud layer products and aggregated to 5°x4° grids. Clearly shown in this climatology map are hot spots of ACAOD associated with strong sources of biomass burning smoke, desert dust, or industrial pollution. Research algorithms have also been developed to retrieve above-cloud AOD and particle properties based on the contrast of CALIOP observations of depolarization ratio (Hu et al., 2007) and color ratio (Chand et al., 2008) between clean clouds and contaminated clouds by above-cloud aerosols. Chand et al. (2009) used CALIOP observations of above-cloud AOD and MODIS observations of cloud fraction and cloud optical depth, both aggregated to monthly averages over 5°x5° boxes, to calculate the direct radiative effect of smoke located above low-level clouds in the southeastern Atlantic off the coast of southern Africa. Such the aggregations are required because of CALIOP’s narrow swath. Assumptions implicitly made in this approach include: (1) above-cloud aerosols detected by CALIOP along its track are representative of the 5°x5° box; (2) the day-to-day co-variation of cloud properties (cloud fraction and optical depth) with ACAOD is negligible; (3) the above-cloud aerosols have negligible impact on the MODIS cloud retrievals. These assumptions are not well justified, which constitutes unknown sources of error in the forcing estimate.
Measurements from passive sensors include information content of above-cloud aerosols, although conventional aerosol retrievals have been limited to cloud-free column. Interactions of above-cloud aerosols with solar radiation reflected by underlying clouds and surface can bring about changes in some attributes (spectral variation, and polarization) of radiance that can be well discerned by several current-generation sensors. Because smoke, pollution, dust aerosols have larger absorption AOD at shorter wavelengths than longer wavelengths (Russell et al., 2010), they perturb reflectance by underlying clouds differently in different wavelengths. Aerosols can also significantly affect the polarized light reflected by underlying clouds in certain scattering-angle ranges (Waquet et al., 2009, 2012). Figure 2 shows distinctive signatures induced by smoke above-clouds that are observed by MODIS/Aqua, OMI, and POLDER. CALIOP profiling (Figure 2a) indicates a smoke layer between 2-4 km overlying a cloud deck top at 0.7 to 1.3 km, which extends from 17°S to 6°S over Atlantic Ocean. On the contrary, south of 21°S the air above low-level clouds is relatively clean. MODIS true color image overlaid with the CALIOP track and marked representative smoky region (box S) and clean region (box C) provide a large-scale perspective of aerosol and cloud settings. The smoke above clouds yields a pronounced spectral signature as shown in MODIS reflectance color ratio between 470 nm and 1240 nm (Figure 2c). In unpolluted clean region C, the color ratio is greater than 1.0 because of the stronger molecular scattering at 470 nm. In the smoky regions (e.g., S) the color ratio is substantially smaller, because the attenuation of cloud reflectance by smoke absorption is much stronger at 470 nm than 1240 nm. The impact of smoke on cloud reflectance is also discernable from OMI observations of absorbing aerosol index (AI) in the UV range, a quantity that reflects spectral variations of the interaction between aerosol absorption and Rayleigh scattering (Herman et al., 1997). While AI has near-zero value for Rayleigh scattering atmosphere, clouds, and non-absorbing aerosols, AI is positive for absorbing aerosols in both clear scenes and above clouds. In this case, AI is 2-3 in the smoky region S, much larger than ~0.5 in unpolluted clean region C. Figure 2(e) shows the polarized reflectance at 865 nm observed POLDER as a function of scattering angle in C (blue dots) and S (red dots) regions. In unpolluted cloudy scene (C), there is s strong peak of polarization around 140° corresponding to the primary cloud-bow and very small levels of polarization at side scattering angles of 80° to 130°. Note that when COD > 3, the polarized reflectance by cloud is independent on cloud albedo or “saturated”. In smoke-over-cloud scene (S), the polarized reflectance is attenuated in the primary cloud-bow but enhanced significantly at the side scattering angles. Note that although non-spherical mineral dust will not significantly enhance the polarization at the side scattering angles, it can attenuate the polarized reflectance in the primary bow (Waquet et al., 2012). The example discussed above clearly demonstrates that aerosols above clouds can be discerned from the spectral and angular characteristics of reflectance and polarized light by the advanced passive sensors onboard the A-Train. These passive sensors provide potential alternatives for retrieving above-cloud aerosols that can overcome the limitation of CALIOP nadir observations over narrow swath.

Estimating ACAOD and some aerosol properties from the signatures observed by the passive sensors has been explored very recently. Waquet et al. (2009) used the changes of angular distributions of the polarized light at single wavelength to retrieve ACAOD.
for a smoke case from POLDER multi-angle polarization measurements. The algorithm has been further extended to the retrievals of ACAOD of both smoke and mineral dust and the particle size parameter using POLDER measurements of the polarized reflectances at three wavelengths and at both the primary cloud-bow and a range of side scattering angles (Waquet et al., 2012). Knobelspiesse et al. (2011) showed a capability of simultaneously retrieving ACAOD and cloud optical properties from multi-angle, multispectral, passive observations of polarized reflectance from an aircraft prototype of scanning polarimeter designed for the Glory satellite (unfortunately it was not successfully launched). The spectral signatures in the reflected radiation have been explored to simultaneously retrieve ACAOD and COD of underlying cloud from multi-wavelength sensors like OMI (Torres et al., 2012) and MODIS (Jethva et al., 2012) on a basis of case studies. For these algorithms, ACAOD is retrieved with other aerosol properties generally assumed as a priori. While some algorithms show a potential of retrieving some aerosol microphysical properties (Knobelspiesse et al., 2011; Waquet et al., 2012), uncertainties are larger than that for ACAOD. These studies, on a case basis in general, demonstrate that it is promising to retrieve ACAOD with extensive spatial coverage from passive sensors with multi-wavelength and polarization capabilities.

Integrating complementary observables from the A-Train sensors could provide an empirical approach to estimating ACAOD with extensive coverage. AI is a semi-quantitative measure of AOD because it also depends on aerosol height, single-scattering albedo, and cloud albedo. The multiple scattering between aerosol layer and underlying cloud deck enhances AI, but reduces the AI dependence on the height of aerosol layer (Torres et al., 2012; de Graaf et al., 2005). Yu et al. (2012a) found that for collocated CALIOP and OMI measurements, OMI AI correlates well with CALIOP ACAOD when the analysis is stratified with COD from MODIS, in the outflow regions of South Africa smoke and North Africa dust. Such derived ACAOD-AI relationships could constitute a basis for potentially developing an empirical approach to deriving daily above-cloud AOD from OMI semi-quantitative AI and MODIS cloud measurements with much more extensive spatial coverage over longer duration than do CALIOP observations. Significant efforts are needed to further explore this approach, including the characterization of the viewing-geometry dependence of ACAOD-AI relationship, and quantification of CALIOP AOD bias and uncertainties. One major advantage of such an empirical approach is that the derived ACAOD doesn’t depend strongly on assumptions of aerosol microphysical properties.

The observations of ACAOD can be used to calculate DRF by above-cloud aerosols, with aerosol optical properties such as single-scattering albedo and asymmetry factor being constrained by in-situ or remote sensing measurements (e.g., Dubovik et al., 2002; Russell et al., 2010) and cloud optical depth from satellites. Cautions should be exercised when using satellite measurements of cloud optical depth, because above-cloud aerosols can potentially contaminate the cloud optical depth retrievals from passive sensors, such as MODIS, leading to a biased DRF estimation. For example, a layer of absorbing aerosols above cloud acts to reduce the cloud reflectance, which leads to low bias in COD retrieval (Haywood et al. 2004; Coddington et al., 2010). If not corrected, this COD bias will in turn propagate to the DRF computation. The problem could be alleviated through using a spectral band that is less affected by above-cloud aerosols for COD
retrieval. In the smoke over cloud scenario, for example, smoke AOD decreases with wavelength quickly while COD remains almost constant over the solar spectrum. As a result, the above-cloud smoke has limited impact on cloud reflectance in shortwave infrared (SWIR) or longer wavelengths, although the impact in visible or near infrared could be significant. Recently, Meyer et al. (2012) showed that the COD retrieval based on the 1.65 μm MODIS band over southern Atlantic coast of Africa where smoke layer resides over marine stratocumulus deck is systematically larger than the operational retrieval based on the 0.86 μm band. This difference is mainly attributed to the above-cloud smoke contamination in the 0.86 μm band. It is also found that the DRF of smoke computed from the 1.65 μm COD retrieval is stronger (more positive) than that based on the 0.86 μm COD retrieval. On the other hand, using SWIR band for COD retrieval to alleviate above-cloud aerosol contamination is complicated by the fact that cloud droplet absorption becomes significant in this spectral region, which leads to saturation when cloud is thick (e.g., COD > 20). Applying this approach to above-cloud dust conditions can be further complicated by significant impact of dust scattering in SWIR band, although impact of dust absorption is much smaller in SWIR than 0.86 μm band. Most recently, algorithms are being developed for simultaneous retrieval of both ACAOD and COD using MODIS spectral observations (Jethva et al. 2012; Meyer et al., 2012). A major advantage of these new algorithms is that the impact of above-cloud aerosol is taken into account in the COD retrieval. On the other hand, developing such algorithms involving both aerosol and cloud retrievals may be challenging, which requires more efforts to explore the algorithms and evaluate/validate the retrievals.

The above-cloud aerosol direct radiative forcing at TOA has also been estimated from satellite measurements of radiances/fluxes, which avoids assumptions of aerosol optical properties and cloud optical depth required by the forward calculation discussed above. Hsu et al. (2003) derived regional TOA DRF induced by smoke aerosols of Southeast Asia by contrasting satellite measurements of radiative fluxes between clean and smoke contaminated pixels identified with AI from the Total Ozone Monitoring Spectrometer (TOMS). Similarly, Peters et al. (2011) performed multiple linear regressions to derive statistical relationships between CERES planetary albedo, AMSR-E cloud liquid water path, and MODIS clear-sky AOD in the presence of low-level liquid water clouds as detected by MODIS based on three-year data over tropical and sub-tropical Atlantic Ocean. In the analysis, a threshold of OMI UV AI > 0.7 is used to identify the absorbing-aerosol presence in cloudy scenes. They found a decrease of the planetary albedo with increasing clear-sky AOD for mostly absorbing aerosols. However, the assumption that MODIS cloud-free AOD is representative of above-cloud AOD has not been justified, which could introduce large uncertainties to the estimate of above-cloud aerosol DRF. Most recently, de Graaf et al. (2012) retrieved the cloud parameters from a pair of SWIR channels (i.e., 1246/1640 nm) where smoke has relatively small AOD and its effects on cloud retrievals can be neglected. Using the retrieved cloud parameters together with satellite geometrical parameters, and prescribed surface albedo and ozone profiles, the cloudy-scene TOA reflectance without aerosol is calculated with a radiative transfer model. A difference between space-based spectrometer measurements of reflectance with the model calculated cloudy-scene TOA reflectance reflects the radiative impacts of smoke above clouds. The advantage of this approach is that it bypasses the assumption of aerosol microphysical properties and retrieval of ACAOD. On the other
hand, the approach would be subject to large uncertainties when smoke AOD is high and aerosol interference in SWIR cloud retrieval is not negligible. The approach would not be applied to dust because of its spectrally flat AOD. All these methods only provide estimates of aerosol radiative effect at TOA, which is not adequate for assessing aerosol climate impacts. For example, atmospheric heating rate induced by above-cloud aerosols is essential to the understanding of aerosol impacts on the development of underlying clouds (Johnson et al., 2004; Wilcox, 2010).

In summary, recent developments in both active and passive remote sensing provide an unprecedented opportunity for quantifying aerosol above clouds and advancing the understanding of aerosol climate forcing. Future efforts are needed to further explore these capabilities and improve the accuracy of ACAOD and DRF. Although the lack of reliable measurements makes it challenging to conduct rigorous validations of satellite retrievals of ACAOD and DRF, inter-comparing different methods should be carefully performed, keeping in mind the strengths and limitations of individual methods. In addition to providing observational constraints for aerosol DRF and impacts on cloud development, satellite observations of ACAOD can be used to improve the estimate of aerosol intercontinental transport (Yu et al., 2008, 2012b), because the intercontinental transport often occurs above the low-level clouds.

Acknowledgements: We acknowledge the NASA support via the Science of Terra and Aqua program (NNXAH66G for HY and NNX for ZZ), both managed by R. Eckman. We thank Hyoun-Myoung Cho for helping in producing the image and Yuekui Yang for helpful discussion.

References

Meyer, K., S. E. Platnick, L. Oraiopoulos, and D. M. Li, Estimating the direct radiative forcing of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP, 2012 (in preparation)

Figure 1: CALIOP seasonal mean AOD (at 532 nm) above low-level clouds (cloud top less than 4 km) for 2007. CALIOP 5-km aerosol and cloud layer products are aggregated into 5ºx4º grids during a season. AOD is set to 0 when CALIOP doesn’t detect aerosol layers above clouds.
Figure 2: A-Train observations of smoke aerosol above clouds over Atlantic Ocean off the coast of southwestern Africa on August 18, 2006: (a) CALIOP attenuated backscatter (km$^{-1}$ sr$^{-1}$) profile, showing extensive aerosol layer above clouds north of 17°S and relatively clean air south of 21°S (a representative smoky region - box S and clean region - box C are marked for reference); (b) MODIS true color image with the CALIOP track overlaid; (c) MODIS color ratio for the reflectance at 470 and 1240 nm; (d) OMI UV aerosol index; and (e) POLDER polarized reflectance at 865 as a function of scattering angle in the clean (blue dots) and smoky (red dots) regions.