Initial Field Deployment Results of Green PCB Removal from Sediment Systems (GPRSS)

Robert DeVor1, James Captain1, Kyle Weis1, Phillip Maloney2, Greg Booth3, Jacqueline Quinn4
1QinetiQ North America, 2NASA Postdoctoral Program
3Toxicalogical and Environmental Associates, Inc., 4National Aeronautics and Space Administration

Purpose of Study

- Develop/optimize technology capable of removing PCBs from contaminated sediments
- Develop design for functional GPRSS unit
- Produce and prove functionality of prototype units in a laboratory setting
- Produce fully-functional GPRSS units for testing at a demonstration site in Altavista, VA
- Evaluate efficacy of GPRSS technology for the remediation of PCB-contaminated sediments

Overview of Previous Results

- Various polymers tested for ability to remove PCBs from contaminated sediments (Table 1)

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Diffusion Rate (ug/in²/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE</td>
<td>12.48</td>
</tr>
<tr>
<td>LDPE</td>
<td>13.42</td>
</tr>
<tr>
<td>PP</td>
<td>4.20</td>
</tr>
</tbody>
</table>

- Butyl Rubber, Norprene, Gum Rubber/Foam showed highest removal capacities
- Interior solvent studies showed marked increase in PCB removal capacity when combined with polymers (Table 2)
- Polymer blanket designed for feasibility studies
- Small-scale demonstration unit produced for testing and physical optimization studies (Figure 1)

Current Research Results (FY13/FY14)

- Current work focused on optimizing GPRSS technology for use in real-world applications.
 - Creation of functional design; production of prototype test units using results from previous studies
 - Commercial vendor produced “spikes” of different polymers (LDPE, HDPE, PP) to allow for testing and evaluation. Figure 2 shows an HDPE spike
 - Testing was performed to determine the “sphere of influence” each individual spike would have. The original prototypes had a 2” spacing between spikes
 - The results of this study (Table 4) showed that a 3” spacing would suffice
 - Concurrent testing of the mass-produced spikes was conducted to determine the transport rate of the PCBs through the various polymers
 - Results (Table 5) showed that LDPE had the highest transport capability for PCBs, however physical characteristics of the polymer proved to be unsuitable for real-world use
 - HDPE spikes had nearly as high a diffusion rate as LDPE, and were rigid enough for insertion into sediments

- Field deployment was undertaken in a contaminated pond in Altavista, VA in September 2013
 - Two 9ft² treatment zones were cordoned off; pre-treatment concentrations were obtained
 - Each treatment zone was divided into 9 zones which were treated with an individual GPRSS unit. Pre- and post-concentration samples were taken from the locations marked in Figure 3
 - All samples were split for analysis both at KSC and by an independent certified 3rd party laboratory.
 - First samples were taken in early February (~19 weeks), and the ethanol was replaced and the blankets were re-installed for a second treatment. The results of the 3rd party testing are given in Table 6/7. KSC analysis showed even higher removal rates.

Summary

- Developed and optimized design for GPRSS technology
- Laboratory-scale tests proved functionality of GPRSS design
- Final down-select of polymers were chosen based upon laboratory results
- Produced multiple units for field demonstration at Altavista, VA
- Preliminary results (certified 3rd party lab) show that 70% of sites sampled have been reduced to below EPA action limits for PCBs

Future Directions

- Analyze 2nd sample set (~32 weeks) from Altavista, VA field demonstration
- Analyze GPRSS blankets from Altavista, VA field demonstration to attempt mass-balance of PCBs
- Evaluate re-usability of both blanket and interior solvent
 - Test effectiveness of removal capability of PCBs over multiple removal cycles
 - Test extraction efficiency from polymer blanket
- Evaluate capability of combining polymer blanket with AMTS technology for degradation of PCBs removed/extracted from contaminated sediments