A FLIGHT RESEARCH OVERVIEW OF WSPR, A PILOT PROJECT FOR SONIC BOOM COMMUNITY RESPONSE

AIAA AVIATION 2014
June 17th, 2014

Presented by:
Larry J. Cliatt, II

Authors:
Larry J. Cliatt II, Edward A. Haering Jr., Thomas P. Jones, Erin R. Waggoner, Ashley K. Flattery
NASA Armstrong Flight Research Center

Scott L. Wiley
Jacobs Technology
WAVEFORMS AND SONICBOOM PERCEPTION AND RESPONSE (WSPR)

Atmospheric Effects
Transmission into Structures
Human Response

Armstrong Langley

Fidell Associates
Smartphone study

PENNSTATE
Noise exposure design
Statistical data analysis

NASA

ARL

TETRA TECH
Subject Recruitment Coordination with EAFB Subjective data collection

WIDE LABORATORIES
NRA leadership & integration Sonic boom data analysis

LUMATICA
Sonic boom monitors

Gulfstream
Sonic boom monitors

Recruitment coordination
Aeronautics Flight Research

- Over 60 years of flight research (NACA Muroc Flight Test Unit)
- Edwards Air Force Base (EAFB)
- Remote Location
- Varied Topography
- 350 Testable Days Per Year
- Extensive Range Airspace
- 29,000 Ft Concrete Runways
- 68 Miles of Lakebed Runways
- Supersonic Corridor
TOPICS OF DISCUSSION

• Motivation & Objectives
• Test Preparation
• Test Execution
• Flight Operation Results
• Challenges & Lessons Learned
• Future Work
Motivation

- Simulated next generation commercial sonic boom levels, 70-80 PLdB (database of human responses to over 100 booms)
- Provide data for FAA and ICAO to determine regulations and requirements for over-land sonic booms
- Low Boom Demonstrator shows the ability to meet sonic boom requirements

- FAA and ICAO rule change allowing quiet supersonic flight
- US manufacturing of quiet supersonic aircraft
- Greatly reduced travel time for people and products worldwide

OBJECTIVES

• Key goal – Test and demonstrate the techniques for gathering data from an in-home low-level sonic boom community response test

• Project objectives
 – Investigating surveying methods, data acquisition and analysis methods, and human response subject recruitment strategies.
 – Expose 100+ volunteer human response subjects to a schedule of sonic booms with a C-weighted day-night average sound level (CDNL) of 42-58 dB

• Flight objectives – *(First ever low boom community response test)*
 – Execute 20 – 25 flights over 2 weeks, up to 4 flights/day
 – Accurately place “low booms” on community. Produce sonic booms with peaks of 0.13 – 0.53 lb/ft²
 • With the use of a of a unique, NASA-designed F-18 dive maneuver
TOPICS OF DISCUSSION

• Motivation & Objectives

• **Test Preparation**
 • Test Execution
 • Flight Operation Results
 • Challenges & Lessons Learned
 • Future Work
Web-based surveys
 — Instruction via emails and phone calls

Paper/Pencil surveys
 — Instructions and materials mailed via postal service

Smartphone application surveys
 — Door-to-door installations for Apple® iOS application on subject-owned devices
 — Centralized meetings for distribution of Android™ phones with application pre-installed (to be returned after the project)

Recruitment and Outreach

- Military-controlled community constraints
 - High resident turnover rate
 - Approval of outreach methods
 - No door-to-door solicitation

- Knowledge of housing types

- Confident projections of occupancy and turnover rate

- EAFB allowed exclusive communication channels
 - EAFB newspaper
 - Base-wide emails
 - Facebook, Twitter, EAFB website

- Recruitment letters
 - Endorsed by NASA and EAFB
 - Could not be mailed by non-military parties
Remote sonic boom recording

- Sonic Boom Unattended Data Acquisition System (SBUDAS)
- Contributed and operated by Gulfstream Aerospace Corporation (Savannah, Georgia, USA) and Pennsylvania State University (University Park, Pennsylvania, USA)
- 13 recorders distributed throughout the community
- GRAS Type 41AO-S2 microphones
- Remotely triggered over a Wi-Fi network from a host station
- Solar powered
- Hardware concealed in National Electrical Manufacturers Association-rated (NEMA) box

• Autonomous sonic boom recording
 – Supersonic Notification Of Overpressure Instrumentation (SNOOPI)
 – All-weather enclosure (dog house)
 – Automatically records events greater than a preset overpressure threshold
 • Continuous ring-buffer technique
 • SenSym SCXL004DN pressure transducer: +/- 20.8 lb/ft² range, at 0.00304 lb/ft² per count resolution

• Meteorology
 – Sonic boom propagation is extremely sensitive to atmospheric conditions
 – Meteorological data was required for both pre-flight planning and post-flight analysis
 • Surface weather towers placed within the community
 • GPS radiosonde weather balloons
PRE-TEST

• Three day test to identify possible problems with survey questionnaires or data collection procedures

• 21 volunteer human response subjects from NASA Armstrong
 – Instructed to treat workspace as their home

• Six full sonic booms were generated on second day
 – Adventitious sonic booms were expected on other days

• Select lessons learned:
 – Update Apple® iOS smartphone survey to require manual entry of date & time
 – Poor connectivity can result in data transmission delays for smartphone surveys
 – More frequent follow-up telephone calls required with paper/pencil method
 – Greater latency was expected with web survey method
 – Ensure ID numbers for respondents are easy to remember (Web and Paper/pencil)
TOPICS OF DISCUSSION

• Motivation & Objectives
• Test Preparation
• **Test Execution**
 • Flight Operation Results
 • Challenges & Lessons Learned
• Future Work
“Low Boom Dive” Maneuver

- Unique, NASA-designed maneuver to simulate the sound of future civil supersonic aircraft’s sonic booms
 - Requires intricate pre-flight planning
 - Pre-flight weather data, canned F-18 trajectory, sonic boom propagation simulation software
 - Produced a waypoint (Latitude/Longitude) for the pilot to begin “low boom dive” maneuver
 - 49,000 ft. altitude, Mach 0.96. Upon reaching waypoint
 - Roll to inverted, -53° flight path angle accelerated dive to Mach 1.10
 - Airplane recovers straight and level at 34,000 feet
 - Produces undesirable focus sonic boom

![Diagram showing the maneuver and its impact on the community and ground.]

Mach 0.96
Alt. = 49 kft.

Mach_{MAX} 1.10
Subsonic
Alt. = 34 kft.

Community

5 to 20 miles

Ground
MISSION PLANNING & SONIC BOOM SCHEDULE

Armstrong Flight Research Center

- Sonic Boom Schedule
 - Optimized for target daily CDNL, with different level combinations
 - Four target sonic boom levels at center of community:
 - Low booms: 0.13 lb/ft² (low), 0.33 lb/ft² (medium), 0.53 lb/ft² (high)
 - Full sonic booms, approximately 1.2 lb/ft²
 - Pseudo-random sonic boom spacing
 - Two aircraft/flights required for most missions

- Sonic boom placement planning
 - Sonic boom propagation software PCBoom (developed by Wyle)
 - A template, “ideal” Low Boom Dive maneuver adjusted for day-of-flight upper-atmosphere conditions
• Motivation & Objectives
• Test Preparation
• Test Execution
• **Flight Operation Results**
• Challenges & Lessons Learned
• Future Work
MAXIMUM OVERPRESSURES

Armstrong Flight Research Center

- 89 planned sonic booms within the community
 - 84 planned low booms
 - 75 of which were actually low booms (less than 0.60 lb/ft²)
 - 5 planned full sonic booms
 - 14 additional adventitious full sonic booms

- 76% of the planned low booms were within +/- 0.15 lb/ft² of target
 - The lowest target attempt (0.13 lb/ft²) was most difficult to achieve
 - 0.13 lb/ft² attempts were within 30% of target for only 30% of the attempts
 - All other low boom attempts were within 30% of their targets for 60% of the attempts

All measurements recorded at center of community
PCBoom versus SBUDAS

- PCBoom analysis done using real aircraft trajectory and time-of-takeoff upper atmospheric conditions
- Maximum overpressures on SBUDAS recorders within 0.15 lb/ft² for only approximately 35% of the low booms
- Consistent yet precision inaccuracy
- Possible reasons for poor magnitude agreement
 - Spiking and rounding due to turbulence
 - Very low overpressure levels
LOW BOOM DIVE REPEATABILITY

- Used extensively for previous tests – Low Boom/No Boom (2006), HouseVIBES (2007) and SonicBOBS (2010)
- Template maneuver chosen from SonicBOBS
- Heading and flight path angle were relatively consistent during test
- Dynamic pressure (Mach & pressure altitude) was much less precise and typically larger than designed
 - Yielded louder sonic booms than planned
- Possible causes for inconsistency
 - The need for a better-defined maneuver
 - Four different pilots used for WSPR
- WSPR still had overall success planning and generating low sonic booms within the residential community

<table>
<thead>
<tr>
<th>Test description</th>
<th>Successful out of total</th>
<th>Success rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonic booms successfully planned and executed</td>
<td>89 out of 91</td>
<td>98</td>
</tr>
<tr>
<td>Low booms successfully planned and executed</td>
<td>75 out of 83</td>
<td>90</td>
</tr>
<tr>
<td>Low booms within 0.15 lb/ft² of planned target value</td>
<td>63 out of 83</td>
<td>76</td>
</tr>
<tr>
<td>Low boom attempts with overpressures higher than planned target values</td>
<td>59 out of 83</td>
<td>71</td>
</tr>
</tbody>
</table>
TOPICS OF DISCUSSION

- Motivation & Objectives
- Test Preparation
- Test Execution
- Flight Operation Results
- Challenges & Lessons Learned
- Future Work
CHALLENGES & LESSONS LEARNED

Recruitment
- Two-week delay (out of a 14-week recruitment effort) due to unanticipated approvals required for recruitment letters
- Failed to meet target # of subjects (76 out of 100) after initial outreach
 - $50 pre-paid debit card incentive introduced, and target was achieved
- Distribution/training of Android™ smartphones was tedious as it required several small meetings due to participants’ varying schedules
 - Suggestion: Distribute individually, and include a tutorial video
- Due to an inadequate sign-off process, two participants received their incentives prior to returning their smartphones
- SNOOPI had excessive false-triggers due to high winds (226 in one day)
- SBUDAS installation required unanticipated, extensive EAFB approval
- Incomplete description of SBUDAS hardware created concerns during EAFB approval process
- Installation time for SBUDAS was underestimated
- Weather balloons sometimes terminated prior to reaching the necessary altitude
 - Old data was used to fill in gaps
- Confusions among civilian air traffic controllers not accustomed to supersonic aircraft
- Unanticipated need for full sonic booms to be generated
- Non-WSPR sonic booms toward the end of testing

Smartphones

Support

Instrumentation

Mission Planning

& Sonic Boom Schedule

FUTURE WORK

• Community response using low boom dives on a larger community unaccustomed to sonic booms
 – Continued methodology studies

• Community response using a large-scale shaped low-boom demonstrator vehicle on large communities
 – Data used for proposal of overland sonic boom regulations change
QUESTIONS?