OASIS
Observation and Analysis of Smectic Islands in Space

International Liquid Crystal Conference
Dublin, Ireland June 29 2014

Presenter : Padetha Tin
Advanced Research Associates/USRA

Acknowledgement
Support for this effort is through Space Life Sciences Research & Applications Division in the Human Exploration and Operations Mission Directorate
Thanks to all Advanced Research Associates/University Space Research Association members
OASIS
Observation and Analysis of Smectic Islands in Space

P.I. - Noel Clark (Professor)

Co-I. - Matthew Glaser (Research Professor)
Co-I. - Joseph Macclennan (Research Professor)
Co-I. - Ralf Stannarius (Professor, Magdeburg University, Germany)
Padetha Tin (Project Scientist, NASA Glenn)
Nancy R. Hall (Project Manager, NASA Glenn)
Christopher Sheehan (Project Lead, ZIN Technology)
Freely Suspended Fluid Films

FSLC films exhibit a combination of physical characteristics systems for the study of:

- Equilibrium and out-of-equilibrium phenomena in reduced dimensionality, example liquid crystal ordering and fluctuations in two dimensions, the effects of finite size on liquid crystal phase transitions.

- FSLC films in microgravity present extraordinary opportunities for the study of fluid dynamic and thermodynamic behavior in reduced dimensionality, the exploration of fundamental nonequilibrium fluid interfacial phenomena.
- **Thickness is Quantized**
 - Smectic layering
 - Profile

- **Shape**
 - Line tension

- **Interaction**
 - Barrier

- **Coalescence**
 - Dynamics
 - Collectivity
Chaining Behavior vs. Chiral Concentration

Chiral

Strong Interaction and Chain Formation

Weak Interaction

No Chain Formation at all

Racemic

External Electric Field Interaction

To develop smectic bubbles as an experimental geometry for innovative studies of interface interactions and dynamics in ultra-thin fluid films.

- **2D Hydrodynamics**
 - Hydrodynamics of islands and droplets
- **1D Interfaces in 2D Space**
 - Coarsening & Ostwald ripening
 - Island interactions
- **Thermocapillary Effects**
 - Marangoni effect
- **Surface and Line Tension**
 - Dependence on film thickness
- **Textural Interactions**
 - Interactions of islands/droplets and defects
- **Ultraweak Interactions**
 - Interactions of islands
 - Effects of perturbing bubbles
Prioritized Experimental Objectives in Microgravity

- **Study of Collective Dynamics of 1D Interfaces on 2D Films**
 - Observation of the evolution of the island system over extended periods of time with no applied external field
 - Flow generation
 - Perturbation of the equilibrium state
 - External Electric field induced island interaction
 - Thermocapillary effects

- **Study of Dynamics & Organization of Droplet Arrays**
 - Generation & deposition of droplets using inkjet drop ejector
 - (Repeat the experiments with near identical islands)

- **Quantitative Measurements**
 - Bubble parameters
 - thickness (spectrometry)
 - diameter (imaging)
 - Island & droplet correlations (low, high resolution video image analysis)
 - Island & droplet distributions (low, high resolution video image analysis)
 - island thickness (DRLM/ spectrometer)
 - island & droplet size
 - Electric field strength, temperature
Liquid crystal is everywhere today. Medical, education, energy, business, infrastructure, agriculture, space missions.

Inexpensive Holographic HD TV. (concerns of current 3d TV, medical/ophthalmological concern for children viewing current systems)

Hologram cellular phone (within 5 yrs.),

Smart windows (Eliminated need of window blinds and car sun shades)

Liquid crystal reconfigurable antennas for deep space missions, satellite communications
Today’s Challenges of liquid crystal development:
Operation temperature range. (e.g., Research expedition in the South Pole -50F)
Brightness, contrast ratio. (Using at day time outside).
Viewing angle, operation voltage, response time.

These challenges depend on liquid crystal materials and its control parameters;
Clearing point, melting point, birefringence, dielectric anisotropy, elastic constants, rotational viscosity, Discovery of new LC material structures.

Fig. Liquid Crystal defects grow and coalesce after 10 minutes at normal gravity and convective flow
Justification for Microgravity

- Limitations of Terrestrial Experiments
 - Gravitational sedimentation of islands & drops
 - Convection of films and surrounding air

- Limitations of Drop Tower & Parabolic Flight Experiments
 - Coalescence & coarsening of islands, ordering of drops take a long time

- Limitations of Modeling
 - Lack of experimental data to test theory

LC Material: 8CB
Near 2D system freely suspended film
- Thin liquid crystal bubble → making thin film LC bubble → How to create thin LC bubble. requirements, parameters, T control,

Thickness?
- Measurement techniques

Emulsions on the bubble (islands)
- Creation methods and requirements

Global observation of bubble observation
- Macro view system

Island interactions
- Micro view capability

Interaction with external forces electric field interaction
- Electric field

Gradient steps towards and away from phase transition
- Temperature measurement and control

Bubble Dynamics
- Dynamic oscillation (inflation and deflation) of bubble → Techniques

Droplet studies
- Near identical (future proposed experiment) islands → Size, distribution, material?? → Inkjet nozzles
Bubble Study Approach

- **Observation by Reflected Light Imaging**
 - Low resolution video
 - bubble inflation
 - global bubble structure
 - global interface organization
 - High resolution video microscopy
 - island structure and dynamics
 - orientational textures

- **Manipulation**
 - Electric field
 - induced island interactions
 - electrohydrodynamics
 - Air jets
 - island generation
 - film hydrodynamics
 - Optical tweezer manipulation of islands
 - interactions
 - elasticity
 - hydrodynamics
 - Dynamic inflaton and deflation
 - nucleation of islands and pores
Hardware subsystems that meet Science Requirements

1. Create very thin liquid crystal bubble (sample dispenser, bubble maker)
2. Create micron size islands on the bubble (shearing with tangential gas, droplet dispensing device)
3. Macro view of entire bubble (illumination, macro lens, ccd camera)
4. Depolarized Reflective Light Microscope, Microscopic view of islands dispersion and interactions (illumination, microscope objectives, ccd camera)
5. Measurement of bubble film and island thickness (spectrometer)
6. Bubble dynamics (oscillation of bubble, inflate-deflating system)
7. Temperature control of ambient, and temperature steps
8. Temperature gradient system
9. Electric Field device and electrodes
OASIS Instrumentation

DRLM
Depolarized Reflected Light Microscope

Temperature Controlled Chamber with Bubble Illumination

CCD Imaging and recording
Analyzer Rotatable
Beam Splitter
Mirror
Polarizer
White Light Illumination

20x Microscope Objective / Bertrand lens

Temperature Controller
Temperature sensor
Heater coil

Air line / E Field Electrode / Heater-coolers

Droplet Dispenser Control and High voltage Amplifier
Sub Pico Liter Droplet Dispenser

Macro Observation of Entire Bubble Surface

Image Control and Data Recording

Peristaltic Pump or Syringe with Stepper Motor

Liquid crystal injector

Three way Valve

Piston Pump or Diaphragm Pump
Low Resolution Reflected Light Imaging

Islands on Smectic Bubble

Island Emulsion on Smectic Bubble

Global View of Structures on Bubble Island Generation

after 5 minutes

after 1 hour old (sedimented by gravity)
OASIS Hardware in the Microgravity Science Glovebox

- Electronics Power Assembly
- Macro Camera Assembly
- Digital I/O Cube Assembly
- Avionics Assembly
- Bubble Chamber Enclosure (Contains the Bubble Chamber Insert)
- Optics/Illumination Assembly