Abstract

This paper reviews the many aspects of precipitation measurement that are relevant to providing an accurate global assessment of this important environmental parameter. Methods discussed include ground data, satellite estimates and numerical models. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a number of the many applications of those measurements and databases. The aim of the paper is to organize the many links and feedbacks between precipitation measurement, estimation and modeling, indicating the uncertainties and limitations of each technique in order to identify areas requiring further attention, and to show the limits within which datasets can be used.

Keywords: Precipitation, Regional Climate Models (RCM), Global Climate Models (GCM), Quantitative Precipitation Estimation (QPE), Global Precipitation Measurement (GPM) Mission, CORDEX
1. Introduction

Today, precipitation science is at the crossroads of different scientific disciplines including among others hydrology, numerical modeling, climate change, remote sensing, forecasting and more recent innovations such as renewable energy research. Research directions range from improving the description of rain microphysics for climate change studies to areal interpolation of surface rain for agricultural applications, to name but two quite different approaches. For example, rainfall and solid precipitation at the basin scale are the primary input to hydrological models predicting stream flow when used to manage hydropower operations. Early warning systems for landslides require a good knowledge of recent precipitation, while in agriculture, irrigation scheduling is contingent upon recent and expected rainfall in the near future, especially in semiarid environments. In the realm of weather, precipitation estimates are used for nowcasting and for assimilation into global and regional models, aiming to improve the forecasts of not only precipitation but other variables such as temperature, evaporation and wind speed. In the field of climate change assessment, apart from the intrinsic importance of detecting changes in water availability in the future, precipitation is routinely used to gauge the skill of model simulations, a task which is realized by comparing the climatology of present-climate simulations with that of observational datasets. Also, precipitation estimates over land and the oceans are instrumental to closing the global water cycle.

Both measuring and forecasting precipitation are important for these and other applications. Prediction might be seen as clearly preferable as it allows for the preparation of future events. However, improving the skill of the forecasts is closely intertwined with the ability to measure precipitation. The better the precipitation measurement, the better the likelihood of improved forecasts of precipitation and other meteorological parameters. Here, an area of fertile exchange is model parameterization, as the advances in the physics of precipitation required to improve numerical models heavily rely on testing new hypotheses by actual measurements of precipitation. This is particularly the case of, for instance, theoretical parameterizations of rain microphysics used in models, which should be consistent with ground or in-situ observations.

Given the breadth of the applications and their importance for human activities, the interest and effort devoted to accurate precipitation monitoring is not surprising. The growing importance of the field, however, runs in parallel with difficulties in the actual measurement. Precipitation is a very difficult variable to estimate both because of its irregular spatial occurrence, and also due to very diverse physical processes. For example, while cold and warm-based clouds both eventually generate precipitation, the processes leading to the formation of the liquid water are quite different. Such diverse meteorological conditions present a challenge to space-based remote sensing techniques for estimating precipitation.

Scientific advancements in quantitative precipitation estimation and their applications throughout the last decade have crystallized into the Global Precipitation Measurement (GPM) mission, organized as an international project led by the National Aeronautics and Space Administration (NASA, USA) and the Japanese Space Agency (JAXA, Japan). Given its approaching launch date (February 14, 2014), it seems timely for this paper to organize the many links and feedbacks between precipitation measurement, estimation and modeling, focusing on those methods suitable for generating a picture of global precipitation patterns. The body of this paper is organized in three sections. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a few of the many applications of the databases.

Within the paper, the term measurement is used depending on context as a general term or to specify the direct physical readings of precipitation, thus being restricted to rain gauges and optical and video disdrometers. Estimation refers to inferring precipitation from a measure such as brightness temperature, momentum, or reflectivity, whereas the term forecasts is used to the from hours to days predictions of numerical weather prediction (NWP) models. Projections refers to predictions from seasonal models, and simulations to the computer file outputs from either Global Climate Models (GCMS) or Regional Climate Models (RCMs). Reanalysis is defined as a retrospective analysis of the atmosphere using data assimilation methods and a numerical model.

2. Ground observations of precipitation

Ground observations of precipitation include those from rain gauges, disdrometers and radars. With a few exceptions which are immaterial on the global scale, these are restricted to land and to a few atolls. Rain gauges are universally considered as the source of reference data for precipitation observations as they provide a direct physical record of the precipitation in a given spot. Disdrometers are a relatively new instrument that estimate not only the total precipitation but also the relative contribution of each drop size category (the drop size distribution, or DSD) to the total, which is an important parameter for microwave-based estimation of precipitation. Both instruments are direct in that they respond to individual drops, but have a fairly small sampling area (tens of square centimeters), which affects the representativeness of the measurements. In contrast, ground radars sample a large volume but provide an estimate of the precipitation based on the backscattered echo, an indirect observation which relates to total rainfall through the DSD.
high rainfall rates (above 300 mm h\(^{-1}\)) are capable of draining it, resulting in a saturation effect that water can accumulate into the collector faster than the bucket can empty them. This is exacerbated by the fact that the collection area is relatively small but also because the rain gauges are known to underestimate heavy precipitation, not only because the negative height gradient but also because the reference databases suitable for meteorological and climatic research are made up from tipping bucket rain gauges or to direct-reading accumulation gauges.

Less common are gauges based upon measuring precipitation by weighing the water accumulated at different sampling rates. The saturation effect is then not relevant, but they are modern instruments, more expensive and less common. Other types, such as siphon-based rain gauges exist, but virtually all the reference databases suitable for meteorological and climatic research are made up from tipping bucket rain gauges or to direct-reading accumulation gauges. 2.1. Rain gauges

There are several rain gauge types, each one with its own limitations and strengths (cfr. (Strangeways 2004) (Strangeways 2010) for reviews). The tipping bucket type is one of the most common rain gauges. It typically consists of a collecting area that drains into coupled oscillating buckets. Each time one bucket is filled, it discharges the water then producing a signal on an electrical circuit. The bucket then is replaced by the other bucket and the process repeats. Each recorded oscillation then corresponds to a small volume of precipitation. Being a mechanical instrument, rain gauges are subject to many potential error sources, which are exacerbated by the fact that only a fraction of such gauges are carefully maintained. They are known to underestimate heavy precipitation, not only because the collection area is relatively small but also because water can accumulate into the collector faster that the buckets are capable of draining it, resulting in a saturation effect at high rainfall rates (above 300 mm h\(^{-1}\)) albeit this effect is rare. They are also problematic for light rainfall that may evaporate in the collector or in the bucket, and prone to problems due to leaves jamming the collector, birds or insects, rust or dust in the mechanism, or clock drift, which may affect the timing of the measurements relative to other instruments. Also, for light precipitation, the tip-size and the logger sampling rate are critical to provide proper representation. Rain gauge response to snow or to hail is problematic, as those have to melted to trigger the signal.

Less common are gauges based upon measuring precipitation by weighing the water accumulated at different sampling rates. The saturation effect is then not relevant, but they are modern instruments, more expensive and less common. Other types, such as siphon-based rain gauges exist, but virtually all the reference databases suitable for meteorological and climatic research are made up from tipping bucket rain gauges or to direct-reading accumulation gauges. Apart from errors due to instrumental problems, there are other intrinsic error sources affecting rain gauges. Wind flow effects is one of the major contributors to the error as it modifies the effective cross-section measurement area and consequently introduce a bias in the readings. Turbulence induced by the gauge also influences the measurements and can make the readings unrepresentative of actual rainfall. The wind flow effect is a particular challenge for light rain and snow because the hydrometeors more closely follow the air flow. Also, as wind speed rapidly increases with height into the boundary layer, two rain gauges at different heights will measure different amounts of precipitation, thus requiring careful adjustments to create meaningful rain maps. This effect was already demonstrated in 1769 by William Heberden (figure 1). Differences up to 87.4% were found in just 32 meters. It is now accepted that three dimensional interpolation is required to account for the topographic bias when gridded datasets are derived from station data, not only because the negative height gradient but also because precipitation may increase with height due to orographic effects (Briggs and Cogley 1996).

Modern experiments better quantify the effect of wind on rain gauge measurements. Using numerical simulations and empirical estimates, (Nespor et al. 2000) found that the larger the blockage of the airflow by the gauge body, the larger the error. They also found that error is dependent on drop size and wind speed, with larger errors for rain with larger fractions of smaller drops and for higher wind speeds. In a recent experiment (Ciach 2003) fifteen rain gauges placed within an 8m \(\times\) 8m square recorded substantial differences between identical instruments, even with such close proximity. To further complicate the issue the errors were found to be highly dependent on rainfall intensity and timescale, meaning that no clear functional relationship with distance can be proposed to adjust for biases.

As reported in (New et al. 2000) effects such as undercatch varies with rain gauge type while historical instrument changes result in inhomogeneities in the records. The correction of precipitation data series requires local meteorological and station metainformation, which are often not readily available. The error sources are reasonably well understood and include, for
example, basic mechanical and electrical failure, undercatch in heavy rain (i.e., rates exceeding 50 mm hr\(^{-1}\) depending on the gauge) and/or strong winds, reduced sensitivity to low rainfall rates, susceptibility to partial or even total blockage of the collection area by biological debris, dynamic changes in calibration and varying degrees of sensitivity to rain rate that often require integration times of 5 minutes to 15 minutes or more (Habib et al. 2001; Sieck et al. 2007; Krajewski et al. 2007).

Another issue regarding the use of rain gauges to generate global databases is the natural variability of precipitation. Precipitation physics develops below the centimeter scale and the statistics cascade up as we aggregate in space. Differences in precipitation at the kilometer scale are noticeable and increase in mountainous areas due to orographic influences. The sparse distribution of the gauges makes interpolation necessary in order to provide estimates over large areas. Interpolated rainfall, however, is seldom representative of the actual rain field, and the utility of rain gauges to represent areal rainfall has been repeatedly contested. Methods to interpolate point to areal estimates are based on some quantitative estimate of the spatial variability of the fields. An often used quantity, such as the semi-variance, is empirically derived, modeled, or inferred from the climatology, and then applied to the point measurements.

In spite of all these issues, rain gauges still represent the vast majority of the instrumentation available for building reference precipitation datasets. Since they are relatively cheap and easy to install and calibrate, they have been a fundamental instrument for decades, and thus the only available information from which to derive long records of reference precipitation. Future progress on this topic might depend on the combination of very dense observational networks with advances in stochastic modeling aimed at finding a robust method to select the most likely spatial model among a large number of data-consistent structures (Tapiador et al. 2011). Better knowledge of mountain precipitation will also certainly be required to improve interpolations, given the large variability of precipitation with height and the complex orographic effect by the wind flow.

2.1.1. Rain gauges in ground validation

The use of precipitation gauges as a \textit{de facto} reference for rainfall measurement and hence satellite ground validation (GV) or climate model verification, has evolved in response to the relatively simple, low-cost, wide-use, and direct measurement provided by single gauges. Many of the ambiguities associated with individual gauge errors in the quality control process and even reduction of measurement random error can be mitigated by collocating multiple gauge at a given site (Krajewski et al. 2003; Ciach and Krajewski 2006; Habib et al. 2001), however this is typically not standard practice for most operational networks. From an integrated validation and applications perspective even if a network of rain gauges makes perfect measurements, one must be mindful of point-to-area representativeness errors when upscaling gauge derived point estimates for comparison to area-means computed over satellite footprint scales (O[0.25° × 0.25°] grid), or even smaller areas typical of a radar estimate (4 km\(^2\)), as these errors can be substantial and must be adequately quantified (Morrissey et al. 1995; Anagnostou et al. 1999; Wood et al. 2000; Moore et al. 2000; Habib et al. 2002; Ciach and Krajewski 2006; Hong et al. 2006; Villarini et al. 2008).

Indeed for rain gauge networks that are well maintained, regularly calibrated (e.g., at least twice per year), constructed with suitable gauge density, and used at appropriate temporal and spatial averaging scales, the application to problem(s) of satellite GV are relatively robust (cf. review by (Ebert et al. 2007)). However, such networks are relatively recent and typically found in countries with the necessary infrastructure. Nonetheless, even these networks are also subject to significant sources of error, both intrinsic to the instruments themselves (Veurich et al. 2009) and due to the occasionally difficult operator logistics associated with required maintenance and calibration. Moreover, the overwhelming majority of rain gauge networks consist of individual instruments. In practice, quality control of individual gauges that may be only marginally performing (e.g., partially blocked funnel in a tipping bucket gauge) in such networks is difficult at best.

2.2. Disdrometers

While the previous discussion on rain gauges has focused more on direct validation applications of ground-based rainfall measurement instrumentation, a more physical approach useful for satellite comparisons demands that we ascertain the fundamental properties of the medium we are trying to observe. Specifically, it is of interest to identify the coupling between key physical properties of the precipitation (e.g., DSD, particle shape) and the remotely sensed variables of interest. The need for DSD studies using disdrometers span applications related to validating DSD assumptions and implicit impacts on retrieval sensitivities found in various components of satellite-based precipitation retrieval algorithms (Grecu et al. 2004; Iguchi et al. 2009), and verifying the calibration of DSD retrieval algorithms using polarimetric radar (Bringi et al. 2009). For this particular problem disdrometers provide a means to quantify DSD and individual hydrometeor physics across a multitude of precipitation types (Tokay et al. 1996; Yuter et al. 2006; Chang et al. 2009), temporal scales (Tokay et al. 1996; Tokay et al. 2003; Tokay et al. 2008), and if deployed in networks, spatial scales (Miriovsky et al. 2004; Tokay et al. 2010; Jaffrain et al. 2011; Tapiador et al. 2010).

In general, disdrometers can be subdivided into two basic types: optical and impact sensors. The most common impact disdrometer type is the Joss-Waldvogel disdrometer (JW); (Joss and Waldvogel 1967), with a more recent instrument for rainfall rate measurement (and only coarse representation of the DSD) being the Vaisala WX-510 model. The JW has been traditionally used as a reference in numerous studies of the DSD, and in particular, relationships between the DSD measurement and the equivalent radar reflectivity factor (Z) in efforts to assess/calibrate climatological rainrate relationships (Z-R relations) (Tokay et al. 1996). Impact disdrometers rely on piezoelectric measurements of individual drop impacts on a Styro-
Figure 2: Experimental setup in Toledo, Spain, to analyze the stability of Parsivel DSD estimates (top). Cross-correlation of the individual estimates from the 16 disdrometers in terms of rain rate for an episode (middle), and (bottom) relationship of the observed variability in rain rate estimate (squared line) of the episode with the turbulence as measured by the co-located 10 Hz sonic anemometer (grey line: original 10Hz sampling; blue line: moving average).

foam cone with an area of 50 cm² and assume a fixed fall speed, typically based on (Gunn and Kinzer 1949). Number concentration and fallspeeds are used to compute products such as rain rate, reflectivity, liquid water content etc. when multiplied by an appropriate moment of the DSD. Noted weaknesses of the JW include sensitivity to acoustic noise and its impact on DSD measurements on the small drop end of the spectrum (e.g., <0.7 mm), inability to resolve the large end of the DSD spectrum (e.g., diameters >5 mm), and recovery dead time during heavy rainfall events.

Complementing the impact disdrometers such as the JW are oft-used optical disdrometers including the OTT Parsivel (Löfler-Mang and Joss 2000) and Thies disdrometers (Maraes-Frasson et al. 2011) which operate on very similar principles, and finally the 2-dimensional video disdrometer (2DVD); (Schonhuber et al. et al. 2008). At the most basic level, both the Parsivel and Thies disdrometers rely on measurements of the amplitude and duration of a voltage reduction associated with drop extinction of light in a laser sheet as registered by opposing photodiodes (Knollenberg 1970). Thies disdrometers measure the diameter and fall velocity of individual hydrometeors over size ranges from 0.2-8 mm and 0.2-10 m s⁻¹ over 20 diameter and 22 velocity evenly spaced bins respectively. Parsivel disdrometers measure diameters from 0.2-25 mm in a velocity range of 0.2-20 m s⁻¹ over 32 diameter and 32 velocity non uniformly-spaced bins.

In contrast, disdrometers such as the 2DVD use high speed orthogonally-mounted line scanning cameras oriented along imaging planes separated by a 6-7 mm vertical distance to infer hydrometeor diameters, fall speeds, shapes and horizontal velocities in the intersection of the camera fields of view. The 2DVD measures drop sizes in user-defined bins over a relatively large 10 × 10 cm², at the finest resolution of ~0.2 mm and in a diameter range of 0.2 mm to 8 mm. Velocity measurements are accurate to 4% for fall speeds of 10 m s⁻¹ or less. Since its inception, the 2DVD has gone through three basic models, beginning with the classic tall model and subsequent movement to a short-profile version to deal with adverse wind impacts of the tall model (Nespor et al. 2000).

More recently Joanneum Inc. produced a third-generation empshort model designed to be more robust in terms of unattended operation during field deployments. The compact model is currently being used in NASA GPM Ground Validation field campaigns (Petersen et al. 2010) and was rigorously tested and compared relative to collocated second-generation 2DVD datasets in Huntsville, Alabama. Tests indicate nearly identical performance between the second- and third- generation 2DVD (Thurai et al. 2011).

Collectively the DSD requirements provided by the aforementioned disdrometer types are required to test and validate the assumptions of satellite retrieval algorithms which are then combined into global databases. Indeed, these requirements go beyond the provision of providing a single point measurement, sampling at a single point over long time intervals, or even extension to a single narrow column of the atmosphere. Rather, the need extends to quantification of the 4-D DSD behavior and intrinsic variability at scales ranging from a single satellite pixel to those of mesoscale domains (Grecu et al. 2004). Accordingly, studies and instrument facilities deploying networks of disdrometers such as those described in (Tapiador et al. 2010; Jaffrain et al. 2011), and those being developed within the NASA GPM GV program (Petersen et al. 2010) are the next step in completing broader radar and satellite GV activities. Here the idea is to not only use the disdrometer information as a means to define the natural variability of the DSD over space and time, but also to characterize that variability as it pertains to quantifying measurement error characteristics of the DSD using platforms such as polarimetric radars (Cao et al. 2008; Thurai et al. 2009); the polarimetric radars being a primary physical validation bridge between the disdrometer point measurement and the DSD or rainfall retrieval over the larger footprint of a satellite, for example. In this regard, intercomparisons between individual disdrometers
in a network and between disdrometer types will be critical (Tokay et al. 2001; Krajewski et al. 2006; Jaffrain et al. 2011; Thurai et al. 2011; Maraes-Frasson et al. 2011). For example, when compared to rain gauges, JW, and/or 2DVD disdrometer estimates of rainfall, it appears that the current versions of Parsivel and Thiess optical disdrometers tend to overestimate rainfall accumulation at heavy rain rates (Lanzinger et al. 2006; Krajewski et al. 2006; Maraes-Frasson et al. 2011; Thurai et al. 2011). In one comparison of the Parsivel to Thies the Parsivel significantly undercounted small drops relative to the Thies in the small drop end of the spectrum (e.g., <0.5 mm; Upton and Brown 2008). In contrast, (Thurai et al. 2011) note a distinct departure in measurement of the mass-weighted mean diameter and mean diameter spectra of the DSD by the Parsivel instrument with rainfall rates of \(\sim 20 \text{ mm hr}^{-1} \) or greater. Experiments with several (16) co-located Parsivels (Figure 2) show the stability and coherence of the instrument.

![Hail impact-meter](image)

Figure 3: Hail impact meter (left) consisting in two of pads of foam where hail stones impact and leave an imprint proportional to its size. The figures on the right show two examples of records for small (top-right) and large (bottom-right) hail episodes. The pads are replaced after every hailstorm, and the imprints analyzed using image-processing algorithms in order to derive the hail size distribution.

Lastly, precipitation is not only limited to liquid forms of precipitation; quantification of frozen precipitation will be especially important in the GPM era. Indeed instrumentation designed to remotely sense snowfall water equivalent (SWE) rates, for example, be it via weighing gauge, radar, or disdrometer have all addressed the challenges to deal with maintenance, calibration, point-to-area representativeness, measurement error, wind, etc., in addition to the irregular shapes, sizes, and bulk density of snowfall. There are ways to retrieve SWE rates over larger areas using combinations of polarimetric radar, disdrometer and weighing gauge data (Brandes et al. 2007; Huang et al. 2010), however doing so is tedious and case specific. As such the next decade of ground-validation science, as it pertains to snowfall measurement, will require large strides in measurement methods and/or technologies to satisfactorily quantify errors not only in the satellite estimates, but errors intrinsic to the instrumentation used and ground validation methodologies/diagnostic approaches used. Solid frozen precipitation types such as hail represents an additional challenge (García-Ortega et al. 2011) due to, for instance, hail being highly localized in space and in time, which makes estimates dependent on the density of the observation network (Sánchez et al. 2009a; Sánchez et al. 2009b; Tuovinen et al. 2009). Hail observations networks for GV using hail-impact meters (figure 3) are expensive to maintain and require intensive fieldwork and lab post-processing (García-Ortega et al. 2005; García-Ortega et al. 2006).

2.2.1. *Ground Weather Radars*

Deployment of and care for rain gauges deployed in sufficient density to accurately measure rainfall accumulations at scales ranging from sub-hourly to even daily can be a logistically challenging exercise at best. Consequently, ever more sophisticated schemes using radar estimates of precipitation have developed to fill the sampling void. The notion that returned echo power from radar could be used to map rainfall originates from the mid-1940s.

The associated evolution of radar Z-R based approaches to making rainfall estimates on scales of 2 km x 2 km has matured such that, when carefully constructed and applied, radar-based estimates can routinely used to validate satellite estimates of rainfall (Amitai et al. 2001). Indeed more recent operational products now include the development of relatively high quality combined rain gauge and radar products. Such combined radar-gauge approaches have been used extensively in the validation process of satellite-based precipitation products created from the Tropical Rainfall Measurement Mission (TRMM) (Wolff et al. 2005).

Direct validation products are often created by time-integrating a measurement of interest (e.g., rainfall measured by a gauge), often followed by some application of a spatial weighting scheme, including optimal combinations of platform estimates, to create a ground-validation dataset appropriate for statistical comparison to the footprint and time scale of the satellite product in question (cf., (Levizzani et al. 2007; Michaelides et al. 2009) for reviews). These GV products are often anchored by the use of precipitation gauge networks of varying spatial density, type and quality (tipping bucket, siphon, weighting etc.). With the advent of widespread and reliable operational national radar networks, typically composed of C-band to S-band wavelengths, many direct validation efforts now use the point observation of rainfall provided by a rain gauge measurement as a tuning metric for Z-R estimates, which are used subsequently used to extend area-mean precipitation estimates to a much larger sampling domain, thus providing more robust statistics for the satellite validation effort. The rapid growth in polarization-enabled radars for research and operational use now affords the opportunity to reduce fundamental and limiting errors in Z-R approaches for estimation of rainfall due to the intrinsic ability of, in particular, dual-polarization radar to account for hydrometeor phase (liquid,
melting, or frozen, Figure 4) and changes in drop size distribution (DSD) variability within individual storm systems and between meteorological regimes (Bringi and Chandrasekar 2001; Ryzhkov et al. 2005; Chandrasekar et al. 2008). Broad applications to physical validation of DSD properties are also possible (Bringi et al. 2003; Bringi et al. 2009; Chandrasekar et al. 2008; Thurai et al. 2011). Moreover, the self consistency of polarimetric variables provides an added means to ensure calibration of the radar measurements. Where appropriately applied (i.e., recognizing the realistic constraints of a radar measurement as a function of range and sampling), it is not unreasonable to imagine future combined gauge and polarimetric radar estimates to provide area mean rainfall and DSD products with total errors of order 15% or less at nearly instantaneous timescales, with rainfall accumulation errors of less than 10-20% (comparable to gauge errors) on scales of 1-hour or better over a 2 km x 2 km grid within 100 km of a given polarimetric radar (Petersen et al. 1999; Bringi and Chandrasekar 2001; Ryzhkov et al. 2005; Moreau et al. 2009). Assessment of the accuracy of polarimetric radar or combined estimates relative to an independent rain gauge reference will still require a fundamental understanding of rainfall variability, instrument estimation errors, and characterization of all error variance contributions as a function of scale and rainfall type. As demonstrated in recent radar studies (Moreau et al. 2009; Bringi et al. 2009), it is possible to determine these errors, and therefore it is likely that future polarimetric radar estimates will provide high-quality data sets, including estimation uncertainties, for validation of satellite-based estimates of rainfall.

3. Satellite estimates

Sensors onboard low-Earth orbiting satellites are the only instruments capable of retrieving global and relatively homogeneous estimates of precipitation. Early statistical or qualitative forms of precipitation measurement have steadily progressed towards more direct methods and more physically-based algorithms. The methods used to derive precipitation from the radiances measured by the satellites have evolved from visible (VIS) and infrared (IR) based methods to active and passive microwave (MW) techniques and merged IR and MW approaches.

3.1. Infrared-based methods

Current IR-based methods to derive precipitation from satellites have the advantage of providing high temporal sampling (i.e. 15 minutes refresh for the Meteosat Second Generation geostationary satellites operated by EUMETSAT), fine spatial resolution (down to 3 km), and for geostationary platforms, wide coverage. The main disadvantage of IR methods is that the measured radiance originates from the top of the clouds and that the link between surface rainfall and cloud top temperature is indirect. The rationale of the estimation method is that cold cloud tops indicate large vertical development of the cloud and therefore more rain. However, the relationship between the cold cloud tops and surface rainfall is indirect and often the location of the coldest clouds is not collocated with the heaviest surface rainfall. The problem is further complicated by multi-layer cloud systems that may block the view of the cloud layer that is actually precipitating.

High, cold, non-precipitating cirrus clouds are also a persistent problem and must be screened, a strategy only straightforward if visible and/or Near Infrared (NIR) information is used. These channel provide some microphysical information for satellite algorithms such as an estimate of the effective drop radius at cloud top, but visible channels cannot be used at night and close to the day/night terminator. The solution of combining several algorithms using different wavelengths for different parts of the day may help meteorological operations, but introduces a bias that make those products less suitable for climate-quality applications. Another known problem for IR methods is that the statistical relationship between cloud top temperature and ground rainfall is highly dependent on season and location. Early operational methods such as the Global Precipitation Index (GPI) (Arkin and Meisner 1987), the Convective/Stratiform (CST) technique (Adler and Negri 1988), the Autoestimator (Vicente et al 1998), and the Hydroestimator (Scofield and Kuligowski 2003) have to cope with this variability and require a specific calibration to perform well. Resorting to empirical data, however, limits and algorithm’s applicability in global climate studies.

Alternative approaches for deriving a relationship between precipitation and IR radiances aloft include the use of clusters or feature extractions. Clouds are systems organized in several space-time scales, from a few meters to thousands kilometers and from minutes to days. This fact allows precipitation to be associated to the resulting clusters. As an example, (Machado and Rossow 1993) investigated the distribution...
of cloud clusters for the regions covered by the Geostationary Operational Earth Satellite (GOES), the Geostationary Meteorological Satellite (GMS) and Meteosat. They found that the number of cloud clusters can be expressed as a function of the cloud radius and that the relationship can be approximated by a power law with an exponent of -2. This size distribution means a nearly equal area is covered by each effective radius class up to a break radius where size distributions slope becomes much steeper. This break can be interpreted as the end scale of the cloud cover organization over the Earth. This size distribution includes different kinds of synoptic - mesoscale cloud organization as well the cloud cluster evolution during the life cycle.

Another useful observation to inform algorithms is the nearly linear relationship between space and time scale of cloud clusters. In the tropics, the cloud cluster radius has been found to be as linearly related to the average lifetime. Thus for instance systems with a 6-h lifetime have an average radius of 150 km, whereas systems with a 27-h lifetime have a mean radius of 270 km (Machado et al. 1998). Within its lifetime, clouds evolve having different proportion of hydrometeors from the initiation to the decay phase. Empirical evidence exists: (Machado et al. 2008) used S-Band radar data collected during the RACCU/LBA experiment in the Amazon to describe the reflectivity profile of the long lived rain cells as a function of the lifecycle.

3.2. Microwave techniques

A more direct approach to estimate precipitation from satellites involves measurements at microwave and millimeter-wave frequencies, roughly between Ku (10 GHz) and W (95 GHz) bands, although frequencies above and below this are used in some instances. Within this spectral range, cloud and precipitation-sized particles emit, absorb and scatter radiation. Microwave satellite sensors can either measure the net thermal emission emanating from the top of the atmosphere (passive microwave, or PMW, techniques), or measure the power backscattered from a transmitted series of pulses (active microwave techniques).

3.2.1. Passive Microwave (PMW) Methods

PMW techniques exploit the fact that microwave radiation emitted from the surface interacts with atmospheric constituents such as water vapor and distributed clouds and precipitation particles. Depending on the frequency of the MW radiation, scattering or emission dominates the signal measured by the sensor. Thus, the measurement is the desired signal from the atmospheric constituents mixed with the radiometric contribution from the Earth’s surface. Depending upon the surface emissivity, the relative contribution of the hydrometeor-affected signal to the overall received signal can be small, and surface emission can dominate, especially over land.

Emission-based techniques are used over ocean with frequencies below about 20 GHz. At these wavelengths, the ocean is radiometrically cool and the presence of liquid phase precipitation produces an overall warming in the top-of-atmosphere radiation measured by the radiometer. Emission methods are not used over land because it has high surface emissivity, nor can it be employed for high rainfall rates as the relative contribution of hydrometeors to the emission signature saturates exponentially with increasing optical depth.

An indirect scattering-based approach can be used both over land and ocean. Frozen precipitation scatters the upwelling thermal microwave radiation away from the satellite field of view, resulting in a distinct radiometric cooling especially for convective type precipitation. Somewhat similar to IR techniques, the scattering signal at high frequencies (typically near 85 GHz) is dependent on the ice above the freezing layer. Unlike IR techniques however, the thermal emission is more closely related to rainfall processes and hence surface rainfall. Rainfall from cold clouds comes from melted solid phase water, making scattering techniques useful for high latitudes.

While the subject of microwave-based precipitation retrieval techniques is beyond the scope of this article, most modern algorithms are built around simulated databases, which themselves are based on radiative transfer calculations (ElSaessers and Kummerow 2008) to build a database of simulated observations and their associated geophysical parameters, and then Bayesian or other probabilistic-type methods are used to select the best fits to measured radiances.

A fundamental issue with MW sensors that affects estimation error is that in order to maintain a reasonable antenna size, sensors onboard low orbit satellites have a fairly coarse spatial resolution (anywhere from 5 to 60 km), and the limited fields of view for low Earth orbits reduces their temporal revisit over any given location. An associated problem to this engineering constraint is the beam-filling effect, which arises when only a fraction of the large Instantaneous Field of View (IFOV) of the sensor is filled with precipitation, which is common with convective precipitation situations. Unless accounted for, the combined effect of the spatial inhomogeneity of rainfall rates and the nonlinear dependence between MW brightness temperature and rain rate introduces a bias in the retrieval (Wilheit et al. 1991; Chiu et al. 1993).

3.2.2. Active Microwave Sensors: Spaceborne Radars

The first spaceborne precipitation radar was the Ku-band TRMM Precipitation Radar (PR) which has operated since 1997; this is extensively reviewed in the literature (Michaelides et al. 2009; Prigent 2010). The CloudSat satellite, launched in 2006, carries the first W-band cloud radar, capable of quantifying cloud properties and light rainfall rates along the orbit nadir track (i.e. a non-scanning radar). Its orbit in the A-train constellation makes CloudSat a complementary source of information to the fully-fledged, precipitation-oriented TRMM satellite and to the AMSR-E radiometer onboard the Aqua satellite.

The many approaches proposed in the last decade to build upon the success of the TRMM era have crystallized into the Global Precipitation Measurement (GPM) mission. It will be launched in February 2014, and is organized as an international project led by the National Aeronautics and Space Administration (NASA, USA) and the Japanese Space Agency (JAXA, Japan). The GPM mission consists of a core satellite (Figure
5) in non-sun-synchronous orbit (65° inclination on a 407 km-
high circular orbit) with a dual-frequency precipitation radar
(DPR) and a microwave radiometer (GPM Microwave Imager,
GMI). The combination of radar and radiometric methods has
already proved useful with TRMM TMI and PR instruments.
The DPR will improve the single-frequency radar capabilities
of the TRMM era, providing estimates of the shape and size of
hydrometeors and the water phase. In addition to the dual fre-
quency (Ku/Ka-band) radar capability, the DPR can also scan
in an interlaced mode with higher sensitivity at Ka-band for de-
tection of light rain and snow.

The remainder of the GPM constellation (Figure 6) is
comprised of a number of satellites with GMI-like radiome-
ters or microwave sounding instruments, including the DMSP
F19 & F20 (U.S. DoD; imager), GCOM-W1 (JAXA; im-
ager), JPSS-1 (NASA/NOAA; sounder), Megha-Tropiques
(CNES/ISRO; imager and sounder), MetOp B & C (EU-
METSAT; sounder), NOAA 19 (NOAA; sounder) and NPP
(NASA/NOAA; sounder) satellites. The GPM core satellite
sensors will be used as a reference to intercalibrate the partner
constellation radiometers, thus providing self-consistent radio-
metric observations across the constellation.

3.2.3. Merged techniques

The development of single-channel or single-sensor tech-
niques for estimating precipitation has a number of advantages,
notably simplicity in algorithm design. However, such tech-
niques are often limited in their frequency of observation, only
several times per day for low-Earth orbits. As mentioned above,
techniques using visible channels rely essentially on the pres-
ence/absence of cloud, while the infrared techniques rely pri-
marily upon the temperature of the cloud tops. Although tech-
niques based upon PMW sensors provide more direct ob-
servations of the hydrometeors that form precipitation, these ob-
servations are of limited availability. The dichotomy of Vis/IR
and PMW observations has been emphasized in a number of
algorithm intercomparisons that have been carried out which
showed that PMW techniques provide the best instantaneous
estimates of precipitation, while Vis/IR techniques provide the
best longer-term estimates (Ebert 2007).

The combination of Vis/IR and PMW observations was
therefore seen as an opportunity to combine the good sampling
(Vis/IR) with better retrievals (PMW) to provide not only be-
ter estimates overall, but estimates with improved temporal and
spatial resolution. Initial studies of incorporating PMW es-
timates into existing Vis/IR schemes included Bristol-NOAA
InterActive Scheme (BIAS) (Barrett et al. 1987) where PMW
estimates replaced Vis/IR estimates of precipitation and were
then interactively advected using cloud development and move-
ment. (Adler et al. 1993) used the PMW estimates to calibrate
IR cloud top temperatures allowing regional-scale corrections
to be made. Such IR-calibrated techniques were generated at
relatively coarse resolutions (about 2.5° × 2.5°) at monthly time
scales. Increases in computing power and data storage meant
that the acquisition, storage and processing of large data sets
became more feasible, and opened the possibility of developing
higher temporal and spatial resolution products.

Current techniques that combine information from the Vis/IR
and PMW fall broadly into two main categories. The first
are a development of the initial PMW calibration of the
IR observations. Such techniques include the NRL-Blended
technique (Turk and Metha 2007) and the Passive Microwave-
InfraRed (PMIR) technique (Kidd et al. 2003). These tech-
niques use a moving spatial and temporal window to gen-
erate a local relationship between the IR observations and
the precipitation estimates sourced from PMW observations.
The TRMM Multi-Satellite Precipitation Analysis (TMPA;
(Huffman et al. 2007) provides four products: a merged-
microwave product, a microwave-calibrated IR product, a
combined merged-microwave product, and lastly a raingauge-adjusted product. PMW-calibrated IR techniques rely on the ability of the IR to capture the precipitation characteristics and for the PMW to faithfully track the precipitation distribution. In order to improve the retrieval ability of the Vis/IR part of the merged scheme some techniques have utilized artificial neural networks (ANN). A discussion of the use of ANN in rainfall estimation can be found in (Tapiador et al. 2004). As an example, the Precipitation Estimation from Remote-Sensed Information using ANN (PERSIANN; (Sorooshian et al. 2000)) uses multi-source information from satellite and surface data sets to establish, and update the relationship between the precipitation and Vis/IR observations.

The second major category of merged techniques are the advection or Lagrangian time-interpolation schemes. Examples of such schemes include CMORPH (Joyce et al. 2004), GSMaP (Kubota et al. 2007) and REFAME (Behrangi et al. 2010). These techniques are based on the fact that PMW estimates provide the best measure of precipitation, relying upon the IR observations to provide information about the movement of the precipitation system. Thus these techniques are broken down into a number of stages including the generation of the precipitation estimate from the PMW data, and the generation on the motion vectors from the IR observations. Vector techniques currently used in operational products are correlation- or mesh-based techniques (Bellerby 2006) and the morphing of the estimates between the overpass times of the available PMW observations (Joyce et al. 2004). More physically-based approaches based linearizations of fluid dynamic equations (optical flow techniques) have been suggested for this purpose (Tapiador 2008). These merged scheme currently produce precipitation products at a nominal resolution of 3-hourly, 0.25°, although finer resolution data products are available up to the resolution/sampling of the component data sets.

4. Modeling

Direct observation and estimation of precipitation are important to provide a realistic picture of the several components of the water cycle. However, they cannot be used to predict ahead at the temporal and spatial scales required for most scientific studies and applications. The location and timing of model predicted precipitation, on the other hand, often bears little resemblance with observed patterns except when averaged over fairly coarse scales.

Limited area models (LAM’s) simulate many physical atmospheric processes including precipitation. Typically, a LAM works as follows: From a set of 3D initial conditions of temperature, air moisture, horizontal wind and geopotential in several pressure levels, the LAM solves a set of non-linear differential equations (called primitive equations) in order to predict the evolution of these atmosphere prognostic variables. The boundary values of LAM are periodically relaxed to values provided by a global forecasting model (GCM). These differential equations must be solved by means of numerical methods discretizing the 3D variable fields in a certain grid-size mesh and advancing in time-steps. But those physical processes smaller than the chosen grid size can not be solved numerically and must be parametrized, which means that are diagnosed from the prognostic variables by solving many semi-empirical equations. For instance, cumulus convection can only be resolved at the kilometer scale and would need to be parameterized in those LAM with not enough horizontal resolution (grid-size). But many other atmospheric microphysical processes (radiation, turbulence, cloud, precipitation or surface exchanges) must be irremediably parametrized.

Models predict precipitation after solving many physical processes. Typically, a model works as follows. From a set of 3D initial and boundary conditions of temperature, air moisture, horizontal wind and geopotential in several pressure levels the model solves linearized forms of the non-linear differential equations (called primitive equations) that express the conservation of mass, energy and momentum. Those variables are said to be prognosed (forecasted) at every time step of the model, i.e. stepped forward in time. Other variables such as the state variables are said to be diagnosed, meaning that their values are calculated at once from the instantaneous values, usually using different time steps than the model time step. Since many physical processes operate below the grid resolution, it is necessary to parameterize many of the diagnosed quantities. For instance, cumulus convection can only be resolved at the kilometer scale. Models using a grid larger than about five kilometers need to parameterize the process, meaning that a value has to be provide a sensible estimate of convective precipitation without solving the whole set of equations that describe convection. The same applies to turbulence, which operates at the Kolmogorov scale and also affects precipitation, or to surface processes such as runoff or soil moisture, which cannot be efficiently resolved at kilometer scale.

As a consequence of the many steps involved, precipitation is a good proxy of model performance, since the probability of obtaining a good match between modeled and observed precipitation by chance is small. Thus, the model’s dynamical core has to be capable of placing the precipitating system in the right place, thermodynamics should diagnose the correct amount of water in the right phase at each time step, advection has to provide the right amount of water in a precise place to create clouds that eventually precipitate, and the parameterizations of turbulence, cumulus, radiation, and surface processes have to be realistic enough that precipitation is possible at a particular grid point. The microphysics has to be sufficiently detailed in order to distinguish between the phase of the hydrometeors, to provide the appropriate conversion efficiencies, and to decide whether precipitable water is to finally precipitate or not. Otherwise, for instance, cold clouds may be too cold for snow to generate rain or warm clouds may generate too much rain too soon. Important processes such as entrainment, or evaporation below cloud base have also to be taken into account into the parameterizations in order to generate rainfall fields that can be compared with observations.

Unrealistic values of parameters such as the roughness length in the boundary layer module would translate into advanced/delayed arrival times for fronts; oversimplified turbulence schemes may result in dissipation of the kinetic energy
needed to allow vertical movements, thus affecting the condensation of water vapor into clouds; and incorrect soil moisture or 3D relative humidity can result in missing light rainfall before it arrives to the ground. Having accurate both long-wave and short-wave radiation models is also instrumental as they simulated the energy balance and thus the energy available to the atmospheric dynamics, rain microphysics and thermodynamics.

This complexity of modeled precipitation, and the patchy character of rain fields make this variable a suitable yardstick to gauge model performance. Compared with temperature, for instance, which is a variable included into the initial conditions, prognosed instead of diagnosed, and exhibiting smooth gradients except in fronts, precipitation is more challenging for a model to simulate correctly. It is worth remembering here that precipitation is not used to initialize the model, but rather is the result of the physics within the model. While an active area of research is the assimilation of precipitation estimates into models (see section below), the assimilation of precipitation is not carried out by inserting it into the initial conditions, but through adjusting the initial condition fields towards a physical state congruent with the observed precipitation.

4.1. General Circulation Models (GCMs)

Outputs from GCMs running from a single set of initial conditions and driven by periodic boundary conditions can only be compared with observations in terms of climatologies, and not on a day-by-day basis. It is the climate produced by such GCMs, and not the individual weather situations, what it makes sense to compare with other data. In the case of GCMs periodically updated with model reanalyses, the comparison with observational databases is possible, but then the results are not fully independent of the observations as these may have been previously assimilated into the forcing reanalysis (below). This effect explains the excellent scores sometimes reported on those comparisons. On the other hand, the consequences of either once-initialized or nudged-to-reanalyses GCM outputs in impact models deserve further attention. While climatologies, spatial statistics, cycles or other periodic components of the series is justified in both cases, coupled models may generate unpredictable modes of resonance in freely running models, thus further increasing the current large uncertainty of for instance crop models (Rotter et al. 2011). Uncoupled models do not present such potential problems, as they use the final climatology from the GCM to derive the impacts.

4.2. Reanalyses

Model reanalyses provide spatial and temporal homogenous data that amalgamates all the available high-quality observations through a physically consistent process. The basic idea is to run a model for a very limited time and iterate until the state is consistent with the observations. Reanalyses offer a method to mitigate several shortcomings of observations, chiefly the sparse distribution, as they embed observations using data assimilation methods into a physical model. The best guess (background forecast) created by the model is a representation of the atmospheric state that is the most consistent with observations, which may have a different weight in the final product. Thus, well-observed processes such as mean sea level pressure depends strongly on observations, whereas precipitation is more a product of the model. Also, depending on data availability in time, reanalyses may be using a varying combination of datasets (weather stations, aircraft, satellites, etc.) also with a different density of observations for each instrument.

The data quality and the moderate spatial resolution of reanalyses (T159 for ERA40, roughly equivalent to 125 km) make them useful to conduct climate change studies at scales of hundreds of kilometers, and to characterize large scale climatologies of many meteorological variables, since reanalyses estimate derived fields such as evapotranspiration, soil moisture, or shortwave radiation that lack comprehensive observations. Besides, reanalyses are fully tridimensional, thus permitting investigating for instance the genesis of weather systems or the role of columnar water vapor in the radiative forcing.

It is worth remembering that most outputs from reanalyses, or from RCM nested on reanalyses can only be validated using observations if the observations themselves have not been previously assimilated into the reanalysis. Self-reference may happen in spite of precipitation not being nominally assimilated. Simply the fact that clear sky radiances represent the vast majority of the assimilated data implies that information on what constitutes a rainy grid point is being included into the reanalysis. If microwave radiances are assimilated, then the comparison with observational databases is even less independent. While these comparisons are always useful to improve model physics, they do not constitute a verification of model performance.

4.3. Regional Climate Models (RCMs)

For climate studies at scales below hundreds of kilometers where local conditions such as orography and land cover greatly affect meteorological processes, the comparisons of global models with observations are even worse than at coarse spatial resolution. The output from a global model represents the average values for the grid point of the model. If the variable varies smoothly with distance, as is the case of temperature or water vapor content, the average is representative of the values across the grid. However, if the variable has a large spatial variance then quite dissimilar values may coexist within a grid point, making the average an unrepresentative statistic. This problem associated with coarse grids is particularly acute for patchy variables such as precipitation (Pedersen et al. 2010), which are likely to be unevenly distributed in a square often larger than 100 × 100 km (Larsen et al. 2010). This issue is the modeling analog to the beamfilling problem in satellite and radar data.

Regional Climate Models are physically based downscaling tools designed to tackle this problem. The RCM physics and the numerical methods are the same as those in a GCM. The differences are the grid size (from 10 to 75 km) and hence smaller time steps, and a more limited area of operation (e.g. Figure 7). The geographical domain of the RCM receives initial and boundary conditions from a parent GCM in a procedure known as one-way nesting (Giorgi et al. 1990). However, the
GCMs, RCMs and reanalyses. The predictability of the weather, whereas the mean value of different clusters around a central value. The spread is indicative of the spread of the forecasts is maximized and the whole ensemble is deemed to be the least-biased prediction. Using techniques such as the bred vectors, which mainly a spherical research, namely sensitivity to initial conditions (SIC), the aim is to cope with two unavoidable structural features of atmospheric research, namely sensitivity to initial conditions (SIC), which mainly affects NWP models, and our imperfect modeling of the real world, a problem that is shared by NWP models, and our imperfect model physics used in numerical models so that ensembles of model simulations are generated, each produced by different model physics, and then the results are combined. It is assumed that the shortcomings of the parameterizations are compensated in that way, and that the resulting average outperforms individual models.

The ensemble strategy multiplies computing power requirements, as ensembles of tens or hundreds of members are common. An experiment useful for climate research may involve running a model over a continent such as Europe at 25 kilometers grid space to calculate several decades worth of data. Some weeks of wall clock time are required to complete a 30 year simulation in a 2011 High Performance Computer (HPC). To generate a full PP ensemble, this procedure has to be repeated as many times as ensemble members are desired.

In order to meet growing computing demands, grid computing infrastructure has recently appeared as a powerful tool for precipitation science. The grid strategy consists of distributing the calculations over a large number of regular, not necessarily homogeneous machines connected through a network. HPC systems can act as nodes, thus in a sense HPC computing is a subset of Grid computing. The grid approach represents an advance loading the computational burden on a highly coupled machine, as a HPC does, and multiplies the computing power and thus enable running more complex models. Even so, it is worth noting that a full multiensemble, i.e., running PP ensembles with each member being a at its turn a PIC ensemble is not currently feasible due to the computer power required.

5. Datasets of Global Precipitation

The preceding sections describe satellites and models to provide precipitation data that are accumulated at several temporal and spatial scales to create databases. Such reference datasets are critical to assess the actual uncertainties in climate projections, which are primary tools for global warming studies, by comparing projections with observations and estimates. The are also valuable in their own right to analyze the many aspects of the hydrological cycle, and provide information for economic activities such as agriculture and obviously water resources management.

5.1. Observational Databases

The observational databases are based on historical precipitation records from land stations. It is important to note that the original data in the different databases is sometimes the same, the databases differing in how the station records are filtered, interpolated, and homogenized so the agreement is not surprising. Thus, (Chen et al. 2002) showed that CRU and GPCP (below) provide reliable information in accumulated monthly precipitation at a global scale, with a close agreement in the phase and the magnitude of the mean annual cycles. However, discrepancies may appear even with the same data depending on
the analysis and application. For instance, (Qian et al. 2006) reported large differences in the total annual amounts over different rivers basins around the world. The differences may be due to different gauge coverage especially over tropical Africa and tropical South America where the coverage is sparser.

Related to this fact, it is worth noting also that topography induces a large error in the evaluation of precipitation regimes. In areas with a dense network the problem is somewhat masked because the information is dense enough to cope with the spatial variability of the precipitation. Thus for instance CRU over Europe, United States and Canada comprises enough stations to generate realistic fields, but in some other regions of the world (e.g. South America, Africa or Asia) the error over high elevation sites is large. Some databases, such as GPCP version 2 (Adler et al. 2003) has tackled this problem and devised an specific algorithm to correct this effect, whereas others rely on the ability of the interpolation techniques to deal with the issue.

It is worth noting that apart from these global databases there are also regional databases, such as for instance the European Climate Assessment (ECA) for Europe (Klein et al. 2002), or the database described by (Liebmann and Allured 2005) for South America.

5.1.1. CRU

The Climate Research Unit (CRU) at the University of East Anglia has been created gridded climate datasets that includes precipitation (New et al. 1999; New et al. 2000). The original information from stations is interpolated over the continents except over Antarctica, considering a 0.5 × 0.5 degree global grid covering the period 1901 to 2001 (New et al 2000). Up to 14,500 stations are used for databases, but the number varies (from 4957 in 1901 to 14,579 in 1981). Although the records are different in each case, for this interpolation records with at least 30 years of data are used. The data are interpolated by first calculating the anomaly to the average of the years 1961-1990. The anomaly is calculated as the percentage value of the monthly accumulated rainfall from the average of 1961-1990 and then the anomaly is interpolated using thin-plate splines as a function of latitude and longitude. All station available over the globe are first weighted as a function of the distance of the grid point with an empirical correlation decay distance coefficient between the available stations. The coefficient used in the present dataset is 450 km for precipitation, this was created to prevent extrapolations to unrealistic values and the precipitation anomaly at the grid point is forced to be zero over regions beyond the 450 km range.

It is worth noting when using CRU as a reference database that gridded values are obtained by applying a smooth fitting in 3D space to available surface observations at stations (New et al. 2000). This interpolation technique changes the spatial autocorrelation of data and introduces a known bias to the results. Additional sources of uncertainty in this dataset include those related to rain gauges problems, such as undercatch due to wind effects, undersampling in mountain areas or areas with a few instruments, and postprocessing artifacts from observational data. Known nominal errors of the database are described in (New et al. 1999). Error sources arise from differences in gauge type, in the evaluation of the ratio of solid to liquid precipitation, and the effects of wind conditions and turbulence.

As in the rest of the precipitation databases, a clear understanding of the input data is crucial for a proper use of the data in for instance climate change studies. As an example, CRU exhibits large differences between observed and interpolated data over the Amazon area in the beginning of the twentieth century. The reason is that from 1901 to 1921 the data for the whole area comes from a single station. Ignoring this and several other particularities may result in extracting the wrong conclusions on model performance and even on the sign of the climate change signal.

5.1.2. GPCP

The German Weather Service Global Precipitation Climatology Centre (GPCP) has made available a 0.5° × 0.5° global land-only climatology from 1951 to 2000 period, at monthly temporal resolution. Original data come from the historical databases of the U.N. Food and Agriculture Organization (FAO) (13 500 stations), the Climatic Research Unit (9500 stations), and the Global Historical Climatology Network (GHCN) (22 600 stations). Additional contribution include the GPCC-Synop, the CPC-Synop, and Climat-network (Beck et al. 2004). Only station time series with a minimum of 90% data availability during 1951-2000 are used for interpolation using ordinary kriging. This method is deemed to ensure that the estimates are optimized for homogeneity in time and for application in climate variability studies.

The dataset contains nominal error estimates computed as jackknife-error estimates. This error is the difference of the interpolated value of the location of the nearest station, taking only neighboring stations into account, and the observation at that station. In other words, it is what would have been estimated if there were no observation at the point.

5.1.3. GPCP

The GPCP produces several products that are intended to approach Climate Data Record standards. The monthly Satellite-Gauge (SG) precipitation analysis (Huffman et al. 1997; Adler et al. 2003; Huffman et al. 2010) provides globally complete estimate at 2.5° × 2.5° resolution from 1979 forward. The precipitation estimates from the 6 am/pm low-orbit satellite SSM/I and SSMIS microwave satellites provide calibration (varying by month and location) for geosynchronous-orbit satellite infrared (IR) data in the latitude band 40° N-S. Outside that band the SSM/I and SSMIS microwave estimates are combined with estimates based on TOVS or AIRS to provide globally complete satellite-only precipitation estimates. The multi-satellite field is combined with a rain-gauge analyses (over land), first adjusting the satellite estimates to the gauge bias and then combining the (adjusted) satellite and gauge fields with inverse error-variance weighting. The gauge analysis is the GPCP Full analysis for the period available, and the Monitoring product thereafter. The GPCP pentad precipitation analysis (Xie et al. 2003)
uses the SG to adjust the pentad CPC Merged Analysis of Precipitation (CMAP) pentad analysis such that the overall magnitude of the pentad product matches the monthly product and the sub-monthly variability in the pentad CMAP product is retained. It is available at 2.5° × 2.5° resolution from 1979 forward. The CPC One-Degree Daily (1DD) precipitation analysis (Huffman et al. 2001; Huffman et al. 2010) is available at 1° × 1° resolution from October 1996 forward. It uses a Threshold-Matched Precipitation Index (TMPI) in the latitude band 40° N-S to produce instantaneous precipitation from the geo-IR brightness temperatures (T_b). The TMPI takes GPROF estimates of precipitation fractional coverage with SSM/I and SSMIS data to choose a (regionally varying) T_b threshold that makes geo-IR fractional coverage equal to that of the GPROF-SSM/I and -SSMIS estimates. Then a single “raining” geo-IR pixel rainrate is computed (again, regionally varying) that makes the full month of TMPI sum to the corresponding SG monthly value. Outside of the 40° N-S band, TOVS and AIRS precipitation estimates are adjusted in terms of frequency of precipitation using GPROF frequencies at 40° latitude and in terms of the amount by the monthly analysis. The SG dataset also includes a combined satellite-gauge precipitation error estimate. (Huffman et al. 1997) reported that the bias error frequently can be neglected compared to random error (both sampling-based and algorithmic).

5.1.4. CPC PREC/L DATA

The US Climate Prediction Center (CPC) produces the Monthly Analysis of Global Land Precipitation from 1948 to the Present, at a 0.5° × 0.5° spatial resolution [PREC/L; Chen et al. 2002], CPC data hereafter. Original data in this case comes from rain gauges from about 17,000 stations. The interpolation in this database is performed using the Gandin optimal interpolation (OI) technique. The correlation between the analysis values and withdrawn independent station observations is about 0.8 and the bias is almost 0 for interpolation of monthly precipitation using the OI algorithm (Chen et al. 2002).

5.1.5. CMAP

The CMAP provides monthly land and ocean estimates of global precipitation from rain gauges and satellite precipitation estimates. The spatial resolution of the dataset is 2.5° × 2.5° for the 1979–onwards period. The merging technique is described in (Xie and Arkin 1996). As stated there, the methodology used reduces random errors by linearly combining satellite estimates using the maximum likelihood method, giving an inversely proportional weight to the linear combination coefficients in relation to the square of the random error of the individual sources. Over global land areas the random error is defined for each time period and grid location by comparing the data source with the rain gauge analysis over the surrounding area. Over oceans, the random error is defined by comparing the data sources with the rain gauge observations over the Pacific atolls. Bias is reduced when the data sources are blended in the second step using a variational blending technique.

5.1.6. TRMM products

The precipitation radar (PR) onboard TRMM was the first orbital radar to estimate precipitation, and has been providing good quality estimates for the tropical regions since 1998. Merging of the TMI radiometer and the PR instrument with other MW sources has been used to extend the spatial coverage beyond the original area. Thus, the Multi-satellite Precipitation Analysis (TMPA) algorithm provides 3-hourly 0.25° × 0.25° latitude/longitude gridded precipitation data for the latitude band 50° N-50° S over the period 1998-present (Huffman et al. 2007). It is designed to use as many satellite-based precipitation estimates as possible with calibration to a single sensor. The TMPA is computed twice, first in near-realtime (TRMM product 3B42RT) and then as a post-realtime research-grade product (currently TRMM Version 7 product 3B42) to accommodate different user needs. The 3B42 product uses the (Haddad et al. 1997a; Haddad et al. 1997b) combined TRMM Microwave Imager - Precipitation Radar estimates (TRMM product 2B31) for calibration, while the real-time product uses a real-time version of the Goddard Profiling (GPROF) algorithm (Kummerow 1996) applied to TMI data (TRMM product 2A12RT). The intercalibration for the various passive microwave (PMW) estimates is carried out with histogram matching for large global regions that are specific to each data source. Thereafter, the PMW data are merged in 3-hourly windows centered on the nominal observation time. The second step in the TMPA is to calibrate infrared (IR) brightness temperatures with the combined PMW estimates. This is done with histogram matching for overlapping 3° × 3° squares for roughly 30 days of data to ensure stability. The scheme assumes that colder clouds precipitate more, which is not necessarily true for instantaneous estimates, but yields correct averages for larger scales. There is a fallback scheme that continues to provide (reduced quality) calibration coefficients in cases where the microwave estimates fail, mostly over snowy/frozen land and sea ice. Thereafter, the PMW and IR estimates are combined by using the IR to fill gaps in the PMW for each 3-hourly image.

Finally, the multi-satellite field is adjusted to reduce bias. In the production 3B42, this is done using the monthly GPCC Monitoring gauge analyses. For each grid box, all of the combined satellite estimates for the month are summed to create a...
monthly multi-satellite estimate. This monthly multi-satellite estimate and the gauge analysis are combined with an inverse random error variance weighting to create TRMM product 3B43, then all the individual 3-hourly combined PWM-IR fields are scaled to sum to the gridbox values of 3B43 and output as TRMM product 3B42. This gives the products the large-area bias of the wind-corrected gauge analysis, with minimal dependence on the gauge analysis where gauges are not present. In the real-time 3B42RT product, the adjustment is a monthly climatological two-step adjustment, first to the TRMM Combined Instrument (2B31), and then to 3B43 (Huffman et al. 2010). Those products are the basic input of seasonal climatologies useful for climate or natural risk assessment studies (Figure 9).

Figure 9: South America seasonal precipitation climatology (1998-2000) as derived from 3-hourly TRMM data.

5.2. Model datasets

The second group of precipitation datasets consists in those build upon computer models. These include reanalyses, which explicitly include observations; General Circulation (or Global Climate, depending on context) Models (GCMs) used for climate research and that may or may not include observations; and Regional Climate Models, which in terms of embedded observational data inherit the properties of the GCMs or reanalysis used for nesting.

5.3. Global Climate Models (GCMs)

The new standard reference database for GCM output is the CMIP5 archive, a follow-on to several Climate Model Intercomparison Programs (CMIP). In the current CMIP5, the Working Group on Coupled Modeling (WGCM) within the World Climate Research Program (WCRP) is promoting a set of climate model experiments, aiming to be the basis of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Presently, both present-climate and future-climate simulations are being carried out by a number of international groups. An advantage of the coordinated approach is standardized outputs that will make the results more readily comparable and thus less prone to potential errors in the codes.

Several of the intended decadal hindcasts experiments are directly comparable with observational data. These will also be used to verify the models’ ability to simulate the present climate, a prerequisite to trust any future-climate simulation. Simulations for near-future climates (up to 2035) under several assumptions in the form of socioeconomic scenarios are important for a continuous monitoring of ongoing global warming, while long-term (2100 onwards) within CMIP5 will serve to ascertain the most likely effects on increasing greenhouse emissions when the effects are clearly seen in the simulations, and well beyond uncertainty limits.

5.3.1. Reanalyses

Datasets of reanalyses such as NCEP’s NCEP-2 (Kalnay et al. 1996), CFSR (NCEP’s), ERA40 (ECMWF) (Uppala et al. 2005), ERA-interim (ECMWF’, extensively described in (Dee et al. 2011), JRA-25 (Japan Meteorological Agency) (Onogi et al. 2007) or MERRA (NASA’s Global Modeling and Assimilation Office) (Bosilovich et al. 2009) provide global data useful for RCM downscaling and for comparison with observational databases. Table A.5 in the appendix gathers the relevant characteristics and links of these datasets. A comparison of the differential characteristics of those reanalysis are summarized below.

NCEP-2 (from 1979 to present day) has a grid resolution of approximately 210 km and does not use some satellite sources such as the SSMI data. The CFSR (1979-present), a NCEP-2 reanalysis follow-up, has a horizontal resolution of 38 km, whereas ERA-40 (1957-2002) has a resolution of about 120 km. ERA-40 does not assimilate precipitation, while ERA-interim (1989-present) does but over ocean only, as microwave sensor retrievals over land are highly affected by soil emissivity and thus deemed as unreliable. The JRA-25 (125 km, 1979-present) correlates better with precipitation observations than NCEP-2 and ERA-40 (Bosilovich et al. 2009), probably due to the assimilation of retrievals from Terra and Aqua satellites and the QuikSCAT instrument. CFSR, on the other hand, assimilates radiances and uses a fully coupled modeling strategy (ocean - including sea ice- and land processes).

In terms of vertical resolution, MERRA (50 km, 1979-present) has 72 vertical levels, which compares to 28 in NCEP-2, 64 in CFSR, 60 in ERA-40 and ERA-Interim, and 40 in JRA-25. ERA-Interim uses 4D variational assimilation, compared to 3D in the others, and seems to have reduced the ERA-40 problem of excess precipitation in the tropics after 1991. Other reanalysis initiatives, such as the one derived from the Japanese Earth Simulator does not currently deliver precipitation fields. The AGCM for the Earth Simulator 2 (AFES 2, (Enomoto et al. 2008)) is an experiment run at a resolution of about 80 km in the horizontal, with 48 layers in the vertical,
and using an ensemble of 40 members over about two years worth of data. AFES assimilated some observational data (although not satellite radiances) through a local ensemble transform Kalman filter, and presents the novelty over single GCM runs of providing the spread of the ensemble in addition to the mean values. Such improvements occur at the expense of reducing the temporal span of the simulations.

5.4. Databases of Regional Climate Models

Publicly available databases for research include the results of the EU project PRUDENCE (Christensen and Christensen 2007), where RCMs were nested in GCMs. PRUDENCE was an effort to establish uncertainty limits in climate modeling, providing high-resolution (50 km) estimates from present (1961-1990) and future (2071-2100) climate. The models in the project were quite heterogeneous and included hydrostatic and non-hydrostatic models, with very different parameterizations. Even so, the simulations compare well with observations, especially in terms of aggregated statistics such as model average.

PRUDENCE results were used as a part of the 2007 IPCC scientific report. As in the case of GCMs, the widespread dissemination of IPCC assessments have galvanized the efforts of the climate community, and is driving the efforts of the community to fulfill the needs arising from the reports. The ENSEMBLES project went a step forward by increasing the spatial resolution to 25 km and by including nesting on the ERA-40 reanalysis (van der Linden 2009). Comparison of PRUDENCE and ENSEMBLES climates shows that both approaches are consistent but that large uncertainties still remain, specially in the case of precipitation modeling.

The North American Regional Climate Change Assessment Program (NARCCAP, Mearns 2007, Mearns et al. 2009), can be seen as the counterpart of European RCM efforts, also nesting RCMs in a reanalysis, the 1979-2004 NCEP/DoE-Reanalysis (figure 10). In order to complete the global picture and to fill the geographical gaps, the CORDEX initiative seeks now to combine these and other RCM efforts such as the CLARIS project (Menedez et al 2010) and generate a global land RCM estimate of present and future climates. CORDEX also has an specific focus on providing input for the AR5. While the grid spacing of the intended CORDEX runs is quite coarse (about 50 km; 10 km for Europe) compared with ERA-interim (about 79 km), nesting on GCM simulations of future climate CMIP5 simulation will allow the generation of an estimate of global precipitation patterns at regional scale for at least one climate change scenario.

6. Applications of global precipitation measurements

The applications of global precipitation measurement span from direct application of the databases to their use as input of tailored models such as those to estimate local water use and allocation in a global warming scenario. As examples, three very different applications are presented: hydropower assessment, data assimilation and validation of regional climate models.

Figure 10: Sample output of a NARCCAP present-climate experiment. Daily precipitation from several RCMs forced with reanalysis (NCEP/DOE) for Jan 11, 2001. Note that the simulation domains and grids differ. TRMM 3B42RT estimates (up to 50N latitude) included as a reference.
6.1. Hydropower

Hydropower is viewed as the basis of the energy mix sought by policy makers to respond to both growing energy needs and to increasing environmental concerns. Regarding the former, it has been argued that there are no technological limitations for wind, water and solar technologies (referred to as WWS) and that they have the potential to meet the world’s energy demands by 2030. Within this WWS smart mix, hydropower would play a central role: contrary to other more intermittent renewable technologies such as wind and solar power, hydropower can easily be adjusted to satisfy power demand by simply switching the flow on or off through the penstocks. Hydroelectricity currently represents 86% of total renewable energy production worldwide (equivalent to 16% of total energy production). China is the largest producer (14.3%), followed by Brazil (12.3%), Canada (12.2%), the US (8.3%), and Russia (5.8%).

The usefulness of the estimates of precipitation from both observation systems and models to hydropower have been recently explored by (Tapiador et al. 2011). Some countries, most notably in Central America, virtually rely on hydropower for all their energy needs, making precipitation climatologies much more important to understand and quantify. In terms of daily operations, satellite data can assist to adapt the production to the demand, optimizing the operations. In the long term, simulations of future precipitation are useful to planning new installations, since climate change may adversely affect the financial viability of both existing and potential hydropower. Here, a knowledge of not only rainfall amounts but also cycles is fundamental: changes in river regimes in the future climate may result in oversized or undersized plants. Regional studies of the effects of climate change on the hydropower potential have been carried out for Europe (Lehner et al. 2005) illustrating the need for informed knowledge about changes in future precipitation.

The hydropower potential is still well above the current installed capacity in all regions, except Europe which has already achieved high capacity. A threefold increase is believed to be possible in Asia and Africa, and there is room to more than double the capacity in North America, Africa and Latin America. Outputs such as those shown in figure 8 can be used as inputs for hydrological models. Drawing on the outcomes of these models, policy consequences in terms of planning and sizing resources are derived, always within the uncertainty limits of the projections, most of which are derived from comparing with observations. Therefore, constructing reliable present-climate climatologies is crucial to informed decisions in this area.

6.2. Data assimilation into NWP models

Numerical Weather Prediction (NWP) is an initial-boundary value problem. With a given estimate of the state of the atmosphere (initial conditions) and lateral boundary conditions, the model simulates the atmospheric evolution. Obtaining these initial conditions is a very important and complex issue and has become a science itself (Daley 1996). In NWP, a previous short-range forecast is the starting point to obtain a first guess of the initial state of the atmosphere. However, the use of observations considerably improves our knowledge of the initial situation, and here precipitation plays a central role.

Data assimilation is the process through which real observations are added to the initial conditions of the model, thus improving the background of the first guess. The observations come from different instruments at different locations and times and must be decoded and assembled for use into the assimilation system. Not all types of observations are assimilated in the same way. Thus for example, cloudy conditions may affect suitable satellite radiance data but clouds may allow for satellite cloud-track wind data at cloud top.

Analysis increments are obtained as the weighted difference between the observations and the model first guess. Objective analysis procedures are used to obtain the analysis increments, as a result of changes applied to the first guess fields taking into account the effect of all observations. Here, precipitation information helps to nudge the model towards a more realistic state. The weight factor can be determined from estimated statistical error covariances of both, forecast and observations (Kalnay 2003) using several possible schemes.

The background error covariance matrix is the way to spread the information to those grid points and model variables that are not used explicitly to formulate the observation operator. (Berghorsson 1955; Cressman 1959; Barnes 1964) have used different correction methods (SCM) to obtain weights empirically as functions of the distance between observations and grid points. The Optimal Interpolation (OI) scheme was applied by (Gandin 1963) and became the standard operational analysis scheme during the 1980s and 1990s.

Precipitation can also be assimilated into 3D or 4D schemes. The three-dimensional variational data assimilation procedure (3DVAR) (Parrish et al. 1992; Courtier et al. 1998; Gauthier et al. 1998; Cohn et al. 1998) is equivalent to the OI scheme, although the method for solving it is quite different. 3DVAR allows nonlinearity in the relationship between observed quantities and analysis variables. Several weather forecast services have implemented this procedure for their operational forecasts, among others the National Center for Environmental Prediction (NCEP) (Parrish et al. 1992) and the ECMWF (Courtier et al. 1998).

The main limitation of standard 3DVAR is that it spreads the influence of observations following an isotropic scheme for each weather situation, regardless of the presence of fronts, stable layers or any other features. The scheme was reformulated to define the analysis increments on the vertical coordinate of the model and to provide a new view of the background error covariances (Gauthier et al. 1999). The concept of "anisotropic background error covariances" was then introduced as a different set of assumptions that control the influence pattern that an observation increment can have on the analysis.

(Talagrand et al. 1987) demonstrated that the use of the adjoint of a numerical model enables us to obtain the initial conditions leading to a forecast that would best fit data available over a finite time interval. A four-dimensional variational data assimilation formulation (4DVAR, (Le Dimet and Talagrand 1986; Lewis and Derber 1985;
The di begins with an ensemble of analyses and an ensemble of forecast and a data assimilation system. The process is statistical and requires a high computational power. The Ensemble Kalman Filter (EKF) combines an ensemble forecast and a data assimilation system. The process begins with ensemble analyses and an ensemble of short-range forecasts to the time of the next observations. Different ensemble members are used to estimate the forecast covariances required to assimilate the new observations. The new observations obtained by assimilating a set of perturbed observations provide a new scenario (Houtekamer et al. 1996; Houtekamer and Mitchell 1998; Houtekamer and Mitchell 2001; Hamill and Snyder 2000; Hamill et al. 2001; Anderson 2001).

6.2.1. RCM validation

In climate applications, there is also a need for better precipitation estimates. Modelers use present-day climatologies to gauge the model ability in order to capture important processes such as convection and cloud microphysics. There is consensus in that a model has first to prove that it can correctly simulate present climate before attempting to simulate the future. However, numerical models are tuned to current-present observations so verification with present climate is not as independent as it should ideally be. If it is acknowledged then that a good match with observations in present climate does not guarantee model performance in future climates; successful control runs are a prerequisite to trust any model.

Satellite precipitation data can assist to this validation/verification task. Figure 11 shows the results of one such validations. The present-climate simulations of eleven regional climate models involved in the EU PRUDENCE and ENSEMBLES projects are here compared with rain gauge observations (CRU and GPCC). The match of the ensemble mean is good enough to place confidence in the performances in future climates under the assumption that the same processes and feedbacks that operate in the present climate will operate in the same way in the future.

For climatological uses, the availability of long series (typically 30 years) of data is a requirement, but shorter periods have been found also useful to validate the models. Thus, thanks to satellite data it has been shown that RCMs provide consistent estimates of precipitation after accounting for known uncertainties in the reference data (Tapiador 2010). Gauge and satellite-merged data (CRU, GPCC, CMAP, CPC, and GCPP databases) have compared with RCMs simulations over Europe both in terms spatially reproducing the climatology and the pdfs of precipitation (Tapiador 2009), and in terms of capturing the phase and power of precipitation cycles (Tapiador et al. 2008), obtaining consistent results.

This topic is fertile research ground, as a good match within uncertainties between models and observations builds confidence in models been capable of simulating the climates of the future. Intercomparison / validation of satellite products with RCMs is directly relevant for other applications such as hydropower since RCMs outputs are used to gauge the future availability of water for this renewable energy (Tapiador et al. 2011).

7. Outlook

Precipitation is a meteorological variable that is difficult to measure precisely (Levizzani et al. 2007; Anagnostou et al. 1999). Disdrometers, scanners, radars and radiometers present their own sources of error, limitations and uncertainties. This results in a challenge for those aiming to provide a timely and precise estimate of how much precipitation reaches the ground, and in which state (solid, liquid, or mixed).

Current and previous efforts used to validate satellite-based estimates of rain accumulation or even instantaneous rainfall
rate often take the form of a direct comparison between the satellite estimate and some a priori assumed ground “truth” (e.g., rain gauges, radar etc.). However, it is generally recognized that ground validation (GV) efforts must also target the physical assumptions applied in numerous individual physically-based spaceborne precipitation retrieval algorithms. Both types of validation benefit from the use individual or combined use of precipitation (rain or snow) gauges, disdrometers, and meteorological radar (Petersen et al. 2010).

Large international projects such as the Global Precipitation Measurement (GPM) mission seek advances in this field. The GPM mission will be highly relevant for hydrological applications as it will be provide, for the first time, adequate sampling of precipitation in middle to high latitudes using an orbital radar. The mission will provide global retrievals of precipitation, with a goal of 3-hour revisit over land owing to the mixed non-sun-synchronous/sun-synchronous orbits of the constellation members including the MW sounders. This configuration will expand the TRMM capability for physically direct sensing of precipitation to higher latitudes. Currently at issue is the optimum combination of measurements, estimates and model outputs to reinforce the individual strengths and address the shortcomings to providing a better understanding of precipitation. While the performance of most NWP models lags behind satellite algorithms in estimating current precipitation, only models can give the estimates of future precipitation.

Regarding climate, observational databases are routinely used to fine-tuning RCMs parameterizations, whereas GCMs and RCMs can provide insight into changes in the immediate future to applications currently using those databases, such as agriculture or water resource management. Within the precipitation science umbrella, cross-fertilization between different branches can only help each other.

8. Acknowledgements

The work of FTJ (Tapiador) has been funded through projects CGL2010-20787-C02-01, CGL2010-20787-C02-02, CENIT PROMETEO (MICCIIN), and PPII10-0162-554 (JCCM). The contributions from FJT (Turk) were performed at the JPL, Caltech, under a contract with NASA. EGO acknowledges research project LE176A11-2 (JCyL). GJH and WP acknowledge the NASA PMM (Dr. Ramesh Kakar) and GPM Programs for funding support. PRUDENCE project was funded by the EU FP5 (Contract no. EVK2-CT-2001-00132). The ENSEMBLES data used in this work was funded by the EU FP6 (Contract no. 505539). NARCAPP is funded by the DoE, EPA, NOAA and NSF. The CMAP, CPC, CRU, GPCC, GPCP and TRMM data providers are also gratefully acknowledged.

Appendix A. Publicly Available Observational Precipitation Datasets

A number of the precipitation datasets discussed in this paper are publicly available across the Web, although formats and completeness of record vary widely. As a community service, the International Precipitation Working Group (IPWG) of the Coordinating Group for Meteorological Satellites maintains lists of such data sets at http://www.isac.cnr.it/ipwg/data/datasets.html. This Appendix contains the tables as they appeared as of publication time. See this address for updates. The tables group the datasets according to the dominant input data types: Tables A.1-A.4 respectively list combinations of satellites and precipitation gauge data, combinations of satellite data, single sensor types, and precipitation gauge analyses. Table A.5 lists reanalysis databases. Users should note that no single dataset satisfies all requirements. Also, the Program to Evaluate High Resolution Precipitation Products (PEHRPP) project maintains a web at http://cics.umd.edu/msapiano/PEHRPP/index.html where several datasets are compared.
Combination Data Sets with Gauge Data

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Input data</th>
<th>Space/time scales</th>
<th>Areal coverage/start date</th>
<th>Update frequency</th>
<th>Latency</th>
<th>Producer (Developer) URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMS/OPI</td>
<td>CMAP-OPI, gauge</td>
<td>2.5˚/daily</td>
<td>Global/1979</td>
<td>Monthly</td>
<td>6 hours</td>
<td>NOAA/NWS CPC (Xie) [1]</td>
</tr>
<tr>
<td>CMAP</td>
<td>OPI, SSM/I, SSMIS, GPI, MSU, gauge, model</td>
<td>2.5˚/ monthly</td>
<td>Global/1979 – Oct. 2010</td>
<td>Seasonal</td>
<td>3 months</td>
<td>NOAA/NWS CPC (Xie) [2]</td>
</tr>
<tr>
<td></td>
<td>OPI, SSM/I, GPI, MSU, gauge, model</td>
<td>2.5˚/pentad</td>
<td>Global/1979 – Sept. 2009</td>
<td>Seasonal</td>
<td>3 months</td>
<td>NOAA/NWS CPC (Xie) [3]</td>
</tr>
<tr>
<td></td>
<td>OPI, SSM/I, GPI, gauge</td>
<td>2.5˚/pentad-RT</td>
<td>Global/2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Version 1.1)</td>
<td>GPCP-OPI, GPCP</td>
<td>2.5˚/5-day</td>
<td>Global/1979 - 2008</td>
<td>Seasonal</td>
<td>3 months</td>
<td>NOAA/NWS CPC (Xie) [6]</td>
</tr>
<tr>
<td>Satellite-Gauge (SG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRMM Plus Other Data</td>
<td>TCI-TMI, TCI-SSMI, TCI-AMSRE, TCI-AMSU, MW-VAR (IR), gauge</td>
<td>0.25˚/monthly</td>
<td>Global – 50°N-S/Jan 1998</td>
<td>Monthly</td>
<td>1 week</td>
<td>NASA/GSFC PPS (Adler & Huffman) [8]</td>
</tr>
<tr>
<td>(3B43 Version 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3B42 Version 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFE</td>
<td>GPI, NOAA SSM/I, gauge</td>
<td>10 km/daily</td>
<td>Africa/Oct. 2000</td>
<td>Daily</td>
<td>6 hours</td>
<td>NOAA/NWS CPC (Xie) [9]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 km/daily</td>
<td>South Asia/April 2001</td>
<td>Daily</td>
<td>6 hours</td>
<td>NOAA/NWS CPC (Xie) [10]</td>
</tr>
</tbody>
</table>

Table A.1: Summary of publicly available, quasi-operational, quasi-global precipitation estimates that are produced by combining input data from several sensor types, including satellite sensors and precipitation gauges. Where appropriate, the algorithms applied to the individual input data sets are mentioned. [Last updated 08 Sept 2011, G.J. Huffman]
Satellite Combination Data Sets

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Input data</th>
<th>Space/time scales</th>
<th>Areal coverage/ start date</th>
<th>Update interval</th>
<th>Latency</th>
<th>Producer (Developer)</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRS</td>
<td>AIRS sounding retrievals</td>
<td>swath/orbit segments</td>
<td>Global/May 2002</td>
<td>Daily</td>
<td>1 day</td>
<td>NASA/GSFC 610 (Susskind)</td>
<td>[1]</td>
</tr>
<tr>
<td>CMORPH</td>
<td>TMI, AMSR-E, SSMI, AMSU, IR vectors</td>
<td>8 km/30-min</td>
<td>50°N-S/1998</td>
<td>Daily</td>
<td>18 hours</td>
<td>NOAA/CPC (Xie)</td>
<td>[2]</td>
</tr>
<tr>
<td>GSMaP NRT</td>
<td>TMI, AMSR-E, SSMI, SSMS, AMSU, IR vectors</td>
<td>0.1°/hourly, daily, monthly</td>
<td>60°N-S/Oct. 2007</td>
<td>1 hour</td>
<td>4 hours</td>
<td>JAXA (Kachi & Kubota)</td>
<td>[3]</td>
</tr>
<tr>
<td>GSMaP MWR</td>
<td>TMI, AMSR-E, AMSR, SSMI, IR vectors</td>
<td>0.25°/hourly</td>
<td>60°N-S/1998-2006</td>
<td>–</td>
<td>–</td>
<td>JAXA (Aonashi & Kubota)</td>
<td>[4]</td>
</tr>
<tr>
<td>GSMaP MVK</td>
<td>TMI, AMSR-E, AMSR, SSMS, AMSU, IR vectors</td>
<td>0.1°/hourly</td>
<td>60°N-S/2000 (currently 2003-2008 data available)</td>
<td>Monthly</td>
<td>Reprocess now, will become operational</td>
<td>JAXA (Ushio)</td>
<td>[3]</td>
</tr>
<tr>
<td>GSMaP MVK+</td>
<td>TMI, AMSR-E, AMSR, SSMI, AMSU, IR vectors</td>
<td>0.1°/hourly</td>
<td>60°N-S/2003-2006</td>
<td>–</td>
<td>–</td>
<td>JAXA (Ushio)</td>
<td>[4]</td>
</tr>
<tr>
<td>NRL Real Time</td>
<td>SSM/I-cal PMM (IR)</td>
<td>0.25°/hourly</td>
<td>Global – 40°N-S/ July 2000</td>
<td>Hourly</td>
<td>3 hours</td>
<td>NRL Monterey (Turk)</td>
<td>[5]</td>
</tr>
<tr>
<td>TCI (3G68)</td>
<td>PR, TMI</td>
<td>0.5°/hourly</td>
<td>Global – 37°N-S/ Dec. 1997</td>
<td>Daily</td>
<td>4 days</td>
<td>NASA/GSFC PPS (Haddad)</td>
<td>[6]</td>
</tr>
<tr>
<td>TOVS</td>
<td>HIRS, MSU</td>
<td>1°/daily</td>
<td>Global/1979-April 2005</td>
<td>Daily</td>
<td>1 month</td>
<td>NASA/GSFC 610 (Susskind)</td>
<td>[1]</td>
</tr>
<tr>
<td>TRMM Real-Time HQ (3B40RT)</td>
<td>TMI, TMI-SSMI, TMI-AMSR-E, TMI-AMSU</td>
<td>0.25°/3-hourly</td>
<td>Global – 70°N-S/ Feb. 2005</td>
<td>3 hours</td>
<td>9 hours</td>
<td>NASA/GSFC PPS (Adler & Huffman)</td>
<td>[7]</td>
</tr>
<tr>
<td>TRMM Real-Time MW-VAR (3B41RT)</td>
<td>MW-VAR</td>
<td>0.25°/hourly</td>
<td>Global – 50°N-S/ Feb. 2005</td>
<td>1 hour</td>
<td>9 hours</td>
<td>NASA/GSFC PPS (Adler & Huffman)</td>
<td>[8]</td>
</tr>
<tr>
<td>TRMM Real-Time HQVAR (3B42RT)</td>
<td>HQ, MW-VAR</td>
<td>0.25°/3-hourly</td>
<td>Global – 50°S/ Feb. 2005</td>
<td>3 hours</td>
<td>9 hours</td>
<td>NASA/GSFC PPS (Adler & Huffman)</td>
<td>[9]</td>
</tr>
</tbody>
</table>

[1] joel.susskind-1@nasa.gov; Dr. Joel Susskind
[5] song.yang@nrlmry.navy.mil; Dr. Song Yang

Table A.2: Summary of publicly available, quasi-operational, quasi-global precipitation estimates that are produced by combining input data from several satellite sensor types. Where appropriate, the algorithms applied to the individual input data sets are mentioned. The TCI is available as a separate product from the Goddard DISC, in addition to the 3G68 compilation. [Last updated 08 Sept 2011, G.J. Huffman]
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Input data</th>
<th>Space/time scales</th>
<th>Areal coverage/start date</th>
<th>Update frequency</th>
<th>Latency</th>
<th>Producer (Developer)</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP-4</td>
<td>AMSU-A/-B, AMSU/MHS</td>
<td>Level 2 (swath/pixel) orbit</td>
<td>Global/2002</td>
<td>orbit (~100 min)</td>
<td>4 hours</td>
<td>MIT and Prince of Songkla Univ. (Surussavadee & Staelin) [1]</td>
<td></td>
</tr>
<tr>
<td>AMP-5</td>
<td>AMSU-A/-B, AMSU/MHS</td>
<td>Level 2 (swath/pixel) orbit</td>
<td>Global/2002</td>
<td>orbit (~100 min)</td>
<td>4 hours</td>
<td>MIT and Prince of Songkla Univ. (Surussavadee & Staelin) [1]</td>
<td></td>
</tr>
<tr>
<td>GPI</td>
<td>GEO-IR, LEO-IR in GEO gaps</td>
<td>2.5'/monthly</td>
<td>Global - 40°N/S - Feb. 2004</td>
<td>–</td>
<td>–</td>
<td>NOAA/NWS CPC (Xie) [2]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEO-, LEO-IR</td>
<td>2.5'/pentad</td>
<td>Global - 40°N/S - Nov. 2004</td>
<td>–</td>
<td>–</td>
<td>NOAA/NWS CPC (Xie) [3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1'/daily</td>
<td>Global - 40°N/S - Oct. 1996</td>
<td>Monthly</td>
<td>1 week</td>
<td>NOAA/NWS CPC (Xie) [4]</td>
<td></td>
</tr>
<tr>
<td>GPROF2004</td>
<td>AMSR-E</td>
<td>0.5'/orbits</td>
<td>Global - 70°N/S - June 2002</td>
<td>Daily</td>
<td>1 day</td>
<td>NSIDC (Kummerow) [5]</td>
<td></td>
</tr>
<tr>
<td>GPROF2010</td>
<td>AMSR-E</td>
<td>0.25'/daily (asc. & desc.), 0.25'/monthly</td>
<td>Global - 70°N/S - June 2002</td>
<td>Daily; monthly</td>
<td>1 day; 1 month</td>
<td>Col. State Univ. (Kummerow) [6]</td>
<td></td>
</tr>
<tr>
<td>GPROF2010</td>
<td>SSM/I</td>
<td>0.25'/daily (asc. & desc.), 0.25'/monthly</td>
<td>Global - 70°N/S - July 1987 - Nov. 2009</td>
<td>–</td>
<td>–</td>
<td>Col. State Univ. (Kummerow) [6]</td>
<td></td>
</tr>
<tr>
<td>GPROF2010</td>
<td>SSMIS</td>
<td>0.25'/daily (asc. & desc.), 0.25'/monthly</td>
<td>Global - 70°N/S - July 1987 - Nov. 2009</td>
<td>–</td>
<td>–</td>
<td>Col. State Univ. (Kummerow) [7]</td>
<td></td>
</tr>
<tr>
<td>GPROF2010</td>
<td>TMI</td>
<td>0.25'/daily (asc. & desc.), 0.25'/monthly</td>
<td>Global - 40°N/S - Dec. 1997</td>
<td>Daily; monthly</td>
<td>1 day; 1 month</td>
<td>Col. State Univ. (Kummerow) [6]</td>
<td></td>
</tr>
<tr>
<td>GPROF2010</td>
<td>TMI (3G68)</td>
<td>0.5'/hourly, 0.1'/hourly land</td>
<td>Global - 40°N/S - Dec. 1997</td>
<td>Daily</td>
<td>4 days</td>
<td>NASA/GSFC PPS (Kummerow) [8]</td>
<td></td>
</tr>
<tr>
<td>HOAPS-3</td>
<td>SSM/I</td>
<td>swath; 1/72-hr, 0.5'/pentad, monthly</td>
<td>Global Ocean -- 80°N/S-July 2007 - 2007</td>
<td>Update through 2008 due 2011 by CM-SAF</td>
<td>not routinely schedule d</td>
<td>HOAPS/Univ. of Hamburg, MPI (Klepp,Andersson) [9]</td>
<td></td>
</tr>
<tr>
<td>Hydro-Estimator</td>
<td>GEO-IR</td>
<td>4 km/hourly</td>
<td>Global - 60°N/S - March 2003</td>
<td>Hourly</td>
<td>3 hours</td>
<td>NOAA/NESDIS/STAR (Kuligowski) [10]</td>
<td></td>
</tr>
<tr>
<td>METH</td>
<td>SSM/I, SSMIS</td>
<td>2.5'/monthly</td>
<td>Global ocean -- 60°N/S-Jan. 1987 - 2010</td>
<td>Monthly</td>
<td>1 month</td>
<td>George Mason Univ. (Chiu) [11]</td>
<td></td>
</tr>
<tr>
<td>METH (3A11)</td>
<td>TMI</td>
<td>5'/monthly</td>
<td>Global ocean -- 40°N/S-Jan. 1998</td>
<td>Monthly</td>
<td>1 week</td>
<td>NASA/GSFC PPS (Chiu) [8]</td>
<td></td>
</tr>
<tr>
<td>MiRS</td>
<td>AMSU/MHS, SSMIS</td>
<td>swath</td>
<td>Global/2007</td>
<td>Orbits; Daily</td>
<td>4 hours</td>
<td>NOAA OSDP (Boukabara) [12]</td>
<td></td>
</tr>
<tr>
<td>NESDIS/ FNMOc Scattering index</td>
<td>SSM/I</td>
<td>1.0'/monthly</td>
<td>Global/July 1987 - Nov. 2009</td>
<td>Daily</td>
<td>1-2 hours</td>
<td>NESDIS/STAR (Ferraro) [13]</td>
<td></td>
</tr>
<tr>
<td>NESDIS High Frequency</td>
<td>AMSU/MHS</td>
<td>0.25 daily</td>
<td>Global/2000</td>
<td>Monthly</td>
<td>1 week</td>
<td>NESDIS/STAR (Weng and Ferraro) [14]</td>
<td></td>
</tr>
<tr>
<td>OPI</td>
<td>AVHRR</td>
<td>2.5'/daily</td>
<td>Global/1979</td>
<td>Daily</td>
<td>1 day</td>
<td>NOAA/NWS CPC (Xie) [15]</td>
<td></td>
</tr>
<tr>
<td>RSS</td>
<td>TMI, AMSR-E, SSMI, SSMIS, QSCAT</td>
<td>0.25'/11-,3-,7-day; monthly</td>
<td>Global Ocean -- July 1987</td>
<td>1-,3-,7-day; each day, week, month</td>
<td>6-12 hours; each day, week, month</td>
<td>RSS (Wenzl and Hibium) [16]</td>
<td></td>
</tr>
<tr>
<td>TRMM PR Precip (3G68)</td>
<td>PR</td>
<td>0.5'/hourly</td>
<td>Global - 37°N/S - Dec. 1997</td>
<td>Daily</td>
<td>4 days</td>
<td>NASA/GSFC PPS (Iguchi) [8]</td>
<td></td>
</tr>
</tbody>
</table>

Table A.3: Summary of publicly available, quasi-operational, quasi-global precipitation estimates from a single satellite sensor type. Where appropriate, the algorithms applied to the individual input data sets are mentioned. The GPROF TMI and PR are available as separate products from the Goddard DISC, in addition to the 3G68 compilation. [Last updated 28 Sept 2011, G.J. Huffman]
Precipitation Gauge Analyses

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Input data</th>
<th>Space/time scales</th>
<th>Areal coverage/ start date</th>
<th>Update frequency</th>
<th>Latency</th>
<th>Producer (Developer) URL</th>
</tr>
</thead>
</table>
| CPC Unified Gauge-based
 Anal. of Global Daily Precip. | >30,000 gauges
 (optimal interp. with orographic effects) | 0.5°/daily | Global/1979 – 2005 | – | – | NOAA/NWS CPC (Chen and Xie) [1] |
| CRU Gauge | >17,000 gauges
 real-time (optimal interp. with orographic effects) | 0.5°/daily | Global/2006 | Daily | 1 day | NOAA/NWS CPC (Chen and Xie) [2] |
| CRU TS 2.0 Gauge | ~12,000 gauges
 (anomaly analysis) | 0.5°/monthly | Global/1900 – 1998 | – | – | U. East Anglia (New and Viner) [3] |
| Dai Gauge Dataset 2 | ~12,000 gauges
| CRU TS 2.0 Gauge | ~20,000 gauges
 (anomaly analysis) | 2.5°/monthly | Global regions with data/1950 – 1996 | – | – | NCAR (Dai) [5] |
| GHCN+CAMS Gauge | ~3,800 gauges
 (SPHEREMAP) | 2.5°/monthly | Global/1979 | Monthly | 1 week | NOAA/NWS CPC (Xie) [6] |
| GPCC Monitoring | ~5,000 gauges
 (climatology-anomaly) | 1°,2.5°/monthly | Global/1988 – 2006
 Version 1; 2007 Version 3 | Monthly | 2 months | DWD GPCC (Becker) [7] |
| GPCC Full Analysis Version 5 | ~64,000 gauges
 (climatology-anomaly) | 0.5°,1°,2.5°/monthly | Global/1901-2009 | Occasional; possible end of 2011 | – | DWD GPCC (Becker) [8] |
| GPCC VASClimO Version 1.1 | ~9,000 gauges
 (climatology-anomaly) | 0.5°,1°,2.5°/monthly | Global/1950 – 2000 | Occasional | – | DWD GPCC (Beck) [9] |

[6] pingping.xie@noaa.gov; Dr. Pingping Xie

Table A.4: Summary of publicly available, quasi-operational, quasi-global precipitation estimates from precipitation gauge data. Where appropriate, the algorithms applied to the individual input data sets are mentioned. [Last updated 08 Sept 2011, G.J. Huffman]
Reanalysis Datasets

<table>
<thead>
<tr>
<th>Name</th>
<th>Assim. type</th>
<th>Model Resolution</th>
<th>Model Output Resolution</th>
<th>Time coverage</th>
<th>Producer [URL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECMWF Interim Reanalysis (ERA Interim)</td>
<td>4D-VAR</td>
<td>T255 L60</td>
<td>125 km</td>
<td>1979-present</td>
<td>ECMWF [2]</td>
</tr>
<tr>
<td>ECMWF 40 year Reanalysis (ERA-40)</td>
<td>3D-VAR</td>
<td>T159 L60</td>
<td>80 km</td>
<td>1958-2001</td>
<td>ECMWF [3]</td>
</tr>
<tr>
<td>NASA MERRA</td>
<td>3D-VAR</td>
<td>0.5º×0.5º</td>
<td>0.5º×0.5º and 2.5º×2.5º</td>
<td>1979-2010</td>
<td>NASA [5]</td>
</tr>
<tr>
<td>NCEP Climate Forecast System Reanalysis (CFSR)</td>
<td>3D-VAR</td>
<td>T382 L64</td>
<td>0.5º×0.5º and 2.5º×2.5º</td>
<td>1979-2010</td>
<td>NCEP [6]</td>
</tr>
<tr>
<td>NCEP/DOE Reanalysis AMIP-II (R2)</td>
<td>3D-VAR</td>
<td>T62 L28</td>
<td>2.5º×2.5º</td>
<td>1979-present</td>
<td>NCEP/DOE [7]</td>
</tr>
<tr>
<td>NCEP/NCAR Reanalysis I (R1)</td>
<td>3D-VAR</td>
<td>T62 L28</td>
<td>2.5º×2.5º and 2º×2º Gaus.</td>
<td>1948-present</td>
<td>NCEP/NCAR [8]</td>
</tr>
<tr>
<td>NCEP North American Regional Reanalysis (NARR)</td>
<td>RDAS</td>
<td>32 km</td>
<td>32 km</td>
<td>1979-present</td>
<td>NCEP [9]</td>
</tr>
</tbody>
</table>

