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ABSTRACT

We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB)
blackbody temperature from adiabatic evolution using the thermal Sunyaev–Zeldovich anisotropy induced by
clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed:
using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the
ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster
signal with frequency. The ratio method is biased if CMB residuals with amplitude ∼1 μK or larger are present
in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template
from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate
that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray
temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter α in the redshift
scaling T (z) = T0(1 + z)1−α , with an accuracy of σα = 0.011 in the most optimal case and with σα = 0.018 for a
less optimal case. These results represent a factor of 2–3 improvement over similar measurements carried out using
quasar spectral lines and a factor 6–20 with respect to earlier results using smaller cluster samples.
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1. INTRODUCTION

One of the fundamental tenets of the big bang paradigm is
the adiabatic evolution of the universe. Early thermal equilib-
rium among the different particle species, entropy, and photon
number conservation produces a cosmic microwave background
(CMB) with a blackbody spectrum. The CMB temperature was
measured to be T0 = 2.725 ± 0.002 K by the Far Infrared Ab-
solute Spectrometer (FIRAS) of the Cosmic Background Ex-
plorer satellite (Mather et al. 1999). The adiabatic expansion
of the universe and photon number conservation imply that the
CMB temperature evolves with redshift as T (z) = T0(1 + z).
Establishing observationally this relation would test our cur-
rent understanding of the universe since models like decaying
vacuum energy density and gravitational “adiabatic” photon
creation predict different scaling relations (Overduin &
Cooperstock 1998; Matyjasek 1995; Lima et al. 2000; Puy
2004; Jetzer et al. 2011; Jetzer & Tortora 2012). In these mod-
els, energy is slowly injected without producing distortions on
the blackbody spectrum, evading the tight FIRAS constraints.
Nevertheless, in these models the blackbody temperature scales
nonlinearly as T (z) = T0(1 + z)1−α . Therefore, measuring the
redshift dependence of the CMB blackbody temperature at var-
ious cosmological epochs can provide strong constraints on
physical theories at the fundamental level.

There are currently two methods to determine T (z) at red-
shifts z > 0: (1) using fine-structure lines from interstellar
atoms or molecules, present in quasar spectra, whose transi-
tion energies are excited by the CMB photon bath (Bahcall
& Wolf 1968) and (2) from the thermal Sunyaev–Zeldovich
anisotropies (hereafter TSZ; Sunyaev & Zeldovich 1972, 1980)
due to the inverse Compton scattering of photons by the free
electrons within the potential wells of clusters of galaxies. Early

observations of fine-structure levels of atomic species like car-
bon only led to upper limits on T (z) because the CMB is
not the only radiation field populating the energy levels and
collisional excitation is an important contribution. Assuming
that the CMB is the only source of excitation, Songaila et al.
(1994) measured T (z = 1.776) = 7.4 ± 0.8 K; but collisional
excitation was not negligible and it had to be corrected. The
first unambiguous measurement was only achieved six years
later, with a considerably larger error bar (Srianand et al. 2000).
Lately, Noterdaeme et al. (2011) succeeded in obtaining direct
and precise measurements from the rotational excitation of CO
molecules. They constrained the deviation from linear scaling
to be α =−0.007 ± 0.027 at z ∼ 3 (α = 0 corresponds to the
standard redshift scaling). Battistelli et al. (2002) reported the
first observations of T (z) using the TSZ effect of the COMA and
A2163 clusters of galaxies with α = −0.16+0.34

−0.32. Luzzi et al.
(2009) determined the CMB temperature in the redshift range
z = 0.023–0.546, from the measurements of 13 clusters. They
restricted their analysis to α ∈ [0, 1] and set up an upper limit
of α � 0.079 at the 68% confidence level. No significant de-
viations from the redshift dependence of the CMB temperature
predicted in the standard model have been found.

While there is interest in doing such observations as far back
as possible (which one can do with spectroscopic methods),
low-redshift measurements also play an important role. First, the
two techniques are complementary with each other since they
have different systematics and probe the adiabatic evolution of
the universe at different redshifts. Spectroscopic observations
probe the matter era, roughly between redshifts z = 2–4, while
TSZ probes the epoch of dark energy domination, z � 1. In
particular, these measurements can shed light on the onset of
dark energy domination; in many models this is associated with
a phase transition (Mortonson et al. 2009; Nunes et al. 2009)
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which could leave imprints in the T (z) relation. Second, in mod-
els where photon number is not conserved, not only does the
temperature–redshift relation change, but so does the distance
duality relation (Etherington 1933), and these departures from
the standard behavior are not independent. This link between
the two relations requires information at all redshifts and will,
when better data sets become available, be a powerful consis-
tency test for the standard cosmological paradigm (Avgoustidis
et al. 2012).

The Planck mission has been designed to produce a full-sky
survey of the CMB with unprecedented accuracy in temperature
and polarization (Planck Collaboration 2011a). The instrument
operates at nine frequencies logarithmically spaced in the range
30–857 GHz. The in-flight performance of the High and Low
Frequency Instruments (HFI and LFI) has been described by the
Planck HFI Core Team (2011a) and Mennella et al. (2011). Due
to its large frequency coverage, high resolution, and low noise,
it is a powerful instrument for blind detection of clusters using
the TSZ effect. The first clusters detected by Planck include
189 cluster candidates with signal-to-noise ratio (S/N) larger
than 6 (Planck Collaboration 2011b). These SZ clusters are
mostly at moderate redshifts (86% had z < 0.3) and span over a
decade in mass, up to the rarest and most massive clusters with
masses above 1015 M�. In this article, we analyze how Planck
data can be used to test the standard scaling relation of the
CMB temperature with redshift. We use a two-fold approach:
first, our pipeline is tested on simulated clusters drawn from a
full hydrodynamical simulation; second, using a catalog of 623
clusters derived from ROSAT data and with well measured X-ray
properties, we predict with what precision α will be measured by
Planck using those clusters. In comparison with earlier analysis
of Horellou et al. (2005), we use a catalog of X-ray-selected
clusters, and in our simulations gas evolution is fully taken into
account. Briefly, in Section 2 we describe our methodology; in
Section 3 we discuss the construction of our simulated data; in
Section 4 we explain our pipeline; in Section 5 we present our
results; and in Section 6 we summarize our main conclusions.

2. METHOD

Compton scattering of CMB photons by the hot intracluster
(IC) gas induces secondary temperature anisotropies on the
CMB radiation in the direction of clusters of galaxies. There are
two components: the thermal (TSZ, Sunyaev & Zeldovich 1972)
due to the thermal motion of the IC medium with temperature
Te and the kinematic (KSZ, Sunyaev & Zeldovich 1980) due to
the motion of the cluster with speed vcl respect to the isotropic
CMB frame. Neglecting higher order corrections, the TSZ and
KSZ contributions to the temperature anisotropy in the direction
of a cluster, given by the unit vector n, are

T (n̂) − T0

T0
=

∫ [
G(ν)

kBTe

mec2
− vcl n̂

c

]
dτ = G(ν)yc − τ

vcl n̂

c
.

(1)
In this expression, dτ = σT nedl is the cluster optical depth,
ne(l) is the electron density evaluated along the line of sight
l, σT is Thomson cross section, T0 is the current CMB mean
temperature, kB is the Boltzmann constant, mec

2 is the elec-
tron annihilation temperature, c is the speed of light, and ν
is the frequency of observation. The Comptonization parame-
ter is defined as yc = (kBσT /mec

2)
∫

neTedl. Due to its fre-
quency dependence G(ν), the TSZ is a distortion of the CMB
spectrum. Its amplitude is independent of the cluster distance,
making it a useful tool to detect clusters at high redshifts. All

known astrophysical foregrounds have a different dependence
with frequency so clusters can be clearly detected in CMB
maps with enough frequency coverage. In the non-relativistic
limit, G(x) = xcoth(x/2) − 4, but for very massive clusters,
relativistic corrections need to be included. The reduced fre-
quency x is given by x = hν(z)/kT (z) with ν(z) the frequency
of a CMB photon scattered off by the IC gas and T (z) the
blackbody temperature of the CMB at the cluster location.

If the universe evolves adiabatically, T (z) = T0(1 + z); due
to the expansion, the frequency of a photon scattered by the IC
plasma at redshift z is Doppler shifted as ν(z) = ν0(1 + z) and
the ratio x = hν(z)/kT (z) = hν0/kT0 = x0 is independent
of redshift. If the evolution of the universe is non-adiabatic,
the temperature–redshift relation would not be constant. Two
functional forms have been considered in the literature: T (z) =
T0(1 + z)1−α (Lima et al. 2000) and T (z) = T0(1 + bz) (LoSecco
et al. 2001). In both cases, the photon frequency is assumed
to be redshifted as in the standard model: ν(z) = ν0(1 + z).
Since the largest fraction of known clusters of galaxies are at
redshifts below z � 0.7–1, the differences between both red-
shift dependences are small so we will only analyze the first
model. The reduced frequency varies as x = x0(1 + z)α and
the spectral frequency dependence of the TSZ effect, G(ν) now
depends on α: G(x) = G(ν, α) (α = 0 corresponds to adia-
batic evolution). Fabbri et al. (1978) proposed to measure the
zero cross frequency of clusters at different redshifts that, for
adiabatic evolution, occurs at ν � 217 GHz. Rephaeli (1980)
suggested the use of the ratio of the TSZ anisotropy at dif-
ferent scales, R(ν1, ν2, α) = G(ν1, α)/G(ν2, α). Both methods
have different systematics. By taking ratios, the dependence on
the Comptonization parameter is removed and the need to ac-
count for model uncertainties on the gas density and temperature
profile is avoided. At the same time, the analysis is more com-
plicated since the distribution of temperature anisotropy ratios
is highly non-Gaussian (Luzzi et al. 2009). The measurement
of the cross over frequency is also problematic since the TSZ
is inherently weak and could be dominated by uncertain sys-
tematics. For this reason, the measurements carried out thus far
(Battistelli et al. 2002; Luzzi et al. 2009), based on a small num-
ber of clusters, have concentrated in the ratio method. Zemcov
et al. (2012) showed the intrinsic difficulties of measuring the
TSZ null frequency in clusters. As an alternative to the zero
frequency method, we will fit the TSZ signal at different fre-
quencies and we will measure the function G(ν, α). We shall
denote this procedure the fit method.

The function G(ν, α) characterizes uniquely the TSZ con-
tribution. At each frequency, Planck LFI receivers and HFI
bolometers are sensitive to a wide range of frequencies and
the spectral dependence is not G(ν) but

Ḡ(ν0, α) =
∫ ∞

0
G(ν, α)e(ν−ν0)2/2σ 2

ν0 dν. (2)

Hereafter, we will remove the upper bar and G(ν, α) will
refer to the averaged frequency dependence of Equation (2).
In Figure 1 we plot the temperature ratio (Figure 1(a)) and
frequency dependence (Figure 1(b)) for different values of α.
In Figure 1(a), the solid line represents the adiabatic evolution
model α = 0 that is independent of redshift; dot-dashed lines
bound the region where α = −1, 1. From top to bottom,
the ratios are R(ν, 353 GHz, α) with ν = 143, 100, 44 GHz.
In Figure 1(b), we plot the spectral dependence G(ν, α) for
adiabatic evolution (α = 0, dashed line) and α = −1, 1 for
a cluster at redshift z = 0.1 (dot-dashed line) and z = 0.3
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Figure 1. (a) Variation of the ratio R(ν, 353 GHz, α) as a function of redshift for ν = 143 GHz (top set of curves), 100 GHz (middle set), and 44 GHz (lower set).
The solid straight line corresponds to adiabatic evolution α = 0 and the dot-dashed lines represent α = −1, 1. (b) Spectral dependence of the TSZ effect G(ν, α) for
two clusters located at z = 0.3 (solid lines) and z = 0.1 (dot-dashed lines) with α = −1, 1. The dashed line corresponds to adiabatic evolution (α = 0), identical at
all redshifts. The zero cross frequency occurs at the crossing with the dotted line.

Table 1
Technical Details of Planck Channels Used in this Study

Planck Channel 1 2 3 4 5 6

Central frequency ν0/GHz 44 70 100 143 217 353
Frequency resolution Δν0 (FWHM/GHz) 8.8 14 33 47 72 116
Angular resolution Δθ (FWHM/arcmin) 26.8 13.1 9.8 7.1 5.0 5.0
Noise per pixel σnoise/μK (Blue Book) 51 52 15 12 19 58
Noise per pixel σnoise/μK (in-flight performance) 109 96 14 9 13 49

Notes. The noise per pixel in-flight performance corresponds to one year of integration.

(solid line). The null TSZ signal, represented by the dotted
line, shows that the zero cross frequency varies in the range
ν ∼ 170–270 GHz.

To construct a pipeline that implements the ratio or zero cross
frequency tests we need to consider the specifics of the Planck
data. The cosmological CMB signal is the dominant contribu-
tion except at the most massive clusters. Foreground residu-
als or astrophysical contaminants, while smaller in amplitude,
would induce systematic shifts in the Comptonization parame-
ter (Aghanim et al. 2005) varying with frequency and biasing
the redshift dependence of the TSZ effect. To characterize the
noise and foreground emission, the HFI and LFI core teams have
constructed maps with the CMB cosmological contribution sub-
tracted off. They have used six different component separation
algorithms to construct templates of the CMB cosmological
signal to remove this component from the data. The differ-
ence between the six methods provides an estimate the CMB
residual (Leach et al. 2008; see also Planck HFI Core Team
2011b; Zacchei et al. 2011). The different techniques left resid-
uals with different power spectra and rms in the range 4–16 μK,
depending on the channel. With respect to astrophysical contam-
inants, Wilkinson Microwave Anisotropy Probe (WMAP) used
the K, Ka Differencing Assemblies, and the extinction corrected
Hα maps (Finkbeiner 2003) to subtract the synchrotron and
free–free emissions and the Finkbeiner et al. (1999) map to sub-
tract the dust contribution (see Gold et al. 2009 for details). A
similar analysis using the 30, 545, and 857 GHz channels, and
foreground templates could be used to remove the foreground
contribution. After the different components have been sepa-
rated, the final maps will contain residual cosmological signal,
residual foreground emission, and noise.

The technical details of the maps considered in this study
are listed in Table 1: central frequency ν0 and FWHM of the
antenna spectral response function, approximated by a Gaussian
with FWHM Δν0, angular resolution, and noise per pixel. We

indicate the required Blue Book specifications6 and the in-flight
measured noise per pixel after one year of integration (Mennella
et al. 2011; Planck HFI Core Team 2011a). Due to the scanning
strategy, the noise is rather inhomogeneous, largely dominated
by a white noise component plus a 1/f contribution. In the LFI
instrument, the 1/f noise is largest at 30 GHz. For the HFI,
the noise is largest at 545 and 857 GHz. Also, those channels
have the smallest resolution and will not be considered in this
work. Later we shall show that this is not a limitation since the
channels with the highest resolution are the ones with the largest
statistical power to determine α.

Maps free of the intrinsic CMB signal and foreground resid-
uals are the most convenient to test the adiabatic evolution of
the universe, but removing the cosmological CMB signal using
statistical algorithms leaves an unknown level of CMB resid-
uals, whose distribution and power spectrum are difficult to
model. Alternatively, the intrinsic CMB can be removed ex-
actly by subtracting the highest resolution map, conveniently
degraded, from the other maps. Both techniques have differ-
ent systematics and the consistency of the results would be a
test of their validity. Therefore, we shall carry out two types of
simulations, depending on what data sets become available:
(A) CMB and foregrounds are removed using templates, to
produce maps with only instrumental noise, KSZ, and TSZ
with some unknown levels of primordial CMB and foreground
residuals. Deviations from adiabatic evolution can be mea-
sured by taking ratios of temperature anisotropies at differ-
ent frequencies (Figure 1(a)) or by fitting the spectral depen-
dence G(α, ν) (Figure 1(b)) to the data. (B) The primordial
CMB and KSZ components are removed using the foreground
clean 217 GHz map. The angular resolution of the 217 GHz
channel is degraded to that of the other five channels before

6 http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-
SCI(2005)1_V2.pdf
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Figure 2. (a) Ratio R[−217 GHz](ν, 353 GHz, α) for ν = 143, 100, and 44 GHz, and (b) spectral dependence of G(ν, α) − G(217 GHz, α). Curves follow the same
convention as in Figure 1.

subtracting it from the corresponding map. We checked that
the intrinsic CMB and KSZ anisotropies are removed exactly
but the frequency dependence of the TSZ effect is modified.
In Figure 2(a), we plot the ratio of the CMB–KSZ removed maps
at different frequencies: R[−217 GHz](ν1, ν2, α) = [G(ν1, α) −
G(217 GHz, α)]/[G(ν2, α) − G(217 GHz, α)]. In Figure 2(b)
we represent G[−217 GHz](ν, α) = G(ν, α)−G(217 GHz, α). The
lines follow the same conventions as in Figure 1. The two data
sets, (A) and (B), will have different systematics and we will
analyze both to check for consistency.

3. CLUSTER TEMPLATES AND FINAL MAPS

We construct two cluster templates: (1) with a sample of
real clusters we will predict the statistical power of Planck to
constraint α; (2) with a sample of clusters drawn from an all-sky
hydrodynamical simulation, we will check the effect of cluster
asymmetries and dynamical state on the final results. The final
maps were constructed using the HealPix package (Gorski et al.
2005) with resolution Nside = 1024.

3.1. Y-map from X-Ray-selected Clusters

Our cluster sample contains 623 clusters outside WMAP
Kp0 mask. It was created by combining the ROSAT-ESO Flux
Limited X-ray catalog (Böhringer et al. 2004) in the southern
hemisphere, the extended Brightest Cluster Sample (Ebeling
et al. 1998, 2000) in the north, and the Clusters in the Zone of
Avoidance (Ebeling et al. 2002; Kocevski et al. 2007) sample
along the Galactic plane. All three surveys are X-ray-selected
and X-ray flux limited. A detailed description of the creation of
the merged catalog is given in Kocevski & Ebeling (2006). The
position, flux, X-ray luminosity, and angular extent of the region
containing the measured X-ray flux were determined directly
from the ROSAT All Sky Survey (RASS). All clusters have
spectroscopically measured redshifts. The X-ray temperature
was derived from the LX−TX relation of White et al. (1997). The
central electron densities and core radii were derived by fitting
to the RASS data a spherically symmetric isothermal β-model
(Cavaliere & Fusco-Femiano 1976) convolved with the RASS
point-spread function. The β was fixed at the canonical value of
2/3 to reduce the dependence of the β-model parameters with
the choice of radius over which the model is fit. These data
are sufficient to compute the Comptonization parameter at the
center of the cluster.

Atrio-Barandela et al. (2008) compared the TSZ predicted
from the X-ray data with the signal present in WMAP three year
data and found it to be in good agreement within the X-ray
emitting region, where the β-model is a good description of

the electron distribution. In the cluster outskirts, the predicted
TSZ signal was systematically higher than the measured value.
The latter was consistent with the Komatsu & Seljak (2002)
profile, where baryons are in hydrostatic equilibrium within
a dark matter halo well described by a Navarro–Frenk–White
profile (hereafter NFW, Navarro et al. 1997), as expected in the
concordance ΛCDM model. More recently, Nagai et al. (2007)
proposed a scaled three-dimensional electron pressure profile
p(x) = Pe(r)/P500 based on a generalized NFW profile:

p(x) = P0

(c500x)γ [1 + (c500x)α](β−γ )/α
, (3)

where (γ, α, β) are the central, intermediate, and outer slopes,
c500 characterizes the gas concentration, and x = r/R500 is the
distance from the center of the cluster in units of the radius at
which the average density of the cluster is 500 times the critical
density. Arnaud et al. (2010) derived an average cluster pressure
profile from observations of a sample of 33 local (z < 0.2)
clusters, scaled by mass and redshift with

[P0, c500, γ, α, β]

= [
8.403h

−3/2
70 , 1.177, 0.3081, 1.0510, 5.4905

]
. (4)

Later, Plagge et al. (2010) showed these parameters to be
consistent with the SZ measurements of 15 massive X-ray
clusters observed with the South Pole Telescope (Plagge et al.
2010). We determine the scale R500 using the Böhringer et al.
(2007) relation:

R500 = (0.753 ± 0.063)h−1 Mpc

h(z)

×
(

LX

1044h−2 erg s−1

)0.228±0.015

. (5)

To test the effect of the cluster profile on the final results, we
construct y-maps from the X-ray cluster catalog (1) using the
universal pressure profile of Equation (3) with the parameters
given in Equation (4) and (2) using the isothermal β =
2/3 model. The Comptonization parameter is computed by
integrating the electron pressure profile along the line of
sight. Clusters are assumed to be spherically symmetric and
extending up to R200, the scale where the cluster overdensity
reaches 200 times the critical density. To determine the effect
of the cluster profile, the central value of yc is assumed to
be the same for both the β-model and the universal pressure
profile. Finally, the cluster templates are convolved with the
corresponding antenna beams (see Table 1). In Figure 3(a) we
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Figure 3. (a) Pressure profile integrated along the line of sight of a cluster with z = 0.094, of M500 = 2.4 × 1014 h−1 M� and R500 = 750 h−1 Kpc convolved with
the antenna of the 44 GHz channel. The solid line corresponds to the β = 2/3 model and the dashed line to the universal pressure profile with the parameters of
Equation (4). Angles are expressed in units of θ500, the angle subtended by the radius R500 at the position of the cluster. (b) Central value of the Comptonization
parameter for the clusters of our proprietary sample, derived using the measured X-ray information. The solid line corresponds to the linear regression fit to the data.

show the pressure profile integrated along of line of sight for
the β = 2/3 (solid line) and universal pressure (dashed line)
profiles convolved with the antenna of the 44 GHz map. Since
the latter profile diverges at x = 0, we restrict the integration of
Equation (3) to θ � 10−2θ500. The cluster is located at z = 0.094
of M500 = 2.4 × 1014 h−1 M� and R500 = 746 h−1 Kpc. For
illustration, in Figure 3(b) we plot the value of Comptonization
parameter yc at the center of all the clusters in our proprietary
cluster catalog, derived using the measured X-ray parameters,
as a function of cluster mass. The solid line represents the linear
regression fit to the data. The central Comptonization parameter
scales as yc = 24.5(M500/1014 h−1 M�)1.35.

3.2. Y-map from Simulated Clusters

As an alternative, we also use the low-redshift all-sky maps
and the associated galaxy cluster catalogs of the hydrodynamic
diffuse and kinetic SZ simulations included in the pre-launch
Planck Sky Model. The simulations are fully described in
Delabrouille et al. (2012). The catalogs contain cluster positions,
mass, and radius for an overdensity contrast of 200 times the
critical density. The maps contain the integrated SZ signal up to
z � 0.25, computed from a combination of full hydrodynamic
simulations using the box stacking method described in A.
Valente et al. (2012, in preparation). According to this method,
the universe around the observer is generated in concentric
layers, each with a comoving thickness of 100 h−1 Mpc,
using the outputs of hydrodynamic simulations with periodic
boundary conditions. The light-cone integrations of the TSZ
and KSZ signals are carried out using the formulae in da Silva
et al. (2000, 2001). A total of seven layers were constructed, up
to z = 0.25. The innermost layer includes the local constrained
simulation of Dolag et al. (2005), whereas all the other layers
were produced from gas snapshots of the ΛCDM simulation in
De Boni et al. (2011). Both these simulations include explicit
treatment for gas cooling, heating by UV, star formation, and
feedback processes.

The y-map constructed from the X-ray-selected clusters as-
sumes clusters to be spherically symmetric and relaxed while the
TSZ and KSZ templates constructed from the hydro-simulation
contain clusters with different dynamical state (relaxed, merg-
ing systems, etc.), shape, and ellipticity. Also, since the latter
are constructed integrating the signal along the line of sight, the
projection effects due to low mass clusters and groups are in-
cluded. Therefore, these templates are very well suited to study
the effect of all these systematics and of the KSZ component in
the determination of α. For a more realistic comparison, we se-

lect 623 clusters from the simulation according to the measured
selection function of the X-ray cluster sample. In Figure 4(a)
we plot the mass and in Figure 4(b) the redshift distribution of
all clusters in our simulation (solid line) that fulfill the selection
criteria. The dashed line shows the same distributions of the
X-ray clusters. For a better comparison, the histogram of the
largest amplitude was normalized to unity. The main difference
between the two samples is that there are 22 clusters in our pro-
prietary cluster catalog that have redshifts larger than z = 0.25,
the redshift of the last layer constructed from the simulation.

3.3. Final Maps

The y-maps described above are multiplied by G(ν, α = 0) to
generate TSZ templates and convolved with the antenna beam.
Since the cluster catalog contains X-ray temperatures for all
clusters, in the template generated from the sample of real clus-
ters we included relativistic corrections using the analytic for-
mulae derived by Nozawa et al. (2000) that are accurate for
clusters with temperature TX � 25 KeV at all the frequen-
cies measured by Planck. A KSZ template was added to the
hydrodynamical but not to the X-ray-selected cluster template
since their peculiar velocity are not available. Noise maps were
constructed assuming the Blue Book noise levels of Table 1.
We model the noise as homogeneous and uncorrelated white
noise since at the frequencies 44–353 GHz the 1/f is both
small and does not affect the angular scales subtended by clus-
ters, 	 � 500.

To construct the final maps for the two types of data (A) and
(B) we add different contributions. To make the simulations as
realistic as possible we need to consider CMB and foreground
residuals, noise inhomogeneities, and deviations from white
noise behavior. For instance, when averaged over the cluster
extent, CMB residuals do not scale down as N

−1/2
pixel and, together

with foreground residuals, they can induce systematic shifts in
the Comptonization parameter. The effect will be dependent
on both amplitude and shape of the residual power spectrum.
CMB residuals dominate over the noise up to 	 ∼ 2000 on
the 70–353 GHz channels (see Leach et al. 2008, Figure 6).
Therefore, one can expect that these residuals would dominate
over noise inhomogeneities or 1/f contributions and so we
will not consider the latter in our simulations. With respect to
foreground residuals, they change with frequency, have different
origin, different amplitude and are irregularly distribute in the
sky. Further, only low-resolution (∼1◦) templates are available
for synchrotron and free–free emission (Leach et al. 2008) so the
behavior of the foregrounds, not just foreground residuals, on
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Figure 4. Mass (a) and redshift distribution (b) of the catalog of X-ray-selected clusters (dashed line) and of clusters selected from the hydro-simulation described in
Section 3.2. For easier comparison, the histograms are normalized to unity at the maximum.

scales <1◦ relevant for the study of clusters, cannot be modeled
accurately. However, Galactic emissions are not associated with
clusters, their effect on the measured value of α can be analyzed
by studying different cluster subsamples in different regions of
the sky. Other foregrounds associated with clusters could have
a more damaging effect. Diffuse and point-like radio emission
can be found in cluster cores. Their physical origins are very
different though and both are rare, in particular among the very
X-ray luminous clusters that dominate the signal discussed by
us here (Brunetti et al. 2007). Specifically, radio halos are found
only in merging clusters (Cassano et al. 2010). Radio emission
from individual cluster galaxies is usually limited to the brightest
cluster galaxy and, opposite to the case of diffuse emission,
observed almost exclusively in relaxed systems. Like for other
foregrounds, the contribution of both effects could be estimated
by analyzing different cluster subsamples, binning by redshift
or by galactic latitude. In any case, all these effects can only be
accurately modeled once the data become available.

In comparison, CMB residuals represent an extreme case
of foreground: they are the same at all frequencies, except
by the change in amplitude due to the dilution by the beam,
and they are distributed everywhere in the sky. In this context,
CMB residuals are the most difficult to separate so they will
be the only ones included in our simulations. Since different
component separation methods will leave different residuals,
we adopted the filter described in Kashlinsky et al. (2009) to
create our CMB residual template. This filter is designed to
remove the primary CMB fluctuations from the concordance
ΛCDM model by minimizing the mean squared deviation of
the CMB measurements from noise 〈(δCMB − noise)2〉, and it
generates CMB residuals that are homogeneously distributed
in the sky. In this respect we are being conservative; the true
residuals are likely to be smaller away from the galactic plane
(see Planck HFI Core Team 2011b, Figure 39), fact that could
permit to estimate the effect of the residuals by analyzing cluster
subsamples selected according to galactic latitude.

To summarize, we constructed two sets of maps, according to
the specific data sets: (A) CMB subtracted using a template, (B)
CMB subtracted exactly using the 217 GHz channel. In simula-
tion (A) six maps are constructed, adding to the TSZ template
CMB residuals and white noise. The noise is generated accord-
ing to the parameters given in Table 1. In all the simulations
the residual CMB map is kept fixed and only the noise varies.
In this form we can quantify the bias introduced by the residu-
als. We took residual maps with amplitude 〈(ΔTCMB,res)2〉1/2 =
1, 10 μK. For the y-map constructed from real clusters, only the

TSZ signal was included. The temperature anisotropy at each
pixel is ΔTA(ν) = ycG(ν, 0) + ΔTTSZ ± σA

noise,ν ± ΔTCMBres. For
the y-map derived from simulations, we also included a KSZ
component. In simulation (B) six maps are constructed adding a
cosmological CMB signal and noise to the y-map. The 217 GHz
map is used to subtract the cosmological CMB and KSZ sig-
nals exactly. Therefore, only five different maps are available
for the analysis. We checked the final maps had a power spec-
trum that was a pure white noise, with a slightly larger variance
σB

noise,ν , sum of the original map plus the noise of the degraded
217 GHz map. At each pixel, the temperature anisotropy is
ΔTB(ν) = ycG[−217 GHz](ν, 0) ± σB

noise,ν .

4. DATA PROCESSING

In both simulations (A) and (B), we construct estimators using
both the ratio and the fit methods. To simplify the notation,
let the index I = (A,B) denote the type of simulation and
let us redefine GA = G(ν, α), RA = R(ν1, ν2, α), GB =
G[−217 GHz](ν, α), and RB = R[−217 GHz](ν1, ν2, α). At each
cluster location, projection effects can yield contributions from
different redshifts altering the frequency dependence. To reduce
the effect, we average over the cluster extent.

4.1. Ratio Method

In this method we take the ratio of the temperature anisotropy
at two different frequencies. Maps are brought to a common
resolution before taking the ratio. Since the ratio of two Gaussian
random variables is not a Gaussian, we estimate α using the
approach introduced by Luzzi et al. (2009). If the average
temperature anisotropy at two different frequencies i = 1, 2
at one cluster location j are denoted by δj (νi) = 〈ΔTj,I (νi)〉, and
they are measured with Gaussian errors σi then for each cluster
j, the probability Pj (RI ) that the ratio RI (ν1, ν2) = δ1/δ2 of two
temperature anisotropies is in the range (r, r + dr) is given by

Pj (RI (ν1, ν2, α)) = 1

2πσ1σ2

×
∫ ∞

−∞
x exp

(
−

[
(x − δ1)2

2σ 2
1

+
(xRI (ν1, ν2, α) − δ2)2

2σ 2
2

])
dx.

(6)

The most likely value of α is then given by the maximum of the
likelihood function:

logL =
∑
ν1,ν2

Ncl∑
j=1

log[Pj (ν1, ν2, α)]. (7)
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Figure 5. Effect of the beam dilution on the spectral dependence of the TSZ effect. Open squares represent the amplitude of the cluster TSZ effect at different frequencies,
averaged over a disk of extent 2θ500. The solid line represents the TSZ scaling G(ν, 0). Panel (a) corresponds to a cluster of mass M500 = 3.64 × 1014h−1 M� at
redshift z = 0.218, that subtends an angle θ500 = 9.′4. Panel (b) corresponds to M500 = 7.7 × 1014 h−1 M� located at redshift z = 0.058, subtending an angle
θ500 = 42′.

Figure 6. (a) Deconvolution factor for clusters in the mass range M500 = 5–6 × 1014 h−1 M� and (b) for clusters with M500 �1 × 1015 h−1 M�. Solid black circles
represent the deconvolution factor for the 353 GHz channel and open squares for the 44 GHz channel. All clusters are resolved at 353 GHz but, for simplicity, at
44 GHz only the fraction of unresolved clusters is shown. Arrows indicate the deconvolution factor of the clusters of Figure 5.

Luzzi et al. (2009) demonstrate that the ratio of the two
distributions is biased; the ratio is dominated by the error on
the denominator. For this reason, we use the denominator to be
the measurement with the smallest fractional errors in order to
minimize the bias, i.e., the 100 and 143 GHz channels. In total
we have nine different ratios.

4.2. Frequency Fit Method

Alternatively, we can fit the TSZ signal of each cluster to the
spectral dependence of Figures 1(b) and 2(b). In this case, errors
are Gaussian distributed and the likelihood function is given by

− 2 logL =
∑

ν

Ncl∑
j=1

[
〈ΔTI (ν)〉 − ȳcGI (ν, α)

σ I
noise,ν,j

]2

, (8)

where σ I
noise,ν,i is the error at each cluster location that in-

cludes noise and CMB residuals (simulation (A)) or just noise
(simulation (B)).

In this method, since we do not measure G(ν, α) directly but
ΔT (n̂) = T0ycG(ν, α), we need an independent determination
of yc using X-ray data, introducing another complication:
different frequencies have different resolutions and cluster
anisotropies are diluted differently by the antenna beam. The
amplitude of the effect depends on the cluster profile and
angular extent but does not depend on the scaling of the TSZ
signal with redshift, G(ν, α). To show this effect, in Figure 5
we represent the effect for two different clusters. Figure 5(a)
corresponds to a cluster at redshift z = 0.218, with mass M500 =
3.64×1014 h−1 M� and size 9.′4 while in Figure 5(b) the cluster
is located at z = 0.058 with mass M500 = 7.7 × 1014 h−1 M�

and size 42′. The dilution effect is most noticeable at 44 GHz
since this channel has the smallest resolution.

For clusters drawn from a simulation, its size, ellipticity, and
profile are well known. For such clusters, the deconvolution
factor F can be determined exactly by comparing the average
Comptonization parameter before, 〈yc〉, and after, 〈yc ∗ B(ν)〉,
convolving with the antenna beam B(ν): F = 〈yc〉/〈yc ∗ B(ν)〉.
This factor would be different for resolved and unresolved
clusters and would depend on the cluster profile and redshift.
For illustration, in Figure 6(a) we represent F for a subset of
110 clusters in the mass range M500 = 5–6 × 1014 h−1 M�. In
Figure 6(b), we plot the deconvolution factors for all clusters
in our simulation with masses M500 � 1015 h−1 M�. Solid black
circles correspond to the 353 GHz frequency and open squares to
44 GHz. All clusters are resolved at 353 GHz. At 44 GHz clusters
with redshift z � 0.08 are unresolved. For clarity, the resolved
clusters are not shown. The solid straight lines correspond
to the linear regression fit, Flin, to the deconvolution factor,
F, different for each cluster mass range and channel. Arrows
indicate the deconvolution factor of the clusters plotted in
Figures 5(a) and (b).

If ΔF is the rms dispersion of the true deconvolution values
F around Flin for each mass bin and antenna, then F =
Flin ± ΔF . We used the y-map computed with clusters drawn
from a numerical simulation to compute the deconvolution
factors Flin and its uncertainty ΔF in three mass bins of
equal number of clusters: M500 � 2 × 1014 h−1 M�, M500 =
2–3.6 × 1014 h−1 M�, and M500 � ×3.6 × 1014 h−1 M�. These
deconvolution factors were later used to deconvolve the effect of
the beam on the sample of X-ray-selected clusters. If for a real
cluster we use Flin instead of the (unknown) true factor F, the
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Figure 7. Ratio method with simulation (A). Likelihood function for subsamples of 623 clusters distributed (a) in three redshift bins z = ([<0.11], [0.11–0.17],
[>0.17]) of equal number of clusters and (b) in three mass bins M500 = ([�1.9], [0.19 − 0.37], [�3.7]) × 1014 h−1 M� also with the same number of clusters. In
both plots, dashed, dot-dashed, and solid lines correspond to low, intermediate, and high redshift/mass bins. (c) Dashed line: full likelihood of the single simulation
(a) and (b), the histograms of the value of α derived from 1000 simulations, arbitrarily normalized to unity and the thick solid line is a Gaussian fit to the histogram.

Figure 8. Frequency fit method with simulation (B). The cluster template was constructed using the universal pressure profile of Equation (3), with the parameters
given in Equation (4). (a) Likelihoods for three different frequencies: 44 GHz (dashed), 100 GHz (solid), and 343 GHz (dot-dashed line) and (b) for three mass bins:
dashed, dot-dashed, and solid lines correspond to the mass intervals M500 = ([�1.9], [0.19 − 0.37], [�3.7]) × 1014 h−1 M�. (c) Histograms of the value of α derived
from 1000 simulations, arbitrarily normalized to unity. The dot-dashed and solid lines correspond to the histogram and its Gaussian fit of α’s derived from y-maps
constructed with the universal pressure profile, and thick solid and solid lines to the β = 2/3 profile.

deconvolved signal (ΔTTSZ ∗ B)Flin would differ from the true
signal ΔTTSZ by an amount (ΔTTSZ ∗ B)ΔF . This uncertainty is
uncorrelated with the instrumental noise at the cluster location
and can be included in the likelihood analysis of Equation (8)
by adding it in quadrature: σ 2

tot,i = σ 2
noise,i + [(ΔTTSZ ∗ B)ΔF ]2.

On the negative side, the deconvolution coefficient does not
scale linearly with redshift, and Flin underestimates the true
deconvolution factor F especially at high redshifts, potentially
biasing our estimation of α. The effect would be more noticeable
at 44 GHz, since the linear factor would underestimate the
correction at small redshifts and overestimate it at higher
redshifts (see the discussion of Figure 8(a) below).

5. RESULTS AND DISCUSSION

We first tested the ratio and fit methods using a template
constructed from simulations, as described in Section 3.2. The
template contained a subset of 623 clusters distributed in mass
and redshift according to the cluster catalog selection function
(see Figure 4) Second, we repeated the analysis with the template
of X-ray-selected clusters. For the sample of real clusters the
template was constructed using the universal pressure profile
of Equation (3), with the parameters given in Equation (4) but
also with the β-model profile, with β = 2/3. The first and most
important conclusion is that we found no significant differences
from the results obtained using the simulated cluster template or
the universal pressure profile template, implying that the effect
of KSZ, cluster dynamical state, and deviations from spherical
symmetry are averaged out over such a large sample of clusters.
These effects were important when analyzing observations of

just a few clusters (Battistelli et al. 2002; Luzzi et al. 2009).
For real clusters, the β-model profile provides better constraints
on α than the universal pressure profile. This is consequence of
the TSZ profile falling less steeply for the former than for the
latter (Atrio-Barandela et al. 2008). With respect to the method
of analysis, the ratio method performs differently if there are
CMB residuals, but the differences are small for the fit method.
For the ratio method, we present the results with CMB residuals
of amplitude 1 μK (simulation type (A), Figure 7); for the fit
method, CMB is removed using the 217 GHz map (simulation
type (B), Figure 8) and we discuss all other cases.

To test the importance of the different contributions, we
define three mass bins M500 = ([<0.192], [0.192–0.365],
[>0.36]) × 1015 M�h−1 of equal number (∼208) of clusters,
and three redshift bins z = ([<0.11], [0.11–0.17], [>0.17])
with mean redshift 〈z〉 = (0.08, 0.14, 0.20), also with the same
number of clusters. We computed the likelihood (Equations (7)
and (8)) for the different mass and redshift bins and different
frequencies to determine the data subset with the largest statis-
tical power. To compute likelihoods, we subdivide the interval
α = [−1, 1] in 2001 steps. We perform 1000 Monte Carlo sim-
ulations for each cluster template, simulation type, and method.

5.1. Ratio Method

In Figure 7 we present the likelihood function of a single sim-
ulation randomly selected of our ensemble of 1000 simulations.
In Figure 7(a) we represent the likelihood for clusters within the
three redshift bins given above, marginalized over cluster mass,
and nine frequency ratios. Dashed, dot-dashed, and solid lines
correspond to the lower, intermediate, and high redshift bins.

8



The Astrophysical Journal, 757:144 (10pp), 2012 October 1 de Martino et al.

For the latter, α = −0.052 ± 0.011. In Figure 7(b) we present
the results binning clusters according to mass. Dashed, dot-
dashed, and solid correspond to lower, intermediate, and high
mass bins. As expected, the most massive clusters dominate
the likelihood. The value α in this single simulation mea-
sured from the bin containing the most massive clusters is
α = −0.028 ± 0.013. The full likelihood, including all red-
shifts and all masses, is represented in Figure 7(c) (dashed line).
We also plot the distribution of the values of α measured in
the thousand simulations (histogram). The thick solid line is
a Gaussian fit to the histogram. For the single simulation, we
obtain α = −0.048 ± 0.010 while the average over simulations
is ᾱ = −0.045, σᾱ = 0.010. By keeping fixed the template of
CMB residuals we verified that the effect of CMB residuals is
to bias our estimate of α since the rms dispersion in α equals
the error in α in one single realization. In this particular case,
α is biased to negative values, but for different realizations of
the residuals, the bias could be positive with equal probability.
If the CMB residual is as large as ΔTCMBres = 10 μK, then the
bias rises to ᾱ = 0.6. In the ideal case that the CMB template
removes the cosmological signal exactly and no CMB residuals
are present in the data, the result would be ᾱ = −0.003±0.011;
the error bar is similar but the bias becomes negligible.

The ratio method is biased both by the error in the denomina-
tor (Luzzi et al. 2009) and also by CMB and foreground resid-
uals present in the data. For this method to provide an unbiased
estimate of α, the residual contribution due to CMB and astro-
physical foregrounds must be smaller than ∼1 μK. The bias can
be estimated by analyzing clusters selected by galactic latitude,
since, as indicated, CMB and foreground residuals are largest
close to the galactic plane (see Planck HFI Core Team 2011b).
Also, we checked that ratios using lower resolution maps have
less statistical power to constrain α. In retrospect, this justifies
neglecting the 30, 545, and 857 GHz channels, with large noise
levels or (1/f) contributions, that would complicate the analysis
without adding more information.

5.2. Fit Method

The results of the fit method using the 217 GHz map to remove
the intrinsic CMB are presented in Figure 8. In panel (a) we plot
the likelihood function of a single simulation for three different
frequencies: 44 GHz (dashed), 100 GHz (solid), and 343 GHz
(dot-dashed line). The figure shows that the 100 GHz channel is
the most restrictive and the 44 GHz channel is the less restrictive
of the three. The latter is also biased since the deconvolution
factor is the largest of all the Planck channels (see Figure 5)
and is not as well represented by a linear approximation with a
small correction, especially at low masses (see Figure 6(a)). The
biased introduced does not alter significatively the final results
since the final likelihood is also dominated by the channels that
have the highest resolution and lowest noise, in this case the
100 and 143 GHz channels. In Figure 8(b) we represent the
likelihood for the three mass bins given above and marginalized
over frequencies; dashed, dot-dashed, and solid lines correspond
to the low, intermediate, and high mass intervals. The signal is
dominated by the most massive clusters that, on a flux-limited
sample, are, on average, at high redshift than the lower and
intermediate mass samples. For this particular realization, the
value estimated from the subsample of most massive clusters is
α = 0.020 ± 0.018, adiabatic evolution being only marginally
outside the 1σ level.

In Figure 8(c) we represent the histograms of 1000 simula-
tions together with their linear fits for cluster templates con-

structed using the universal pressure profile (dot-dashed line)
and the β = 2/3 (solid line). The mean and rms dispersion of
the estimated values are 〈α〉 = −0.011 ± 0.018 for the univer-
sal profile and 〈α〉 = 0.009 ± 0.008 for the β-model profile.
When all cluster properties are identical, the TSZ integrated
over the cluster extent will be larger for the β-model than for
the universal profile (see Figure 3(a)) so it must constrain α
better, as shown. We also carried out 1000 simulations using
method (A) with the hydrodynamical template, which contains
the KSZ component and CMB residuals of 1 μK amplitude.
The result was 〈α〉 = −0.008 ± 0.015, identical to the result
with method (B) above. Therefore, in the fit method is not so
important to have maps free of residuals as, for example, in the
ratio method. Using the 217 GHz map to remove the intrinsic
CMB signal alters the TSZ frequency dependence, but the TSZ
signal is still strongly dependent with redshift (see Figures 1(b)
and 2(b)) what is not the case in the ratio method (compare
Figures 1(a) and 2(a)) and an extra error of ∼1 μK, even if
correlated across frequencies, is not so significant.

Let us remark that the rms dispersion of α on 1000 simula-
tions, σα , is very similar to the error on α in one single realiza-
tion, both in the ratio and in the fit method, indicating that our
pipelines are efficient. The results obtained using y-maps con-
structed with clusters drawn from a hydrodynamical simulation
or from a catalog of X-ray-selected clusters show no significant
differences. In the hydro-simulation, the y-map integrates the
SZ signal up to z � 0.25 and contains all the projection effects
up to that redshift, not included in the X-ray-selected cluster
template; then, we can conclude that projection effects play no
significant role. This can be understood in the light of the re-
sults presented in Figure 8(b); the full likelihood is dominated
by the most massive clusters for which projection effects are
not significant (see A. Valente et al. 2012, in preparation for a
discussion on this point).

6. CONCLUSIONS

Planck offers an excellent opportunity to constrain the evo-
lution history of the CMB blackbody temperature with better
precision than quasar excitation lines using currently available
X-ray cluster catalogs. We have found that taking the ratio of
temperature anisotropies at different frequencies is biased. For
the method to be of use, it requires the level of foreground and
CMB residuals to be smaller than ∼1 μK. Fitting the frequency
dependence provides an alternative estimator, with different sys-
tematics but more difficult to implement since it requires both
an independent determination of the Comptonization parameter
and to deconvolve the antenna beam. The latter cannot be done
exactly if the cluster pressure profile is not known precisely. We
have shown that deconvolution using linear fits introduces an
error that can be easily incorporated into the analysis.

We have considered two possible methods to remove fore-
grounds and the cosmological CMB signal and the KSZ con-
tribution: using a CMB template, as described in Leach et al.
(2008) or using the 217 GHz map. We have carried out simula-
tions of both methods to investigate the differences on the final
results. We have shown that the ratio method performs rather
well if the cosmological CMB signal is removed exactly, but
the method is biased if a level of residuals of amplitude ∼1 μK
or larger are present. The fit method performs equally well in
both data sets, giving results that are only marginally biased.
However, since both methods have different systematics, they
will be complementary to each other. In particular, massive clus-
ters and the highest resolution/lowest noise channels have the
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largest statistical power to constrain α and subsets at different
redshifts, mass ranges, or galactic latitudes could be used to
reduce the bias. We have used a proprietary cluster catalog that
contains spectroscopic redshifts and all the required X-ray in-
formation to estimate the accuracy that would be achieved with
Planck data. We forecast that the final uncertainty will be about
0.011–0.016 a factor of 2–3 better than those obtained from
quasar spectra by Noterdaeme et al. (2011), depending on what
type of Planck data become publicly available.

Since our catalog is restricted to clusters with z � 0.3, we
have not extended our analysis beyond that redshift. Planck has
already detected around 200 clusters with an S/N � 10, one at
z � 0.94 with M500 � 8 × 1014 M�. Adding more clusters with
current or future experiments will help to detect possible de-
viations from adiabatic evolution, especially if clusters are of
higher mass and are at a higher redshift like the one recently re-
ported in Planck Collaboration (2011c). Once all PLANCK and
South Pole cluster candidates have been observed on the X-ray
and their redshift determined, the measurements proposed will
provide much stronger constraints on non-adiabatic evolution
than those quoted here.
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operation grant “Cosmology and Fundamental Physics with the
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tugal and FIS2009-07238 and CSD 2007-00050 from the Minis-
terio de Educación y Ciencia, Spain. The work of C.M. is funded
by a Ciência2007 Research Contract, funded by FCT/MCTES
(Portugal) and POPH/FSE (EC).
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