NOBLE GASES IN TWO FRAGMENTS OF DIFFERENT LITHOLOGIES FROM THE ALMAHATA SITTA METEORITE.

K. Nagao1, M. K. Haba2, M. Zolensky3, P. Jenniskens4 and M. H. Shaddad5. 1Geochemical Research Center, University of Tokyo, Tokyo 113-0033, Japan. E-mail: nagao@eqchem.s.u-tokyo.ac.jp. 2National Institute of Polar Research (NIPR), Tokyo 190-8518, Japan. 3ARES, NASA Johnson Space Center, Houston, Texas 77058, USA. 4SETI Institute, Mountain View, CA 94043, USA. 5Physics and Astronomy Department, University of Khartoum, Khartoum 11115, Sudan.

Introduction: The Almahata Sitta meteorite, whose preatmospheric body was the asteroid 2008 TC$_6$, fell on October 7, 2008 in the Nubian Desert in northern Sudan [e.g., 1, 2]. Numerous fragments have been recovered during several expeditions organized from December 2008 [2]. The meteorite was classified as an anomalous polymict ureilite with several different kinds of chondritic fragments [e.g., 3–5]. Noble gas studies performed on several fragments from the meteorite showed cosmic-ray exposure ages of about 20 My [e.g., 6–8], although slightly shorter ages were also reported in [9, 10]. Concentrations of trapped heavy noble gases are variable among the fragments of different lithologies [9, 10]. We report noble gas data on two samples from the #1 and #47 fragments [2], which were the same as those reported by Ott et al. [9].

Experimental Procedure: Weights of bulk samples #1 and #47 used in this work were 16.1 mg and 17.6 mg, respectively. Noble gases were extracted by stepwise heating at the temperatures of 800, 1200 and 1800°C for #1 and 600, 800, 1000, 1200, 1400, 1600 and 1800°C for #47. Concentrations and isotopic ratios of noble gases were measured with a modified-VG5400/MSIII at the Geochemical Research Center, University of Tokyo.

Results and Discussion: Cosmogenic He and Ne are dominant in both #1 and #47, but trapped Ar, Kr and Xe concentrations are much higher in #47 than in #1, showing that noble gas compositions in #47 are similar to those of ureilites. 3He/4Ne and 21Ne/22Ne of cosmogenic He and Ne are 4.8 and 1.12 for #1 and 3.6 and 1.06 for #47, respectively, both of which plot on a Bern line [11]. This indicates negligible loss of cosmogenic 3He from #1 in our sample, unlike the low 3He/21Ne of 3.1 for #1 by Ott et al. [9]. Concentrations of cosmogenic 3He and 21Ne (10^{-8} cc/g) are 30 and 6.3 for #1 and 32 and 9.0 for #47, respectively, which are higher than those in [9] and give cosmic-ray exposure ages of ca. 20 My depending on assumed production rates. Relative abundances of trapped 36Ar, 84Kr and 132Xe for #1 resemble those of Q-component, which is a dominant trapped noble gas component in chondrites. In contrast to #1, #47 plots below a trend for ureilites [12] as well as Q, which implies a partial loss of trapped 36Ar from the lithology of #47.