Investigating Brain-Computer Interface Technology for NASA applications

Brian Ramos
University of Rhode Island
Dr. Mihriban Whitmore
Habitability and Human Factors
Who am I?
About Me

- University of Rhode Island
 - B.S. Biomedical Engineering Degree
 - B.S. Electrical Engineering Degree
 - M.S. Electrical Engineering
 - Bio-Neuro Brain Modulator
A NASA Intern

- DO5 Cargo Integration and Operations
 - Assembly Operations Handbook
 - MRM-1 Russian Research Module Schematics
- \textit{EA3 System Architecture and Integration Office}
- Design and Development Branch
- Wrote LabVIEW control programs to control systems on board
Investigating BCI

- Exploratory Study on Brain-Computer Interface Technology (BCI)
 - IT labs alternative mode of control
- Electroencephalography (EEG)
 - Measures electrical activity along the scalp
- Brain-Computer Interface
 - Creates a pathway from the brain to a device
Investigating BCI

- Investigate Brain-Computer Interface Technology (BCI)
 - Evaluate the feasibility of BCI’s for use as a control system
 - Human factors component
 - Compare operation and efficiency of 3 various BCI headsets
 - Collect raw brain-wave data on specific thoughts and emotions
 - Use correlation algorithms to map thoughts to controls
 - Integrate real-time data to control a quadcopter
 - Create and document installation and testing procedures
 - Think about other potential applications
Investigating BCI

1 Electrode

512 Hz sampling rate

16 electrodes

128 SPS

32 electrodes

128 SPS
Documenting

- Installation process
 - Skype calls
 - Avoid pitfalls
 - References to files and information

Testing

- Procedures and notes
- Guidelines
- How to process the data
Testing

- Mind Map Setup
- Directional
 - Neutral
 - Left, Right
 - Up, Down
 - 100 trials, 15 seconds each
- Emotional states
 - Anxious, happy, sad
 - Frustrated, concentrating
 - 50 trials, 15 seconds each
Handling Data

- Emotiv
 - CSV Converter
- Cognionics
 - MATLAB
 - Process multiple batches
 - Automatically add headers
 - Create file name of choice
Challenges

- **Human Factors aspect**
 - Test length and comfort, Noise issues, Sensitivity to mental state
Results

Deliverables

- Data sets
 - Over 300 Directional and emotional trials
- Installation manuals
- Testing procedures
 » Estimates for setup
 » Comfort levels

Big Picture Contributions

- Jump start
- Challenges
Human Factors Risks

Mitigate Risks for:

- Tasks
 - Mental states and fatigue
- Training
 - Feedback performance
- Human-Computer Interactions
 - Design interfaces to display information in a way that makes sense.
Moving Forward

- Use another program to access real-time data
- Neurosky data
- Collaborate with group in EV to integrate this data with their systems
- Run our data through analysis to try and find correlation between trials and directions
 - Polarized especially
Social Media to Gather Human Factors Information

- Can we get useful Human Factors information from social media?
 - Out of my element
 - Focus on Twitter
 - Reid Wiseman
 - Found sites to go back to day one (Topsy)
 - What’s the best way to do this?
Adaptation, Equipment, and Training

First day on the job. Frustration was frequent in 0g! pic.twitter.com/D1cz46cy4y

Still adjusting to zero g. Just flipped a bag upside down to dump out the contents. #doesntworkhere

Two months in space. Floating is excellent but my brain still needs to visualize a ceiling, 2 walls, floor. Not fully there yet.

Know that odd pain when you hit your funny bone? 2-3 times a day up here hitting various handrails.
Procedure for Documentation and Recommendations

- Utilized a website to automatically archive tweets
- Export these to Excel
- Added formulas to automatically detect pull out timestamp and picture link
- Automatically make hyperlink
- Keywords / risks

- Social media could be a good tool
 - Instagram for equipment and visual information
 - Facebook, Tumblr
Knowledge Gained

- A lot of experience with different BCI technologies
- Human factors perspective – piece of the puzzle
- User point of view and research
- Improved documentation and procedure writing skills
- Investing time
- Patience and one on one teamwork
Thank you

- Mihriban Whitmore
- Lauren Merkle
- Mai Lee (Not Cyrus) Chang
- Frank Delgado
- Shelby Thompson
- Ron “Big Deal” McNeel
- Kendall Youngstrom
- All of NSBRI
Where Next

- NASA
- International Space University M.S.
- Engineering World Health
- Full-Time
"Houston, we have a problem."

ORION 13
Investigating BCI

- Neurosky
 - Games
 - SDK
 - Concentration
 - Frequency range

<table>
<thead>
<tr>
<th>Brainwave Type</th>
<th>Frequency range</th>
<th>Mental states and conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta</td>
<td>0.1Hz to 3Hz</td>
<td>Deep, dreamless sleep, non-REM sleep, unconscious</td>
</tr>
<tr>
<td>Theta</td>
<td>4Hz to 7Hz</td>
<td>Intuitive, creative, recall, fantasy, imaginary, dream</td>
</tr>
<tr>
<td>Alpha</td>
<td>8Hz to 12Hz</td>
<td>Relaxed, but not drowsy, tranquil, conscious</td>
</tr>
<tr>
<td>Low Beta</td>
<td>12Hz to 15Hz</td>
<td>Formerly SMR, relaxed yet focused, integrated</td>
</tr>
<tr>
<td>Midrange Beta</td>
<td>16Hz to 20Hz</td>
<td>Thinking, aware of self & surroundings</td>
</tr>
<tr>
<td>High Beta</td>
<td>21Hz to 30Hz</td>
<td>Alertness, agitation</td>
</tr>
</tbody>
</table>
Investigating BCI

- Emotiv
 - Expressiv Suite
 - Affectiv Suite
 - Cognitiv Suite
 - Testbench
 - Keystrokes
Investigating BCI

- Cognionics
 - EEG reader
 - Map
 - Impedance
 - Signal readout
Hobbies