

July 2014

NASA/TM-2014-218285

A Self-Stabilizing Hybrid-Fault Tolerant
Synchronization Protocol

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

 Since its founding, NASA has been
dedicated to the advancement of aeronautics
and space science. The NASA scientific and
technical information (STI) program plays a
key part in helping NASA maintain this
important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

 TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

 Access the NASA STI program home page at

http://www.sti.nasa.gov

 E-mail your question via the Internet to

help@sti.nasa.gov

 Fax your question to the NASA STI Help Desk

at 443-757-5803

 Phone the NASA STI Help Desk at

443-757-5802

 Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

http://www.sti.nasa.gov/
../../../Desktop/help@sti.nasa.gov

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

July 2014

NASA/TM-2014-218285

A Self-Stabilizing Hybrid-Fault Tolerant
Synchronization Protocol

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

The use of trademarks or names of manufacturers in this report is for accurate reporting
and does not constitute an official endorsement, either expressed or implied, of such
products or manufacturers by the National Aeronautics and Space Administration.

i

Abstract

Abstract – In this report we present a strategy for solving the Byzantine general problem for self-
stabilizing a fully connected network from an arbitrary state and in the presence of any number
of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. Our
solution applies to realizable systems, while allowing for differences in the network elements,
provided that the number of arbitrary faults is not more than a third of the network size. The
only constraint on the behavior of a node is that the interactions with other nodes are restricted to
defined links and interfaces. Our solution does not rely on assumptions about the initial state of
the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes
are anonymous, i.e., they do not have unique identities. We also present a mechanical
verification of a proposed protocol. A bounded model of the protocol is verified using the
Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness
of the bounded model of the protocol as well as confirming claims of determinism and linear
convergence with respect to the self-stabilization period. We believe that our proposed solution
solves the general case of the clock synchronization problem.

ii

Table of Contents

ABSTRACT ... I

TABLE OF CONTENTS ...II

1. INTRODUCTION .. 1

2. SYSTEM OVERVIEW .. 3
2.1. DRIFT RATE ... 4
2.2. THE CLOCKS .. 4
2.3. COMMUNICATION DELAY .. 6

3. PROTOCOL DESCRIPTION ... 7
3.1. THE SYNC MESSAGE AND ITS VALIDITY ... 7
3.2. THE MONITOR, THE SYNCHRONIZER, AND PROTOCOL FUNCTIONS ... 8
3.3. PROTOCOL ASSUMPTIONS .. 9
3.4. THE SELF-STABILIZING DISTRIBUTED CLOCK SYNCHRONIZATION PROBLEM .. 9
3.5. WHAT SELF-STABILIZATION PROPERTIES MEAN ... 10
3.6. THE SELF-STABILIZING, SYMMETRIC-FAULT TOLERANT SYNCHRONIZATION PROTOCOL 10
3.7. DETERMINING PROTOCOL PARAMETERS .. 12

4. VERIFICATION OF THE CORRECTNESS OF THE PROTOCOL VIA MODEL CHECKING 13
4.1. PROPOSITIONS .. 14

5. CONCLUSIONS ... 15

REFERENCES .. 16

APPENDIX A ... 19

1

1. Introduction

Distributed systems have become an integral part of safety-critical computing applications,
necessitating system designs that incorporate complex fault-tolerant resource management
functions to provide globally coordinated operations with ultra-reliability. As a result, robust
clock synchronization has become a required fundamental component of fault-tolerant safety-
critical distributed systems. Since physical oscillators are inherently imperfect, local clocks of
nodes of a distributed system, driven by these oscillators, do not keep perfect time and can drift
with respect to real time and one another. Thus, the local clocks of the nodes must periodically
be resynchronized. As a result, a fault-tolerant system needs a clock synchronization algorithm
that tolerates imprecise local clocks and faulty behavior by some processes. In this paper we
present a strategy for synchronizing distributed systems in the presence of various faults,
including any number of arbitrary (Byzantine) faults.

We define synchronization of a distributed system as the process of achieving and maintaining
a bounded skew among independent local clocks by exchanging local time information. A
distributed system is defined to be self-stabilizing if, from an arbitrary initial state, it is
guaranteed to reach a legitimate state in a finite amount of time and remain in a legitimate state.
For clock synchronization, a legitimate state is a state where all parts in the system are in
synchrony.

The self-stabilizing distributed-system clock synchronization problem is to develop an algorithm
(i.e., a protocol) to achieve and maintain synchrony of local clocks in a distributed system after it
experiences system-wide disruptions in the presence of network element imperfections.
Hereafter in this report, we use the term synchronization to mean self-stabilizing clock
synchronization in distributed systems.

Besides being an intellectual curiosity and a theoretical problem in computer science and
engineering, synchronization has practical significance as a fundamental service for higher-level
algorithms that solve other problems. For example, in safety-critical TDMA (Time Division
Multiple Access) architectures [Kop 1997][Min 2002][Tor 2005A, 2005B], synchronization is
the most crucial element of these systems.

There is a vast literature on synchronization phenomena exhibited by humans, animals, and even
inanimate objects. There are also many proposed solutions for synchronization of a large
number of entities based on models inspired by nature or abstract ideas. There exist many
solutions for special cases and restricted conditions. In the context of synchronization, the
convergence and closure properties address achieving and maintaining network synchrony,
respectively (see Section 3.3 for a formal definition of these parameters). There are many
solutions that deal with the closure property [Lam 1985][Sri 1987][Wel 1988] which either do
not address convergence or provide an ad hoc solution [Dav 1978] for initialization and
integration, separately. Typically, the assumed topology is a regular graph1 such as a fully
connected graph or a ring. Although these topologies do not necessarily correspond to practical
applications or biological, social, or technical networks, nevertheless, they provide a base case to

1 A regular graph is a graph where each vertex has the same number of neighbors, i.e., every vertex has the same
degree or valency. A regular graph with vertices of degree k is called a k-regular graph or regular graph of degree k.

2

solve the distributed synchronization problem. Furthermore, the existing models and solutions
do not always achieve synchrony and, therefore, do not solve the general case of the distributed
synchronization problem. Furthermore, even when the solutions achieve synchrony, the time to
achieve synchrony is very large for many of the solutions.

Another key factor in a proposed solution is whether or not it deals with faults. A fault is a
defect or flaw in a system component resulting in an incorrect state [Tor 2005A][But 2008]. The
requirement to handle faults adds a new dimension to the complexity of the synchronization of
fault-tolerant distributed systems. A fundamental property of a robust distributed system is the
capability of tolerating and potentially recovering from failures that are not predictable in
advance. In [Lam 1982, 1985] various ideas for overcoming failures in a robust distributed
system are addressed that include tolerating Byzantine faults. There are many algorithms that
address permanent faults [Sri 1987], where the issue of transient failures is either ignored or
inadequately addressed. There are many efficient Byzantine clock synchronization algorithms
proposed that are based on assumptions on initial synchrony of the nodes [Sri 1987][Wel 1988]
or existence of a common pulse at the nodes, e.g., the first protocol in [Dol 2004]. There are also
many clock synchronization algorithms that are based on randomization and, therefore, are non-
deterministic, e.g., the second protocol in [Dol 2004].

A thorough understanding of the synchronization of a distributed system has proven to be elusive
for decades. The main challenge associated with distributed synchronization is the complexity of
developing a correct and verifiable solution. It is possible to have a solution that is hard to
prove or refute. Such a solution, however, is not likely to be accepted or used in practical
systems. The proposed solutions must restore synchrony and coordinated operations after
experiencing system-wide disruptions in the presence of network element imperfections and, for
ultra-reliable distributed system, in the presence of various faults. In addition, a proposed
solution must be proven to be correct. In the absence of a paper-and-pencil proof, the use of
fully automated formal methods techniques is a viable alternative. In [Mal 2006A] a
counterexample is presented to a clock synchronization algorithm [Dal 2003] that is based on the
existence of a common pulse at the nodes. Furthermore, addressing network element
imperfections, such as oscillator drift with respect to real time and differences in the lengths of
the physical communication media, is necessary to make a solution applicable to realizable
systems.

Two Byzantine-fault-tolerant self-stabilizing protocols for distributed systems were reported in
[Mal 2006B] and [Mal 2009]. Instances of these protocols were demonstrated via mechanical
verification to self-stabilize from any state, in the presence of at most one permanent Byzantine
faulty node, and to deterministically converge in linear time with respect to the synchronization
period [Mal 2008]. These protocols, however, do not solve the general case of the problem in
the presence of multiple Byzantine faults [Mal 2009].

Drawing from our prior experience, in this report we present a strategy for solving the Byzantine
general problem. Our solution self-stabilizes a fully connected network from an arbitrary initial
state and in the presence of any number of arbitrary (Byzantine) faulty nodes, for realizable
systems, while allowing for differences in the network elements, provided that the number of
arbitrary faults is not more than a third of the network size [Lam 1982, 1985][Dol 1984]. The

3

main problem in the self-stabilization problem is a lack of a symmetric view of the system across
all good (non-faulty) nodes (processors). What if this issue is somehow resolved? Can the
system self-stabilize in the presence of symmetric faults? A fault is symmetric when all good
nodes observe consistent error manifestations, but do not know that it is bad [Min 2002]. Thus,
the crux of the solution presented in this report is to 1) first convert any message to a symmetric
message and, 2) use a verified protocol that is based on a message symmetry assumption to solve
the synchronization problem.

There are a number of ways of achieving message symmetry across the system. The Interactive
Consistency (IC) algorithm [Pea 1980], for instance, can be used to transform a message,
including an asymmetric message, to a symmetric message, whereby the good nodes collectively
either accept or reject it symmetrically (an agreement) within a time bound. Other methods
include using variety of engineering practices, for example, using self-checking pair at the node
level [Hoy 1992][ARI 1993] or central guardian at the system level [Kop 1993][Bau 2003].

In this report, we present a protocol (algorithm) that tolerates symmetric faults, provided that
there are more good nodes than faulty ones. We also present the model checking results of a
bounded model of the protocol that was used to validate the correctness of the protocol as it
applies to fully connected networks and confirmed the claims of determinism and linear
convergence. Our solution applies equally well to any method that can guarantee message
symmetry across all receiving good nodes.

This report is organized as follows. In Section 2 we provide a system overview. We present the
protocol and its description in Section 3. In Section 4 we present the model checking efforts
toward verification of correctness of a bounded model of the protocol and the results of that
effort. Finally, we present concluding remarks in Section 5 and enumerate some possible
applications.

2. System Overview

We considered a system of pulse-coupled entities (e.g., oscillators, pacemaker cells) pulsating
periodically at regular time intervals. These entities are said to be coupled through some
physical means (wire or fiber cables, chemical process, or wirelessly through air or vacuum) that
allows them to influence each other. We modeled the system as a graph with a set of nodes
(vertices) that represent the pulse-coupled entities and a set of communication links (edges) that
represent their interconnectivity.

The underlying topology considered is a fully connected network of K ≥ 1 nodes that exchange
messages through a set of communication links. Nodes are anonymous, i.e., they do not have
unique identities. The system consists of a set of good nodes and a set of faulty nodes. A good
node is assumed to actively participate in the synchronization process and correctly execute the
protocol. A faulty node is either benign (detectably bad), symmetric, or arbitrary (Byzantine).
We define a faulty node from the perspective of a source node (sender). A maximum of F faulty
nodes are assumed to be present in the system, where F ≥ 0. The minimum number of good
nodes in the system, G, is defined by G = K - F nodes. We denote the maximum number of

4

detectably bad nodes by FD, symmetrically bad nodes by FS, arbitrarily (Byzantine) bad nodes by
FA, and the maximum number of bad nodes by F = FD + FS + FA. The communication links are
assumed to connect a set of source nodes to a set of destination nodes with a source node being
different than a destination node, furthermore, we assume no physical self-loop link from the
node back to itself. We attribute a faulty link behavior to its source node. Therefore, all
communication links are assumed to be good, i.e., reliably transfer data from their source nodes
to their destination nodes. The nodes communicate with each other by exchanging broadcast
messages. Broadcast of a message by a node is realized by transmitting the message, at the same
time, to all nodes that are directly connected to it. The communication network does not
guarantee any relative order of arrival of a broadcast message at the receiving nodes, that is, a
consistent delivery order of a set of messages does not necessarily reflect the temporal or causal
order of the message transmissions [Kop 1997]. There is neither a central system clock nor an
externally-generated global pulse or message at the network level. The communication links and
nodes can behave arbitrarily, provided that the system eventually adheres to the protocol
assumptions (Section 3.3).

2.1. Drift Rate

Each node is driven by an independent, free-running local physical oscillator (i.e., the phase is
not controlled in any way) and two clocks (i.e., counters), denoted StateTimer and LocalTimer,
which locally keep track of the passage of time and are driven by the local physical oscillator.
An oscillator tick, also called a clock tick, is a discrete event and the basic unit of time in the
network [Tor 2005A].

An ideal oscillator has zero drift rate with respect to real time, perfectly marking the passage of
time. Real oscillators are characterized by non-zero drift rates with respect to real time. The
oscillators of the nodes are assumed to have a known bounded drift rate, ρ, where ρ is a constant,
unitless, non-negative real value and is constrained to 0  ρ << 1. The maximum drift of the
fastest clock of a good node over a time interval of t is given by (1 + ρ)t. The maximum drift of
the slowest clock of a good node over a time interval of t is given by (1/(1 + ρ))t.
Therefore, the relative drift of the fastest and slowest good nodes is (1 + ρ)t - (1/(1 + ρ))t.

In simulation and model checking, typically time is modeled to reflect real time with a certain
accuracy, and the drift of a node is measured with respect to that model of time. In a distributed
system, addressing clock accuracy is orthogonal to achieving and maintaining synchrony which
is a measure of the relative precision of the good nodes. Thus, in the context of a correctness
proof of a distributed protocol, only the relative drift of the good nodes is considered.

2.2. The Clocks

Each node has two primary clocks, StateTimer and LocalTimer, which locally keep track of the
passage of time and are driven by the node’s local physical oscillator. The StateTimer is used for
operations local to the node as they relate to achieving and maintaining synchrony among the
good nodes. The LocalTimer is used to properly filter out inherent deviation in the StateTimer

during the resynchronization process (to be defined shortly) by providing a jitter-free clock to
the higher level protocols. The LocalTimer is also used in assessing the state of the system from

5

an external perspective. Activities of the StateTimer and LocalTimer of a node during steady
state are depicted in Figure 1.

LocalTimer

StateTimer

time

Accept

Resynchronization
Process

Figure 1. Activities of a good node during steady state.

The StateTimer takes on discrete values and is a monotonic linear function increasing from an
initial value to a maximum value. The synchronization period during steady state, denoted PST,
is defined as the largest time interval between any two consecutive resets of the StateTimer by a
good node. As shown in Figure 1, if uninterrupted, the StateTimer periodically takes on all
discrete values from its initial value, 0, to its maximum value, PST, linearly increasing within
each period and is bounded by 0 ≤ StateTimer ≤ PST.

The LocalTimer is also driven by the local physical oscillator, takes on discrete values, and
locally keeps track of the passage of time. The LocalTimer is a monotonic linear function
increasing from an initial value to a maximum value. As shown in Figure 1, if uninterrupted, the
LocalTimer periodically takes on all discrete values from its initial value, 0, to its maximum
value, PLT, linearly increasing within each period and is bounded by 0 ≤ LocalTimer ≤ PLT.

These logical clocks need to be periodically synchronized due to the inherent drift in their local
physical oscillators. In order to achieve synchronization, the nodes communicate by exchanging
Sync messages. The periodic synchronization during steady state is referred to as the
resynchronization process which starts when the first good node begins to transmit a burst of
consecutive Sync messages and ends after the last occurrence of consequent accept event at a
good node. An accept event occurs when a good node receives a sufficient number of Sync
messages from as many good nodes. The sufficiency of Sync messages is a function of the type
and number of faults being tolerated. An upper bound on the duration of the resynchronization
process will be determined later in this report.

As discussed previously, the LocalTimer is intended to be used by higher level protocols, and it
must be managed properly to provide the desired monotonically increasing value between
adjustments and despite inherent deviation in the StateTimer. The LocalTimer is incremented
once every local clock tick and is reset either when it reaches its maximum allowed value, PLT, or
when the StateTimer of the node has reached ResetLocalTimerAt, where ResetLocalTimerAt is
constrained by the following inequality:

πinit ≤ ResetLocalTimerAt ≤ PST - π (1)

6

Where  is the ceiling function, πinit is the initial network precision after a resynchronization
process, and π is the upper bound on the guaranteed precision.

The guaranteed synchronization precision, denoted π, is the guaranteed upper bound on the
maximum separation between the LocalTimers of any two good nodes. The initial precision,
πinit, is the maximum difference between StateTimers of any two good nodes upon completion of
the resynchronization process. The ResetLocalTimerAt can be given any value in the range
specified in inequality (1). However, the value must be the same at all good nodes. In this
inequality, the lower bound indicates when all good nodes have reset their StateTimers and the
upper bound indicates when the first good node might time out and begin the next round of
resynchronization process. We choose the earliest such value, ResetLocalTimerAt = πinit, to
reset the LocalTimer of all good nodes. Any value greater than πinit will prolong the
convergence time. The convergence time, denoted C, is defined as the bound on the maximum
time it takes the network to achieve the guaranteed precision π.

2.3. Communication Delay

The communication delay between directly connected (adjacent) nodes is expressed in terms of
the minimum event-response delay, D, and network imprecision, d. These parameters are
described with the help of Figure 2.

t +D0 t +D+d0
t0

time

A

B

C

Figure 2. Event-response delay, D, and network imprecision, d.

As depicted in this figure, a message transmitted by node A at real time t0 is expected to arrive at
its directly connected adjacent nodes (B, C, …), be processed, and subsequent messages to be
generated by those nodes within the time interval [t0 + D, t0 + D + d]. Communication between
independently-clocked nodes is inherently imprecise. The network imprecision, d, is the
maximum time difference among all receivers of a message from a transmitting node with
respect to real time. The imprecision is due to many factors including, but not limited to, the
drift of the oscillators with respect to real time, jitter, discretization error, temperature effects and
differences in the lengths of the physical communication media. These two parameters are
assumed to be bounded such that D > 0 and d  0 and both have units of real-time clock ticks.
The communication delay, denoted , is expressed in terms of D and d, is defined as  = D + d,
and has units of real-time clock ticks. Therefore, the communication delay between any two
directly connected adjacent nodes is bounded by [D, ].

Although from an external perspective, the value of D and d, and hence , are real numbers,
locally and at the node level, they are treated as discrete values. In other words, and in the rest of
the report, from the local perspective of a node, D = D, d = d, and  = D + d.

7

3. Protocol Description

In this section we provide an intuitive description of the protocol behavior followed by a detailed
description. In order to achieve synchronization, the nodes communicate by exchanging Sync
messages. Nodes periodically undergo a new round of the resynchronization process. When a
node’s StateTimer times out, it initiates a new round of the resynchronization process by
broadcasting a continual burst of (once per ) Sync messages to all other nodes that are directly
connected to it. During this process, the StateTimer is at its maximum and remains constant, i.e.,
the node neither increments nor resets its StateTimer. This process continues until all good
nodes participate in the resynchronization process and converge to the guaranteed precision π. A
good node uses its own message. When a good node receives a sufficient number of Sync
messages from as many good nodes, an accept event occurs. The sufficiency of Sync messages
is a function of the type and number of faults being tolerated. When an accept event occurs, the
node ends its continual broadcast and concludes the resynchronization process by resetting its
StateTimer. Note that, as depicted in Figure 1, consecutive accept events may occur during a
resynchronization process.

Since, due to drift, the duration of the resynchronization process is potentially more than , and
during this process, the StateTimer holds a constant value (its maximum), it not a reliable clock
source for higher level protocols. Thus, the LocalTimer is introduced. To provide the desired
monotonically increasing clock source to higher-level protocols, the LocalTimer gets reset when
the StateTimer has reached a predefined value greater than or equal to the guaranteed initial
network precision, πinit.

3.1. The Sync Message And Its Validity

We defined earlier that synchrony is a measure of the relative precision of the good nodes. In
order to achieve and maintain desired synchrony, the nodes communicate by exchanging Sync
messages2. Assuming physical-layer error detection is dealt with separately, the reception of a
Sync message is indicative of its validity in the value domain. Upon starting a new round of the
resynchronization process, the node continually sends out Sync messages, once per , to other
nodes that are connected to it. Therefore, we say that a Sync message has a life-span, and we
limit the life-span of the Sync message at the receiving nodes to be . A Sync message from a
given source is valid if it arrives at or after one D of an immediately preceding Sync message
from that source, that is, the valid message in the value domain, i.e., valid Sync messages are
rate-constrained. Again assuming physical-layer error detection is dealt with separately, the
reception of a Sync message is indicative of its validity in the value and time domains. Since a
good node uses its own message, but we assume no physical self-loop link from the node back to
itself, the message becomes valid only after , giving the own message the longest (worst case)
transmission delay time. A valid Sync message becomes invalid after its life-span expires.
However, while valid, the Sync message may be used multiple times and result in multiple accept
events.

2 Since only one message type is used for the operation of this protocol, a single bit suffices.

8

3.2. The Monitor, The Synchronizer, And Protocol Functions

A node consists of a synchronizer and a set of monitors. To assess the behavior of other nodes,
a node employs as many monitors as the number of nodes that are directly connected to it, with
one monitor for each source of incoming message. A node uses but does not monitor, its own
message. The message is kept within the node and, therefore, no physical self-loop link back to
itself. A monitor keeps track of the activities of its corresponding source node. Specifically, a
monitor reads, evaluates, validates, and stores the last valid message it receives from that node.
A valid Sync message is then conveyed to the local synchronizer. The assessment results of the
monitored nodes are then utilized by the synchronizer in the synchronization process. A monitor
disposes of the valid message after its life-span expires.

The function ValidateMessage() (shown in Figure 3) is used by the monitors to determine
whether a received Sync message meets the minimum timing requirement, and thus is valid in
both value and time domains, and whether a stored valid Sync message has reached its lifespan
and expired. The function Accept(), used by the synchronizer, examines availability of sufficient
valid Sync messages. The sufficiency of available, valid messages, denoted by TA, is a function
of the type and number of faults to be tolerated. TA = FD + 1 and TA = FS + 1. For tolerating
benign and symmetric faults, respectively, the following relations must hold: TA = FD + FS + 1
for tolerating FD + FS simultaneous faults. When a sufficient number of messages have been
received, the Accept() function returns a Boolean value of true.

Figure 3. The protocol functions.

ValidateMessage():

if (incoming message = Sync) and (MessageTimer ≥ D)
 MessageValid = true, // store it,

MessageTimer = 0,

elseif (MessageTimer ≥ MessageLifeSpan)
MessageValid = false, // it expired

elseif (MessageTimer < MessageLifeSpan)
MessageTimer = MessageTimer + 1.

Accept():

if (number of stored Sync messages ≥ TA)
return true,

else
return false.

9

3.3. Protocol Assumptions

1. The topology is a fully connected graph3.
2. The number of nodes constituting the network is K, where K  2FS + FD +1, and FS is the

maximum number of symmetrically bad nodes.
3. Nodes either correctly execute the protocol and are good, symmetrically bad, FS or

detectably bad, FD.
4. Links are bidirectional and correctly transmit data from their sources to their destinations.
5. The bound on the oscillator drift rate is ρ, where 0 ≤ ρ << 1.
6. A message sent by a node will be received and processed by its directly-connected,

adjacent nodes within , where  = (D + d).
7. Physical-layer error detection is dealt with separately, thus, the reception of a Sync

message is indicative of its validity in the value and time domains.

3.4. The Self-Stabilizing Distributed Clock Synchronization Problem

To simplify the presentation of the solution, it is assumed that all time references are with respect
to an initial real time t0, where t0 = 0, and for all t ≥ t0 the system operates within the protocol
assumptions. The maximum difference in the value of LocalTimer for all pairs of nodes at time
t, Net(t), is determined by the following equation that accounts for the variations in the values of
the LocalTimer across all good nodes.

r = π (1 + ρ) is a time interval encompassing π,
LocalTimermin(t) = min (Ni.LocalTimer(t)), for all i, and

LocalTimermax(t) = max (Ni.LocalTimer(t)), for all i.
Net(t)= min ((LocalTimermax(t) - LocalTimermin(t)),

 (LocalTimermax(t - r) - LocalTimermin(t - r))).

The following symbols were defined earlier and are listed here for convenience:

 PLT has units of real time clock ticks, and is defined as the upper bound on the time
interval between any two consecutive resets of the LocalTimer by a node and PLT > 0.

 Net(t), for real time t, is the maximum difference of values of the LocalTimers of any two
nodes (i.e., the relative clock skew) for t  t0.

 π, the synchronization precision, is the guaranteed upper bound on Net(t) for all t  C,
0 ≤ π << PLT.

 C, the convergence time, is defined as the bound on the maximum time for the network to
achieve the guaranteed precision π.

To prove that a protocol is self-stabilizing, it has to be shown that there exist C and π such that
the following self-stabilization properties hold.

1. Convergence: Net(C)  π, 0  π << PLT
2. Closure: For all t  C, Net(t)  π
3. Congruence: For all nodes Ni, for all t  C, (Ni.LocalTimer(t) = π)  Net(t)  π.

3 We leave generalization of the topology for future work.

10

4. Liveness: For all t  C, LocalTimer of every node sequentially takes on at least all
discrete values in [0, PST - π - ], see Figures 1 and 6.a.

3.5. What Self-Stabilization Properties Mean

The convergence and closure properties address achieving and maintaining network synchrony,
respectively. As formally defined in the previous section, given sufficient time, C, the
convergence property examines whether or not the system has reached a point where all nodes
are within the specified precision. The closure property, on the other hand, examines whether or
not the system starting within the specified precision will remain within that precision thereafter.
The convergence and closure properties provide an external view of the system, whereby the
external viewer can examine whether or not the system has self-stabilized.

In safety-critical TDMA (Time Division Multiple Access) architectures [Kop 1997] [Min 2002]
[Tor 2005A, 2005B], synchronization is the most crucial element of these systems. More
precisely, TDMA-type applications are based on the fundamental assumption of the existence of
initial synchrony. The protocol presented in this report is meant to provide this fundamental
requirement of TDMA-type applications to higher-level protocols. However, one of the
challenges in employing multiple protocols in distributed system has been the integration of
these protocols operating at different levels of application. Previously, the integration of a
lower-level protocol with higher-levels either has not been addressed or had simply been
overlooked. The congruence property addresses this essential requirement. Unlike the
convergence and closure properties that provide system view from the perspective of an external
viewer, the congruence property provides a local view from the perspective of a node by
providing the necessary and sufficient conditions for the node to locally determine whether or
not the system has converged. The congruence property, therefore, is essential in the integration
of this underlying self-stabilization protocol with higher-level protocols in the system.

The liveness property examines whether or not a node takes on all possible discrete values within
an expected range. In other words, the system is “alive” and the good nodes execute the protocol
properly, and time advances within each node.

3.6. The Self-Stabilizing, Symmetric-Fault Tolerant Synchronization Protocol

In this section, we present the self-stabilizing, symmetric-fault tolerant synchronization protocol
that is based on message symmetry assumption. We mentioned earlier that in order to achieve
and maintain synchrony, the nodes communicate by exchanging Sync messages. Assuming
physical-layer error detection is dealt with separately, the reception of a Sync message is
indicative of its validity in the value domain. Upon start of a new round of a resynchronization
process, the node continually sends out Sync messages, once per , to other nodes that are
connected to it. Consequently, the life-span of a Sync message at the receiving nodes is set to be
. Also, we mentioned earlier that for tolerating symmetric faults, sufficiency for the Accept()
function is determined by TA = FD + FS + 1.

The protocol, executed by all good nodes, is presented in Figure 4 and consists of a synchronizer
and a set of monitors which execute once every local clock tick. Four concurrent if statements

11

collectively describe the synchronizer. These statements are labeled ST (StateTimer), LT
(LocalTimer), TS (Transmit Sync), and TT (TransmitTimer). The function ValidateMessage()
describes the monitor.

Figure 4. The Symmetric-Fault Tolerant Protocol.

The following is a list of pertinent protocol measures.

K ≥ 2FS + 1, where FS is the maximum number of simultaneous symmetrically faulty nodes
δ(PST) denotes the maximum drift for the duration of PST , δ(PST)  0
0 ≤ ρ << 1
0 < D ≤  << PST < PLT
0 ≤ StateTimer ≤ PST
0 ≤ LocalTimer ≤ PLT
πinit = d +  + δ(d+)
π = πinit + 2δ(PST)  0, for all t  C, and so, 0 ≤ π << PST
trp = π + 2 + πinit , where, trp denotes duration of the resynchronization process during

steady state.
PLT  PST + trp = PST + π + 2 + πinit
C = PLT + ResetLocalTimerAt + 2

Since 0 <  << PST < PLT, and the LocalTimer is reset after reaching PLT (worst-case
wraparound), a trivial solution is not possible.

Appendix A provides an example to give the reader a quick review and help in understanding of
the behavior of the protocol.

Synchronizer:

ST1: if (StateTimer < 0) or (Accept())
StateTimer := 0, // reset

ST2: elseif (StateTimer < PST)
StateTimer := StateTimer + 1.

LT1: if (LocalTimer < 0) or
 (LocalTimer  PLT) or
 (StateTimer = πinit)
LocalTimer := 0, // reset

LT2: else
LocalTimer := LocalTimer + 1.

TT1: if (TransmitTimer < 0) or
 ((TransmitTimer  ) and
 (StateTimer  PST))
TransmitTimer := 0,

TT1: elseif (TransmitTimer < )
TransmitTimer := TransmitTimer + 1.

TS1: if (StateTimer  PST) and // timed out

 (TransmitTimer  ) and
 (not Accept())
Transmit Sync.

Monitor:

ValidateMessage().

12

3.7. Determining Protocol Parameters

We refer to ρ, d, D, K, T, and PST as the fundamental protocol parameters and the remaining as
the derived parameters. In this section, we show how the derived protocol parameters are
computed.

πinit – The initial precision, πinit, is the maximum difference between StateTimers of any two
good nodes during steady sate, for all t  C, and upon completion of a resynchronization process.
Thus, as depicted in Figure 5, πinit = d +  + δ(d+). In this figure, transmitted Sync messages are
shown using ‘↑’, received Sync messages using ‘↓’, and the accept events are marked by ‘●’ on
the time axis.

N2

N1

1 2 1 f

 1 2 1 f

d d

time

time

Figure 5. Network precision.

  Init

Fastest Node
Slowest Node 0 PST

0 PST



Figure 6.a. Network precision.

Fastest Node
Slowest Node

0 PST

0 PST

 PST
 PST

Real time
0 PST

Figure 6.b. Network precision.

π – From the definition of the network precision, π, it follows that, for all t  C, π is the sum of
initial precision and the maximum drift among the good nodes after PST from the completion of
the resynchronization process. Thus, as depicted in Figure 6, even when the nodes start in

13

perfect synchrony, π = 2δ(PST) and since in the worst case they start within πinit, therefore, for the
worst case, π = πinit + 2δ(PST).

trp – From the definition of the resynchronization process, it follows that, during steady state it
takes π ticks for all good nodes to time out and begin transmitting Sync messages. It takes 
ticks for the transmitted messages, to reach other good nodes and result in subsequent accept
events at all good nodes. Since a Sync message has a life-span of one , subsequent accept
events occur within the next . At the end of the resynchronization process, the good nodes are
within πinit ticks of each other. Thus, trp = π + 2 + πinit.

PLT – The value of PLT is derived from the behavior of the network during steady state and it is a
measure of the worst case scenario between two consecutive resets of the LocalTimer of a good
node. Thus, PLT  PST + trp = PST + π + 2 + πinit.

C – The convergence time, C, is measured from t0. Its value is the sum of one , due to
randomness in the initial value of the MessageTimer in the good nodes, plus the worst case
scenario for the good nodes undergoing a resynchronization process, i.e., PST, and finally
converge to the predicted precision π. Therefore, C =  + PST + trp + ResetLocalTimerAt, and so,
C =  + PST + trp + πinit.

4. Verification Of The Correctness Of The Protocol Via Model Checking

In this section we present a mechanical verification of the protocol using the model checking
approach for its ease, feasibility, and quick examination of the problem space, while later
attempting a more comprehensive proof via theorem proving. The details of the model checking
effort are similar to [Mal 2012], where the models of the system components and their data
structures are fully described and similar abstractions are employed with respect to the size of the
model and real-time delays. We do not restate the details of model checking effort here. Instead,
we focus on the model checking results. Similar to [Mal 2012], the Symbolic Model Verifier
(SMV) was used in the modeling of this protocol on a PC with 4GB of memory running Linux
[Linux]. SMV’s language description and modeling capability provide relatively easy translation
from the pseudo-code. SMV semantics are synchronous composition, where all assignments are
executed in parallel and synchronously. Thus, a single step of the resulting model corresponds to
a step in each of the components.

The protocol described in this report is fairly subtle and must necessarily cope with many kinds
of timing behaviors. Model checking has been used to explore and verify distributed algorithms
but also faces certain difficulties [Ste 2004, 2011][Lon 1007][Mal 2008]. One of the foremost
challenges is a realistic representation of time as a continuous variable. As we elaborated earlier
in this report, although the network level measurements are real values, locally and at the node
level, all parameters are discrete. The discretization is used for practical purposes in
implementing and model checking the protocol. Since continuous time modeling is
impracticable, we used the same abstractions as in [Mal 2012] for discrete time.

14

4.1. Propositions

Computational tree logic (CTL), a temporal logic, is used to express properties of a system. In
CTL formulas are composed of path quantifiers, E and A, and temporal operators, X, F, G,
and U [Cla 1981]. In this section the claims of convergence, closure, congruence, and liveness
properties as well as the claims of maximum convergence time and determinism of the protocol
are examined. Although in the description of the protocol convergence and closure properties
are stated separately, they are examined via one CTL proposition. This proposition also
expresses the claims of determinism and linear convergence. Validation of this general CTL
proposition requires examination of a number of underlying propositions. In particular, since
LocalTimer(t) is defined in terms of the LocalTimer of the nodes, examination of the properties that
describe proper behavior of the LocalTimer take precedence. The variable ElapsedTime is used
in these properties and is defined here.

ElapsedTime = (GlobalClock ≥ ConvergenceTime) ;

The GlobalClock is a measure of elapsed time from the beginning of the operation with respect
to the real time, i.e., external view. The ElapsedTime is indicative of the GlobalClock reaching
its target maximum value of ConvergenceTime.

Proposition SystemLiveness: This property addresses the liveness property of the system by
examining whether or not time advances and the amount of time elapsed, ElapsedTime, has
advanced beyond the predicted convergence time, ConvergenceTime.

Proposition ConvergenceAndClosure: This proposition encompasses the criteria for the
convergence and the closure properties as well as the claims of maximum convergence time and
determinism. The proposition specifies whether or not the system will converge to the predicted
precision after the elapse of convergence time, ElapsedTime, and whether or not it will remain
within that precision thereafter. This and subsequent properties are expected to hold.

The proper value of the AllWithinPrecision is determined by measuring the difference between
the maximum and minimum values of the LocalTimers of all nodes for the current tick and in
conjunction with the result from the previous r = π (1 + ρ) ticks. The expected difference of
LocalTimers is the predicted precision bound.

To eliminate trivial results and false positives, the following proposition is examined, and the
expected result is a value of false. This property specifies that after the elapse of convergence

AF (ElapsedTime)

-- Determinism Property

AF (ElapsedTime) ˄

-- Convergence Property

AG (ElapsedTime → AllWithinPrecision) ˄
-- Closure Property

AG ((ElapsedTime ˄ AllWithinPrecision) → AX (ElapsedTime ˄ AllWithinPrecision))

15

time, ElapsedTime, whether or not the system will not converge or if it converges, whether or not
it drifts apart beyond the expected precision bound.

Proposition Congruence: This property specifies the criteria for the congruence property of the
protocol. Unlike the convergence and closure properties that provide system view from the
perspective of an external viewer, the congruence property provides a local view from the
perspective of a node by providing necessary and sufficient conditions for the node to locally
determine whether or not the system has converged. The congruence property is essential in the
integration of this underlying self-stabilization protocol with higher level protocols in the system.
The congruence property is described with respect to only one node, namely Node_1. Since all
nodes are symmetric, the result of the proposition equally applies to other nodes.

Proposition ProtocolLiveness: This property specifies the criteria for the liveness property of
the protocol. The property examines whether or not a node takes on all discrete values within an
expected range. Again, since all nodes are symmetric, this property is described with respect to
only one node, namely Node_1.

The model checking results of the bounded model of the protocol have verified the correctness of
the protocol for fully connected networks with K ≥ 2FS + 1 nodes, starting from an arbitrary
state, and for the following scenarios. FS = 0, 1, 2, 3, simultaneous symmetric faults, 0 ≤ ρ << 1,
D = 1 and d = 0. FS = 2 simultaneous symmetric faults, 0 ≤ ρ << 1, D = 2, 3, and d = 0, 1. In
addition, the results have confirmed the claims of determinism and linear convergence.

5. Conclusions

Distributed systems have become an integral part of safety-critical computing applications,
necessitating system designs that incorporate complex fault-tolerant, resource-management
functions to provide globally coordinated operations with ultra-reliability. As a result, a fault-
tolerant system needs a clock synchronization algorithm that tolerates imprecise local clocks and

AF (ElapsedTime) ˄
AG (ElapsedTime → AllWithinPrecision) ˄ AG ((ElapsedTime ˄ AllWithinPrecision)

→ EX (¬AllWithinPrecision))

AF (ElapsedTime) ˄ AG ((ElapsedTime ˄ (Node_1.LocalTimer= π))

→ AX (ElapsedTime ˄ AllWithinPrecision))

AF (ElapsedTime) ˄
AG (((ElapsedTime) ˄ (Node_1.LocalTimer = i))

→ AX ((Node_1.LocalTimer = i) | (Node_1.LocalTimer = i+1))) ˄
AG (((ElapsedTime) ˄ (Node_1.LocalTimer= PLT))

 → AX (Node_1.LocalTimer = 0))

For all i = 0 .. (PST - π - )

16

faulty behavior by some processes. In this report we presented a strategy for synchronizing a
distributed system in the presence of various faults, including any number of arbitrary
(Byzantine) faults. The main issue in solving the self-stabilization problem is a lack of a
symmetric view in the system by the participating good nodes. Thus, the crux of our idea was to
first convert any message to a symmetric message and then use a verified protocol, based on
message symmetry assumption, to solve the synchronization problem. We first enumerated
several ways of achieving message symmetry across the system, and then presented a new
protocol based on message symmetry assumption. We also presented a mechanical verification
of the protocol for up to three simultaneous, symmetric faults. The model-checking effort was
focused on verifying the correctness of a bounded model of the protocol as well as confirming
claims of determinism and linear convergence with respect to the self-stabilization period. As a
result, we believe that our solution solves the general case of this problem for fully connected
graphs. We leave however the generalization of our solution to other topologies, including an
arbitrary graph that meets the minimum requirements of number of nodes and connectivity, to
future works.

The proposed self-stabilizing protocol is expected to have many practical applications as well as
many theoretical implications. GPS (Global Positioning System) denied environment or where
GPS is non-existent (e.g., Mars mission), embedded systems, power grid, distributed process
control, synchronization, computer networks, the Internet, Internet applications, security, safety,
automotive, aircraft, distributed air traffic management systems, swarm systems, wired and
wireless telecommunications, graph theoretic problems, leader election, TDMA (time division
multiple access), and banking and commerce are a few examples. These are some of the many
areas of distributed systems that can use synchronization in order to design more robust
distributed systems.

References

[ARI 1993] Aeronautical Radio, Inc., Annapolis, MD. ARINC Specification 659: Backplane

Data Bus, December 1993. Prepared by the Airlines Electronic Engineering
Committee.

[But 2008] Butler, R.: A primer on architectural level fault tolerance, NASA/TM-2008-
215108, February 2008.

[Bau 2003] Bauer, G.; Kopetz, H.; and Steiner, W.: The central guardian approach to enforce

fault isolation in a time-triggered system, Proc. of 6th International Symposium
on Autonomous Decentralized Systems (ISADS 2003), pp. 37–44, April 2003.

[Cla 1981] Clarke, E.M.; Emerson, E.A.: Design and synthesis of synchronization skeletons

using branching time temporal logic, In Logic of Programs: Workshop, Yorktown
Heights, NY, May 1981, LNCS 131. Springer, 1981.

[Dal 2003] Daliot, A.; Dolev, D.; Parnas, H.: Linear Time Byzantine Self-Stabilizing Clock

Synchronization, Proceedings of 7th International Conference on Principles of
Distributed Systems (OPODIS-2003), La Martinique, France, December 2003.

[Dav 1978] Davies, D.; Wakerly, J.F.: Synchronization and matching in redundant systems,
IEEE Transactions on Computers, 27(6), pp. 531-539, June 1978.

17

[Dol 1984] Dolev, D.; Halpern, J.Y.; Strong, R.: On the Possibility and Impossibility of

Achieving Clock Synchronization, proceedings of the 16th Annual ACM STOC
(Washington D.C., Apr.). ACM, New York, 1984, pp. 504-511. (Also appear in J.
Comput. Syst. Sci.)

[Dol 2004] Dolev, S.; Welch, J.L.: Self-Stabilizing Clock Synchronization in the Presence of

Byzantine Faults, Journal of the ACM, Vol.51, No. 5, pp. 780-799, September
2004.

[Hoy 192] Hoyme, K.; Driscoll, K.: SAFEbusTM, 11th AIAA/IEEE Digital Avionics
Systems Conference, pages 68–73, Seattle, WA, October 1992.

[Kop 1993] Kopetz, H.; Grünsteidl, G.: TTP – a time-triggered protocol for fault-tolerant

real-time systems, Fault Tolerant Computing Symposium 23, pages 524–533,
Toulouse, France, June 1993. IEEE Computer Society.

[Kop 1997] Kopetz, H: Real-Time Systems, Design Principles for Distributed Embedded

Applications, Kluwar Academic Publishers, ISBN 0-7923-9894-7, 1997.
[Lam 1982] Lamport, L.; Shostak, R.; Pease, M.: The Byzantine General Problem, ACM

Transactions on Programming Languages and Systems, 4(3), pp. 382-401, July
1982.

[Lam 1985] Lamport, L; Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults,
J. ACM, vol. 32, no. 1, pp. 52-78, 1985.

[Linux] http://www-2.cs.cmu.edu/~modelcheck/smv.html
[Lon 1007] Lönn, H.; and Pettersson, P.: Formal verification of a TDMA protocol start-up

mechanism, In Pacific Rim International Symposium on Fault-Tolerant Systems,
pages 235–242, Taipei, Taiwan, Dec. 1997. IEEE Computer Society.

[Mal 2006A] Malekpour, M.R.; Siminiceanu, R.: Comments on the ‘Byzantine Self-Stabilizing

Pulse Synchronization’ Protocol: Counterexamples, NASA/TM-2006-213951,
February 2006.

[Mal 2006B] Malekpour, M.R.: A Byzantine-Fault Tolerant Self-Stabilizing Protocol for

Distributed Clock Synchronization Systems, Eighth International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS06), November
2006.

[Mal 2008] Malekpour, M.R.: Verification of a Byzantine-Fault-Tolerant Self-Stabilizing
Protocol for Clock Synchronization, IEEE Aerospace Conference, March 2008.

[Mal 2009] Malekpour, M.R.: A Self-Stabilizing Byzantine-Fault-Tolerant Clock

Synchronization Protocol, NASA/TM-2009-215758, June 2009.
[Mal 2012] Malekpour, M.R.: Model Checking A Self-Stabilizing Synchronization Protocol

For Arbitrary Digraphs, The 31st Digital Avionics Systems Conference (DASC
2012), Williamsburg, Virginia, pp. 11, October 2012.

[Min 2002] Miner, P.S.; Malekpour, M.R.; Torres, W.: A Conceptual Design For a Reliable

Optical Bus (ROBUS), Presented at the 21st Digital Avionics Systems Conference
(DASC), Irvine, California, October 27-31, 2002.

[Pea 1980] Pease, M.; Shostak, R.; and Lamport, l.: Reaching agreement in the presence of

faults, Journal of the ACM, 27(2): 228-234, April 1980.
[Ste 2004] Steiner, W.; Rushby, J.; Sorea, M.; Pfeifer, H.: Model Checking a Fault-Tolerant

Startup Algorithm: From Design Exploration To Exhaustive Fault Simulation,
The International Conference on Dependable Systems and Networks (DSN’04),
2004.

http://www-2.cs.cmu.edu/~modelcheck/smv.html

18

[Ste 2011] Steiner, W.; Dutertre, B.: Automated Formal Verification of the TTEthernet

Synchronization Quality, 3rd NASA Formal Method Symposium, April 2011.
[Sri 1987] Srikanth, T.K.; Toueg, S.: Optimal clock synchronization, Journal of the ACM,

34(3), pp. 626–645, July 1987.
[Tor 2005A] Torres-Pomales, W; Malekpour, M.R.; Miner, P.S.: ROBUS-2: A fault-tolerant

broadcast communication system, NASA/TM-2005-213540, pp. 201, March
2005.

[Tor 2005B] Torres-Pomales, W.; Malekpour, M.R.; Miner, P.S.: Design of the Protocol

Processor for the ROBUS-2 Communication System, NASA/TM-2005-213934,
pp. 252, November 2005.

[Wel 1988] Welch, J.L.; Lynch, N.: A New Fault-Tolerant Algorithm for Clock

Synchronization, Information and Computation volume 77, number 1, pp.1-36,
April 1988.

19

Appendix A

The purpose of this example is to give the reader a quick review of and help in understanding the
behavior of the protocol. The following is an example of a fully connected graph consisting of 5
nodes, where F = 2. Table A.1 shows an execution trace of the system and has eight columns;
one for time reference, two for each good node listing values for the StateTimer and LocalTimer,
and the last column is for network precision, π. Each row depicts activities of all good nodes at
the corresponding time. Cell contents for the node columns consist of a number corresponding
to the value of the StateTimer of the node in conjunction with an activity: 1) Sync if the node
transmits the message, and 2) Accept if the node received TA messages. The received messages
at a node are depicted in superscripts, one position for each corresponding node, where a ‘-’
means no messages from that node and an ‘x’ means a Sync message was received.

This table depicts activities of the network during a resynchronization process when the network
is in steady state. Even though the good nodes started the cycle in synchrony, they gradually
drifted apart. The table shows a scenario where node 1 is the fastest and node 3 the slowest of
the good nodes and by the end of the synchronization period they have drifted part by as much as
12 clock ticks from an external perspective. Since the faulty nodes can transmit messages at any
time, their activities are not listed in the table. However, their messages are recorded at the
receiving good nodes. For instance, at (t + 8) a message from node 5 (a faulty node) is received
by nodes 1 and 2 and d ticks later node 3 records receiving the same message. The columns
representing LocalTimer values are shaded gray for visual purposes. The ‘π’ column shows that
although the instantaneous differences between the LocalTimers spike up to a value of 999 at
(t + 17), the precision π as defined in Section 3.4 remains within the theoretical predicted value
of 16.

20

System parameters:
D = 3 clock ticks, d = 1 clock tick   = 4 clock ticks
K = 5 nodes, G = 3 nodes, F = 2 nodes  TA = 3 nodes
PST = 1000 clock ticks
0 ≤  ≤ 1  0 ≤ δ(PST) ≤ 5 clock ticks
πinit = d +  + δ(d + )  πinit = 6 clock ticks
π = πinit + 2δ(PST)  0  π = 16 clock ticks
r = π (1 + ρ) = 17 clock ticks
trp = π + 2 + πinit  trp = 30 clock ticks
PLT  PST + trp  PLT = 1030 clock ticks
ResetLocalTimerAt = πinit  ResetLocalTimerAt = 6 clock ticks
C = PLT + ResetLocalTimerAt + 2  C = 1044 clock ticks

Table A.1. An execution trace of a network of 5 nodes.
Time N1.StateTimer N2.StateTimer N3.StateTimer N1.LocalTimer N2.LocalTimer N3.LocalTimer Net(C)

… 6 6 5 0 0 999 12
… 7 7 6 1 1 0 1
… … … … … … … …

t + 0 1000-----, Sync 998----- 988----- 994 992 982 12
t + 1 1000----- 999----- 989----- 995 993 983 12
t + 2 1000----- 1000-----, Sync 990----- 996 994 984 12
t + 3 1000----- 1000x---- 991----- 997 995 985 12
t + 4 1000x----, Sync 1000x---- 992x---- 998 996 986 12
t + 5 1000xx--- 1000x---- 993xx--- 999 997 987 12
t + 6 1000xx--- 1000xx---, Sync 994xx--- 1000 998 988 12
t + 7 1000xx--- 1000xx--- 995xx--- 1001 999 989 12
t + 8 0xx--x, Accept 0xx--x, Accept 996xx--- 1002 1000 990 12
t + 9 0xx--x, Accept 0xx--x, Accept 0xx--x, Accept 1003 1001 991 12

t + 10 0xx--x, Accept 0xx--x, Accept 0xx--x, Accept 1004 1002 992 12
t + 11 0xx-xx, Accept 0xx--x, Accept 0xx--x, Accept 1005 1003 993 12
t + 12 1-x-x- 1-x-x- 0-x-xx, Accept 1006 1004 994 12
t + 13 2---x- 2-x-x- 1---x- 1007 1005 995 12
t + 14 3---x- 3---x- 2---x- 1008 1006 996 12
t + 15 4----- 4---x- 3---x- 1009 1007 997 12
t + 16 5----- 5----- 4----- 1010 1008 998 12
t + 17 6----- 6----- 5----- 0 0 999 12
t + 18 7----- 7----- 6----- 1 1 0 1
t + 19 8----- 8----- 7----- 2 2 1 1

… … … … … … … 1

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

A Self-Stabilizing Hybrid-Fault Tolerant Synchronization Protocol

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Malekpour, Mahyar R.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-20402

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

In this report we present a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the
presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. Our solution applies to realizable systems,
while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only
constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. Our solution does not rely on
assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they
do not have unique identities. We also present a mechanical verification of a proposed protocol. A bounded model of the protocol is verified using the
Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming
claims of determinism and linear convergence with respect to the self-stabilization period. We believe that our proposed solution solves the general case of the
clock synchronization problem.

15. SUBJECT TERMS

Algorithm; Byzantine; Clock; Distributed protocol; Fault tolerant; Model checking; Self-Stabilization; Synchronization;
Verification

18. NUMBER
 OF
 PAGES

27

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

534723.02.02.07.30

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2014-218285

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

07 - 201401-

