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ABSTRACT

Aim Species distribution models have often been hampered by poor local spe-

cies data, reliance on coarse-scale climate predictors and the assumption that

species–environment relationships, even with non-proximate predictors, are

consistent across geographical space. Yet locally accurate maps of invasive spe-

cies, such as the Africanized honeybee (AHB) in North America, are needed to

support conservation efforts. Current AHB range maps are relatively coarse and

are inconsistent with observed data. Our aim was to improve distribution maps

using more proximate predictors (phenology) and using regional models rather

than one across the entire range of interest to explore potential differences in

drivers.

Location United States of America.

Methods We provide a generalized framework for regional and local species

distribution modelling with our more nuanced and spatially detailed forecast of

potential AHB spread using multiple habitat modelling techniques and newly

derived remotely sensed phenology layers.

Results Variable importance did differ between the two regions for which we

modelled AHB. Phenology metrics were important, especially in the south-east.

Main conclusions Results demonstrate that incorporating a combination of

both climate drivers and vegetation phenology information into models can be

important for predicting the suitable habitat range of these pollinators. Regio-

nal models may provide evidence of differing drivers of distributions geograph-

ically. This framework may improve many local and regional species

distribution modelling efforts.

Keywords

Africanized honeybee, Apis mellifera, habitat suitability, species distribution

modelling, vegetation phenology.

INTRODUCTION

Species distribution modelling (SDM) has become a com-

mon tool over the last few years with applications to diverse

disciplines and biological taxa including conservation biology

(e.g. Urbina-Cardona & Flores-Villela, 2010), biological inva-

sions (Measey et al., 2012), risk assessments (Bolliger et al.,

2007), restoration (Fei et al., 2012) and climate change

impacts (Thomas et al., 2004). While these models are often

correlative in nature, physiological information about a

species should inform environmental factors included in

distribution models (Austin, 2002). However, it can be diffi-

cult to obtain spatially continuous information for relevant

factors. Indirect predictors such as elevation are often used as

surrogates for those thought to be causal due to their high

correlation with direct predictors such as temperature (Guisan

& Zimmermann, 2000). For plant species, direct predictors

are often environmental or abiotic factors that are measured

such as climate or soil data. For fauna species, however, direct

predictors may be different, including factors such as food

availability and competition. Creating spatially explicit contin-

uous surfaces describing these factors may be difficult.
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Often species distribution models have been generated

solely with climatic information, creating climatic envelopes

that ignore other potentially important factors limiting the

distribution of species (Heikkinen et al., 2006). With remote

sensing products continually becoming more easily accessible

to ecologists, the products have increased as predictors (Zim-

mermann et al., 2007; Bradley et al., 2012). Most often these

products have been land cover derivatives, coarse vegetation

indices such as tree cover or leaf area index, or indices of

greenness such as the normalized difference vegetation index

(NDVI).

The conservation literature has recently recognized the

importance of examining habitat relationships at regional

levels to assess how relationships may change across biogeo-

graphical regions (McAlpine et al., 2008). This need for dis-

tinctive models may be especially important when proximate

predictors are unavailable, but the need for a model forces

the use of the best available indirect predictor. For example,

differences in distribution of Africanized honeybees (AHB)

within the United States compared with European honeybees

(EHB) are thought to derive from behavioural differences

related to food storage and metabolism. While direct mea-

sure of these limiting factors may not be possible, climate or

satellite imagery may act as surrogates. Over a large spatial

extent covering multiple biogeographical provinces the rela-

tionship between the direct factor – food availability – and

surrogates such as climate and satellite imagery – may differ.

Pollinator species have been modelled relatively infre-

quently compared with other taxonomic groups, but there

could be important applications for both invasive pollinators

and native pollinators in decline. We wished to explore using

remote sensing-derived metrics related to the physiology of

these species. For our example, we focused on AHB, a

genetic hybrid cross of Tanzanian Apis mellifera scutellata

and a variety of EHB strains such as A. m. ligustica (Harri-

son et al., 2006), that have been spreading north in the

Americas since their introduction to Brazil in 1957. These

hybrids first reached the United States from Mexico in 1990

and have continued their northward spread (Fig. 1a), albeit

at a slower rate across the south-eastern United States than

the south-western United States (Villa et al., 2002). AHB

spread within the United States has been slower than the

spread rate in the Neotropics and has been more erratic

(Schneider et al., 2004). Schneider et al. (2004) proposed

several hypotheses for these observed differences including

climatic differences (AHB may be more adapted to arid cli-

mates) and response to photoperiod (AHB tied to rainfall

and floral abundance, which may make them less adapted to

temperate conditions). Within the United States, AHB has

had similar time and opportunity to expand in to the

south-east as it has had to move north in the south-west.

Predictions of the northern extent of the AHB potential

habitat in North America can inform regional apiarists,

safety officials and bee managers of the risks associated with

(a) (b)

(a)
(c)

(c)

(b)

Figure 1 Africanized honeybee (AHB) location data (a) the spread of AHB by county from 1990 to 2009. (b) Presence points for AHB

are from county and state apiculture records (blue) and derived from public records of AHB incidence (orange). Absence points were

acquired from state apiculture records (blue crosses) or were generated from single nectar flow HoneyBeeNet scale hive records (red

triangles). (c) Presence and absence points used in the model including training points (blue triangles) and testing points (yellow

circles) with the regional divide between south-east and south-west (red line). (North America Albers Equal Area Conic projection,

Datum NAD83).
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AHB. However, previous predictions of a northern limit for

AHB spread were based on a simple temperature threshold

derived from AHB distributions in South America (Taylor &

Spivak, 1984) or observed physiology and behaviour (South-

wick et al., 1990). Interannual variation in these values may

provide a fuzzy boundary for AHB extent (Harrison et al.,

2006). However, there have been reports of AHB presence in

consecutive years considerably further north of areas previ-

ously predicted by temperature thresholds (Taylor & Spivak,

1984; Harrison et al., 2006) and some of these were found

during winter months (Fig. 1b). Conversely, the AHB extents

derived using physiology, and behaviour show AHB presence

much farther north than they are now presently found

(Southwick et al., 1990). These two existing methods for pre-

dicting the northern limit of AHB are inconsistent with each

other and the observed presence data. Furthermore, previous

prediction methods do not take advantage of the higher

detailed environmental data, including physiologically

relevant remote sensing products, and advanced modelling

techniques that are currently available.

Our aim was to explore how phenology predictors may

contribute to models of pollinator species and how the driv-

ers of these models may differ between biologically defined

regions. We focus on phenology predictors because, while

climate data are commonly used in species distribution mod-

els, vegetation phenology is not and we believe that vegeta-

tion phenology, and thus forage availability, must influence

the distribution of pollinator species. Phenology predictors

act as a surrogate for seasonal availability of nectar related to

blooming phenology (with respect to swarming, AHB show

characteristics of a multivoltine population, whereas the EHB

might be considered univoltine with respect to colony repro-

duction). We do this with an example of the potential north-

ern limit of AHB, taking advantage of current location data,

current species distribution modelling techniques, and con-

current environmental and climatic data. We hypothesized

that drivers in the arid south-west would be related to tem-

perature and precipitation, while those in the wetter south-

east would be driven by vegetation phenology, defining the

two regions using honeybee forage zones identified by Ayers

& Harman (1992) based on natural floristic and land use

patterns. These hypotheses are based on observed patterns of

AHB distribution in the United States, including the differ-

ences in spread rates between the two regions. Hence, the

models were developed for the continental United States and

the south-west and the south-east regions.

METHODS

Species occurrence data

Presence data consist of both feral AHB and AHB/EHB

hybrids, and we refer to the combination as AHB for sim-

plicity in the following. We consulted with state apiculturists

to compile field observations of AHB confirmed by DNA

test across the United States (478 presence and 107 absence

locations; Fig. 1a). Many of the counties in Arizona and

Texas that were sites of initial United States invasion ceased

collection of observations once AHB became common and

the counties did not maintain historical records, resulting in

regional data gaps in the well-established range. Thus, we

supplemented the field observation presence locations with

those from public safety and news records in the region

(23 presence locations; Fig. 1a). We also added locations

consisting of the centroids of small, heterogeneous counties

where AHB are fairly ubiquitous in eastern Texas (140 pres-

ence locations; Fig. 1a). These data resulted in 641 presence

and 107 absence locations.

As mentioned above we developed models for two subre-

gions, the arid south-west and more humid south-east, along

with the contiguous United States to allow potential differ-

ences in climate and vegetation drivers to be examined inde-

pendently (Fig. 1c). Both regions contain areas currently

invaded by AHB, and the south-east region encompasses the

Atlantic and Gulf Coastal Plain and the Appalachian-Ozark

Upland forage regions. The south-west region includes mul-

tiple forage regions. We subsampled our location data to a

single location per environmental grid cell (30 arc second) to

minimize pseudoreplication. From this subset, we randomly

selected an equal number of presence and absence locations

within the south-east and within the south-west.

Environmental data layers

We considered 40 environmental data layers consisting of cli-

mate, land cover and vegetation phenology variables to

parameterize the models (see Table S1 in Supporting Informa-

tion). Climate data included 19 bioclimatic layers from

WorldClim (Hijmans et al., 2005) that are derived by interpo-

lation of average monthly climate data at 30-arc-second

(approximately 1 km) resolution. Vegetation cover layers

from the National Aeronautics and Space Administration’s

(NASA’s) Moderate Resolution Imaging Spectroradiometer

(MODIS) Vegetation Continuous Fields (VCF) product,

including percentage estimates for trees (for 2005), herbaceous

vegetation and bare ground cover (for 2001; Hansen et al.,

2003), was included. The MODIS Land Surface Phenology

product was the source of 15 metrics of seasonal variation in

vegetation productivity from 2001 to 2007, excluding 2005

(Tan et al., 2008). Similar to the long-term average climate

used, we calculated the average of each phenology metric

across all years available at the time of analysis (2001–2007

excluding 2005). All data were resampled to 30 arc seconds to

match the lowest resolution data set using ENVI software (Exelis

Visual Information Solutions, Boulder, CO, USA) with the

nearest neighbour method for resampling.

To reduce multicollinearity issues and predictor redun-

dancy, we examined Pearson’s correlation coefficients

between pairs of variables using SYSTAT 12 (Systat Software,

Inc., Chicago, IL, USA) for each of the three regions. We

retained the variable considered to be the more biologically

meaningful from pairs of variables with Pearson’s correlation
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coefficient values >0.8 or <�0.8. Selected variables for each

region are shown in Table S1. This selection process resulted

in a reduction to 19 variables for the United States, 16 vari-

ables for the south-west and 18 variables for the south-east.

Species distribution modelling

We paired the selected environmental layers consisting of cli-

mate, land cover and vegetation phenology variables with a

random partition of the presence/absence locations (random

70% of data points used to train the model, random 30%

retained to test model) across the United States to build and

evaluate habitat suitability models for AHB in North Amer-

ica. We used four statistical modelling techniques for binary

data that have performed well in the past (Elith et al., 2006).

These techniques included generalized linear modelling

(GLM; Hosmer & Lemeshow, 2000); boosted regression tree

(BRT; Elith et al., 2008); multivariate adaptive regression

splines (MARS; Leathwick et al., 2006); and random forest

(RF; Prasad et al., 2006). All techniques except RF included

variable selection within the modelling algorithm, so

although each technique began with the same set of predictor

variables (from Table S1), each final model depended on a

unique set of variables (variables with values in Table S2).

The GLM employed standard stepwise regression using

Akaike’s information criterion (AIC); the BRT technique

generally does not include non-informative predictors when

fitting trees; the MARS adds terms to a model beginning

with only the intercept, until there is no longer a reduction

in sum-of-squares residual error and then prunes the model

until it achieves the best model according to generalized

cross-validation.

We developed an ensemble of the results from these four

presence/absence techniques following Stohlgren et al. (2010)

within the Software for Assisted Habitat Modeling (SAHM;

http://www.fort.usgs.gov/ram). The SAHM program utilizes

modules written in R code to calculate the models, thresh-

olds and assessment statistics. The ensemble was created by

developing a model for each of the four techniques, discretiz-

ing the continuous predictions produced from each model to

binary values representing suitable and unsuitable habitat,

and adding the four binary maps together. We used the

equal sensitivity and specificity threshold rule (see Liu et al.,

2005) to covert the continuous predictions into discrete cate-

gories of suitable or unsuitable habitat for each of the four

models, where presence locations are just as likely to be erro-

neously predicted as absence locations. This threshold rule

has performed well in a comparison of various threshold

selection rules (Liu et al., 2005; Jimenez-Valverde & Lobo,

2007). The ensemble model had values ranging from zero to

four, where a zero indicated none of the four models pre-

dicted a location as suitable, a value of one indicates a single

one of the four models predicted a location as suitable and

so on, up to a value of four indicating that all four models

predicted a location as suitable. We examined these ensemble

values to determine the level of agreement between the four

different discretized model predictions, where a value of four

would indicate agreed upon suitable habitat across all four

models and a value of zero would indicate agreed upon

unsuitable habitat across all four models.

We evaluated model performance using the test data with-

held from model generation. The evaluation metrics included

the receiver operating characteristic area under the curve

(AUC) values, R2 and overall percentage correct. The AUC is

a threshold-independent metric with values between 0.5 and

1, where values >0.8 indicate high accuracy (Swets, 1988).

The R2 and overall percentage correct metrics were depen-

dent on the threshold rule we used (the value where sensitiv-

ity equalled specificity).

Supplementary absence data

The high ratio of presence to absence locations (641–107)

likely reflected a bias in our sampling, which included mainly

presence-only data sets as genetic testing is often only con-

ducted when a colony exhibits AHB behavioural traits, rather

than a reflection of actual prevalence across the landscape.

Thus, we followed the recommendation of McPherson et al.

(2004) to subsample our location data to include an equal

number of presence and absence locations. As doing this

greatly reduced our sample size, it was desirable to supple-

ment absence data to alleviate to maintain a higher sample

size. Additionally, given that we are dealing with an invasive

species and are interested in potential – not current – distri-

bution, any absence locations we have could be viewed as

pseudo-absence locations as this invasive species may still be

spreading. We generated pseudo-absence data by selecting

locations predicted as unsuitable based on data collected at

known EHB and AHB hives. We hypothesized that AHB are

less likely to overwinter in conditions where a sustained win-

ter dearth interrupts nectar flows and/or regions with only a

single spring nectar flow, due to differences in food storage

and swarming behaviour between the two groups (Winston,

1992; Schneider et al., 2004). We hypothesize that AHB colo-

nies (which have a higher propensity for swarm production

throughout the summer) require at least two nectar flow sea-

sons per year to enable colonies and swarms to survive the

winter compared with EHB that generally exhibit only a sin-

gle swarming period during the spring and early nectar

flows. In spring-only nectar flow regions, AHB colonies

should exhibit greatly reduced survivorship because the later

swarms cannot collect enough nectar to overwinter success-

fully. Therefore, we postulate that locations with only single-

season nectar flows would be good surrogate AHB absence

locations. Thus, we examined preliminary model relation-

ships for locations with differing nectar flow phenologies,

based on scale hive samples, to test this hypothesis.

We derived nectar flow data from changes in hive weight

obtained from the HoneyBeeNet (http://honeybeenet.gsfc.

nasa.gov) network of scale hives for eight sites (Fig. 2). These

sites were categorized as either having unimodal (‘spring or

summer only’) or multiple nectar flows. For this purpose,
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the seasons were defined by day of year as spring before day

170, summer from day 170 to day 225 and fall after day 225.

Daily hive gains above 0.435 kg signified that nectar flow

had started (~two standard deviations above environmental

noise; Esaias, unpublished data), with unimodal sites defined

as those with such a gain during one season while bimodal

was defined by such gains during two different seasons (i.e.

spring and fall). We generated preliminary models for the

three regions (contiguous United States and two subregions),

extracted ensemble model values for each scale hive site and

averaged the three regional values for each site. Both a two-

tailed t-test and a Mann–Whitney test showed a significant

difference between the values for unimodal and bimodal nec-

tar flow sites (Table 1; P = 0.0282 for the US, 0.0003 for the

ensemble average; t = 7.417 for the ensemble average). Given

these relationships, we supplemented the absence data with

37 EHB scale hive locations from single nectar flow regions

to improve our sample size (Fig. 1a scale hive absence loca-

tions). These locations were selected based on data collected

at each hive, rather than information gleaned from remotely

sensed imagery. This increased our absence location sample

size in the final models we discuss to 180. Thus, after cor-

recting for unequal numbers of presence and absence data,

we used a total of 88 locations for the south-west and 228

locations for the south-east. The US extent was composed of

the two regional subsets (all 316 locations).

RESULTS

In the model for the United States, the climate variables,

rather than satellite-derived vegetation variables, were gener-

ally selected through the model fitting process (Table S2).

Exceptions included inclusion of herbaceous cover in

the GLM and vegetation metric variable enhanced vegetation

index (EVI) difference from root mean square error (RMSE)

in the MARS model. While the RF model does not select

variables but rather includes all those provided, the Gini

index can be interpreted as a measure of variable impor-

tance, and the climate variables all had greater importance

than the phenology predictors and the other satellite prod-

ucts. Evaluation of the models with the test data revealed

that the overall percentage correct (i.e. observed presence

location in area modelled as suitable AHB habitat and

observed absence location in area modelled as unsuitable)

ranged between 93% and 96% and all AUC values were

>0.92 (Table 2). Examination of the ensemble of the

four binary maps revealed high agreement among all

four models, with 58% of grid cells predicted as suitable

by at least one model also being predicted as suitable by

all four models (locations with ensemble model value = 4).

These high values extended across the south-west and in

to Florida, while lower ensemble scores representing

disagreement between models covered less area (3 = 17%,

2 = 12% and 1 = 13%; Fig. 3a). These models and

reports can be viewed on the AHB website (http://ahb.

colostate.edu).
Table 1 The ensemble scores and tests between the nectar flow

groups. The Africanized honeybee (AHB) group gives the

observed AHB status.

Site

Ensemble

US

Ensemble score

avg US, SW, SE

Nectar

flow

season

AHB

group

Tucson AZ 4 4 2 Present

St. Petersburg FL 4 3.67 2 Present

Hope AR 4 3.67 2 Present

Alpharetta GA 0 1.33 1 Absent

Baton Rouge LA 0 1.67 1 Absent

Carencro LA 2 2 1 Absent

Blountstown FL 1 1.67 1 Absent

Stillwater OK 0 0.67 1 Absent

Two-tailed P 0.0282 0.0003

Mann–Whitney test: t = 7.417; df = 6; U = 0.0; n = 8.
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Figure 2 Daily hive gain for sites with bimodal nectar seasons

for three locations within known Africanized honeybee (AHB)

range (top three, bold lines) and five representative locations

with unimodal nectar seasons outside of existing AHB range

(bottom five, light lines). Data were smoothed with a seven day

running average and an offset value of 3 kg has been applied

sequentially to each location for separation.

Table 2 Receiver operating characteristic area under the curve

(AUC) values (and R2 values) for the test data for the models

for the United States (US), south-west region (SW) and the

south-east (SE) for each of the model techniques boosted

regression tree (BRT), generalized linear model (GLM),

multivariate adaptive regression splines (MARS) and random

forest (RF).

Model US AUC (R2) SW AUC (R2) SE AUC (R2)

BRT 0.950 (83.1) 0.997 (85.8) 0.987 (77.9)

GLM 0.930 (72.0) 0.907 (53.1) 0.915 (50.2)

MARS 0.940 (73.4) 1.000 (88.2) 0.935 (63.4)

RF 0.976 (81.8) 1.000 (84.0) 0.950 (68.5)
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The next two sets of predictions were conducted region-

ally for the south-western and south-eastern United States

to capture potential differences in drivers of AHB distribu-

tion in smaller, environmentally distinct areas according to

bee forage zones. The south-west regional model was supe-

rior in predictions according to the assessment metrics,

although there was greater variance in the prediction suc-

cess of the models with overall percentage correct between

88.2% and 100% and AUC values from 0.91 to 1.0

(Table 2). Model agreement was again high, with the great-

est two ensemble values accounting for 87% of the grid

cells (4 = 64%; 3 = 23%; 2 = 11% and 1 = 3%; Fig. 3b).

Total numbers of predictors included in the final GLM,

BRT and MARS models were four, two and eight, respec-

tively. Selected predictors by GLM, BRT and MARS were

again climate variables with the exception of EVI green up

rate with MARS. Within the RF model, phenology predic-

tors again contributed less than climate predictors accord-

ing to the Gini index and only one phenology predictor

had a Gini index >0.5.
Evaluation metrics for the south-east region were not as

successful, with percentage correct between 87% and 93%,

and AUC values from 0.91 to 0.99. Model agreement was

much lower, with similar percentages across the ensemble

scores (4 = 42%, 3 = 17%, 2 = 17%, 1 = 24%; Fig. 3c). The

south-east had more phenology predictors selected (EVI

RMSE and EVI difference from RMSE in GLM; EVI season

length in MARS; five phenology variables with mean accu-

racy >1 in random forest; Table S2). Within RF, the phenol-

ogy Gini values were again lower than the climate predictors,

but were higher than in the other two models (all >0.5 with

three >1.0). Because supplemental absence data were greater

for the south-east model and may have influenced phenology

predictor inclusion, we also examined the variables selected

in the preliminary models used to evaluate selection of the

supplemental absence data. In these models, more phenology

predictors were again selected (peak date in GLM; winter

dearth and EVI amplitude in MARS; and winter dearth and

EVI base levels in BRT). Similar to the south-east model

including the supplemental absence locations, RF phenology

Gini index values were higher than the other models, with

all >0.5 and two >1.0.

DISCUSSION

Vegetation phenology metric variables were selected as AHB

habitat suitability predictors in almost all models. While

NDVI has been a commonly used predictor in models, actual

phenologic information has not often been used. To our

knowledge, few papers exist predicting distributions of

pollinators (Hinojosa-Diaz et al., 2009; Kadoya et al., 2009),

and to date, no models have used phenology metrics as

(a)

(b) (c)

Figure 3 National and regional habitat suitability ensemble models for Africanized honeybee (AHB) (a) the United States, (b) the

south-west region and (c) the south-east region with representative queen bee breeder locations overlaid (red triangles) and the red line

depicting the regional divide. Queen breeder locations were taken from all advertisements in two issues of the American Bee Journal and

two of Bee Culture. Values represent the number (0–4) of models with a prediction of suitable at that location (North America Albers

Equal Area Conic projection, Datum NAD83).
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predictors. We interpret their selection here as a surrogate

for bee forage availability (nectar and pollen) for these gener-

alist pollinators. Our comparison of preliminary models with

scale hive locations indicating either single or multiple nectar

flows supported our hypothesis that AHB respond to

phenology.

Based on these models, it appears that the AHB may con-

tinue to extend its range northwards with subtle spatial pat-

terns reflecting influences from both climatic and vegetation

conditions (Fig. 3). Within the ensemble approach, each

individual model extends AHB expansion farther north than

previously expected (Harrison et al., 2006), although this

may be somewhat influenced by bias in the available training

points and the original bias towards presence locations that

we attempted to alleviate by creating additional pseudo-

absence locations. This study, which focused on the United

States, lacked both presence and absence data points near the

core of AHB distribution in the south-western states. Arizona

was among the first states invaded by the AHB, and unfortu-

nately, these original data records were lost and data collec-

tion ceased. As noted in the methods, we did supplement

data in these locations from other sources, but biases may

still exist. Despite these data gaps, the models show new

areas of concern including EHB queen breeding regions in

the south-eastern United States and along the southern

Atlantic Coast. The Central Valley in California appears to

provide suitable habitat, as does most of the Basin and

Range province and Washington State. These new areas of

concern are considerably further north of current AHB

invaded regions.

Models for the south-west provided the most accurate

results of the three according to the evaluation metrics, while

the south-east results were least favourable. This result may

stem from the divergent variables driving AHB distribution

in the two regions; in particular, we hypothesize that phenol-

ogy variables are more important in the south-east, while cli-

matic variables are more important in the south-west and

nationally. Thus, the south-east models may be inferior

because of imprecision in the relationship between NDVI

phenology metrics and bee forage availability. While all cur-

rently available phenology metrics were included in the

model, these metrics may not be closely correlated with tim-

ing of nectar flows and hence AHB food availability as the

metrics are based on total vegetation, and not necessarily

blooming of species favourable for honeybee forage which

are generally only a fraction of the total vegetation. Scale

hive data that provide a measurement of timing and number

of nectar flows would be ideal, but such information is

unavailable across the United States.

There is a highly significant correlation between suitable

AHB habitat and the gross phenology of nectar flows (multi-

ple versus single annual peaks) as determined by daily to

weekly weighing of EHB colonies for locations within

200 km of suitable habitat in Fig. 3(a) (P < 0.001, n = 8,

Table 1 and Fig. 2). Nectar flows within the AHB native

range in Africa are biannual (Hepburn & Radloff, 1998), and

the phenology of the AHB is closely coupled with local plant

phenology and phytochoria (Hepburn & Radloff, 1995). The

AHB generally live in smaller clusters and have a higher met-

abolic rate than EHB, and their propensity for reproductive

swarming in response to pollen availability appears to require

significant nectar availability in the late summer to fall per-

iod, with short winter dearth (Winston, 1992; see for exam-

ple Harrison et al., 2006). These associated AHB traits

appear to be highly conserved despite interbreeding (hybrid-

izing) with EHB during its 50 year, 6000 km migration

northwards. The AHB requirement for strong fall nectar

flows suggests that usurpation of EHB colonies containing

large honey stores by the AHB (Schneider et al., 2004) has

clear survival value in regions with classic bell-shaped, uni-

modal nectar phenology. These unfavourable ‘spring only’

nectar flows were first encountered by the AHB when cross-

ing into Louisiana from eastern Texas. The association

between floral type associated with higher rainfall from Loui-

siana eastward, and the apparent cessation of AHB expansion

east from Texas were noted by Villa et al. (2002). However,

this study additionally explains why South Florida, with mul-

tiple annual nectar flows, is suitable AHB habitat despite

higher precipitation than in the monsoonal south-western

US. Projections of future AHB expansion in response to cli-

mate warming could thus also be dependent upon plant suc-

cession and/or changes in agriculture that result in bi-modal

nectar phenology rather than warming or climate changes

per se. Properly defining nectar flow across the broad

regions, from the bimodal flows found in the arid south-west

with its seasonal monsoons, to non-seasonal southern Flor-

ida, and the strong vernal flows found along the east coast

will require continued monitoring of the honeybee nectar

flow. Different phenology metrics specifically tuned to corre-

late better with the timing of nectar flows rather than the

current greenness-based metrics, if possible in the future,

might improve predictions.

There are additional sources of uncertainty in the models.

Buisson et al. (2009) partitioned various sources of uncer-

tainty and determined that model method introduced the

most variability. By creating an ensemble model, we provide

information on uncertainty caused by modelling method.

Additional sources of uncertainty arise from bias in our loca-

tion data, both presence and absence, and because AHB may

still be spreading, albeit relatively slowly. This study is

exploratory and provides a preliminary understanding until

additional data are gathered and modelled in an iterative

approach (Crall et al., 2013).

These findings have valuable application for predictions

related to honeybees and other pollinator species. For exam-

ple, they could guide where migratory beekeepers might

overwinter EHB colonies to minimize potential impact of

AHB, and identify where queen breeders may need to pay

close attention to hybridization of their European stocks with

AHB. The novel use of phenology as predictors here high-

lights a useful application of remote sensing products.

The models underscore the importance of phenology in
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understanding the current and potential future distributions

of bees and potentially other organisms. The regional model

approach also allowed us to distinguish potential geographi-

cal differences in factors related to AHB distribution. Contin-

ued work investigating nectar flow maps derived using

satellite and scale hive data should help improve distribution

models and understanding of drivers of distribution for spe-

cies-dependent on nectar and pollen as a food source – our

earth’s pollinators.
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