
National Aeronautics and Space Administration 

www.nasa.gov 1 

Félix A. Miranda*, Carl H. Mueller+, and Mary Ann B. Meador* 
 

*National Aeronautics and Space Administration  
Glenn Research Center,  Cleveland, OH 44135, U.S.A 

 
+QinetiQ-NA, Cleveland, OH 44135, U.S.A.  

 
 
 2014 IEEE International Symposium on Antennas and Propagation 

And USNC/URSI National Radio Science Meeting 
July 6-11, 2014,  Memphis, TN 

Paper Number:  1853 
Technical Session 338: Applications of Phased Arrays, Wednesday, July 09, 2014 

Presentation: 338.3 

Aerogel Antennas Communications Study Using Error 
Vector Magnitude Measurements   



National Aeronautics and Space Administration 

www.nasa.gov 2 

Abstract 

This presentation discusses an aerogel antennas communication study using error vector 
magnitude (EVM) measurements. The study was performed using 2x4 element polyimide 
(PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and 
receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters.  The results 
of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately 
to support digital communication links with typically used modulation schemes such as 
QPSK and π/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and 
lower mass than typically used microwave laminates could be suitable to enable aerospace-
to- ground communication links with enough channel capacity to support voice, data and 
video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.  
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Background 
� Design and optimization of  aerospace communication systems is of  great interest in the aviation for 

government (e.g., NASA, Department of Defense, etc.) and the commercial sector. 
 

� A typical commercial and/or military aircraft could have as many as 15 to 100 antenna systems. 
 

� Large number of antennas adds weight, increases complexity, and poses structural integrity challenges. 
The latter is exacerbated in commuter and general aviation aircraft because of more limited space for 
antenna placement. 
 

� Approaches that could reduce the mass and/or the number of antennas for communication and/or radar in 
aircraft and any other pertinent airborne platform (e.g., long duration, high altitude  platforms) without 
sacrificing performance are highly desired.  
 

� As highly porous solids possessing low density and low dielectric permittivity combined with good 
mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for 
lightweight aircraft antenna systems. 
 

� While PI aerogels have been aggressively explored for thermal insulation, barely any effort has been 
made to leverage these materials for antennas.  
 

� With the support of  NASA’s Aeronautics Research Institute (NARI), our group has performed research, 
analysis, and proof-of-concept development of  PI aerogel antennas for aerospace communications. 
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Motivation 

Evaluate potential for using polyimide (PI) aerogels as a 
substrate for antennas 
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What are Aerogels?

6 

� Highly porous solids made by drying a 
wet gel without shrinking 

� Pore sizes extremely small (typically 
10-40 nm)—very good insulation  

� High surface areas 
� Density as low as 0.008 g/cm3 

� Low density = low dielectric properties 

Sol      Gel               Aerogel 

Dielectric constants of silica aerogels as a function of 
density  
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� Previously studied silica aerogels  
– Many amazing properties, including low 

relative dielectric constant, low density 
– However, very fragile 

� Recently developed polyimide aerogels  
– Same low density 
– Mechanically robust 

� Take advantage of the superior 
mechanical properties, light weight, low 
dielectric properties of polyimide 
aerogels to use as antenna substrate 

Silica aerogel 

Polyimide aerogel 

What are Aerogels? (cont.) 
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Aerogel formulations with relative dielectric constants as low as 1.08 
identified. Dielectric properties depend only on density 
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Antenna Prototypes 
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Printed Circuit Patch Antennas 
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Schematic of  patch antenna (a) and photographs of patch antenna on PI 
aerogel substrate (b), Rogers Duroid® 6010 (εr=10.2) (c); and Rogers Duroid® 
5880 (εr=2.2)(d).  

 Simulated (sim) and experimentally 
measured (exp) bandwidths at 3 dB and 
10 dB for all three substrates.  

Experimental and simulated S11 vs  frequency for 
patch antennas fabricated from PI aerogel and 
Rogers Duroid® 6010 and 5880.  

Comparison of Duroid and aerogel  patch 
antennas 
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 Duroid 6010             Duroid 5880                        Polyimide Aerogel 1                     Polyimide Aerogel 2 
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Antenna Gain Measurements  
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• Slot coupled design offers multiple benefits: 
– Beam-shaping elements (phase shifters, attenuators) 

easily inserted into feed network 
– Amplifiers (low-noise for receive, high gain for transmit) 

readily integrated into feed network 
– These components are essential for electronically 

steerable, adaptively controlled antennas 
• RF energy coupled from feed network to 

radiating elements via aperture in ground plane 
• Low dielectric of aerogel enables thicker 

substrate layer for high gain, high bandwidth 
radiating elements 

4 x 2 array feed 
(bottom layer) 

Slotted ground plane             
(middle layer) 

4 x 2 array of radiators on 3 
mm thick PI Aerogel (top layer) 

Fully assembled 4x2 array. 
Aperture size is 15.3 cm x 5.8 cm  

Slot-coupled 5 GHz patch antennas 
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Mass comparison between 4x2 aerogel 
antenna and its 4x2 Duroid counterpart 
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� Testing of 32 element array 
� Shows scalability of aerogel 

antenna performance. Tile 
approach used to increase physical 
aperture size and increase gain 
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Error Vector Magnitude Measurements  
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� Based on the performance of the aerogel antennas  a line-of-sight (LOS) experiment was 
performed to investigate the suitability of these antennas to support digital communication 
links with typically used modulation schemes. 

 
� An EVM measurement experiment was implemented using two identical 4x2 aerogel arrays, 

one as transmit (Tx) and the other as receive (Rx) antennas,  8.5 meter apart. The gain of the 
Tx and Rx antennas was 15.6 dBi. 
 

� Tests were performed at 4600, 5000 and 5400 MHz.  
 

� An Agilent 8267D vector signal generator (VSG) was used in the Tx end and an Agilent 
E4407B spectrum analyzer (SA) with option 229 modulation analysis personality was 
connected to the Rx antenna at the receiver end of the test set up. 
 

� A symbol rate of 7 Megasamples per second (Msps) was used, which with a spectral 
efficiency of 2 bits/symbol resulted in a data rate of 14 Mbps. The resolution bandwidth of 
the SA is set to 10 MHz to enable this data rate.  
 

� The high noise figure of the SA (~26 dB), combined with the wide resolution bandwidth, 
introduced a high noise floor which masked the capability of the Rx antenna to detect low 
signal power levels.  
 

Error Vector Magnitude (EVM) Measurements  
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� Line-of-sight experiment performed to 
investigate suitability of aerogel antennas to 
support digital communication links with 
typical modulation schemes (e.g., QPSK and 
π/4 QPSK) 

 
� Error Vector Magnitude (EVM) measurement  
 

– Measure of how far experimental values 
deviate from reference values  

– Two identical 4 x 2 aerogel arrays used 
as  transmit (Tx) and receive (Rx) 
antennas. 

– Separation of 8.5 m to satisfy 2D2/λ far 
field criteria 

– D is the maximum antenna aperture 
dimension  

– λ is the wavelength corresponding to the 
frequency of the array 

– In our case, D=16.1 cm, λ=6.0 cm, and    
2D2/λ=0.864 meters 

transmit 
antenna 

receive 
antenna 

 
      
 

Verification of  antenna performance in a terrestrial link 
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Error Vector Magnitude (EVM) Measurements  

� The following parameters are used in the experiment:  
 

� Transmit power= -23 dBm, 20 dBm, 0 dBm, and 20dBm 
 
� Tx and Rx antenna gain=15.6 dBi 
 
� Link distance: 8.5 meters 
 
� Frequency= 5.0 GHz  
 
� Data rate = 14 Mbps 
 
� Modulation schemes= quadrature phase shift keying (QPSK) and π/4 

differential QPSK (π/4 DQPSK).  
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Constellation plots for QPSK and π/4 DQPSK modulation schemes at different 
input powers  

(No amplifier between the Rx antenna and the SA)  

Aerogel Phased Array Antennas EVM Test using QPSK (left) and (π/4 DQPSK) Modulation Schemes. 
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� As expected, for both modulation schemes the EVM increases and 
the SNR decreases with decreasing Tx power.   
 

� In other words, the increased spreading of the constellation points 
with decreasing power is an indication of the degradation of the link 
quality.   
 

� When an Avantek AWT-6053 amplifier (small signal gain of 27 dB 
and a noise figure of 4 dB) is inserted between the SA and the Rx 
antenna, the aerogel antennas are able to support a link even when 
the power levels at the receive antenna aperture are as low as -83.4 
dBm. 

Error Vector Magnitude (EVM) Measurements  



National Aeronautics and Space Administration 

www.nasa.gov 21 

Constellation plots for QPSK and π/4 DQPSK modulation schemes at different 
input powers  

(With amplifier between the Rx antenna and the SA)  

Aerogel Phased Array Antennas EVM Test using QPSK (left) and (π/4 DQPSK) modulation schemes 
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EVM and SNR versus transmit power at  5.0 GHz (top) and 4.6 GHz (bottom) for the two 
modulation schemes discussed in this work. 

� Note that even at 4.6 
GHz, the antennas are 
able to maintain a 
communication link 
with only ~ 2 dB loss 
relative to the antenna 
performance at 5.0 GHz. 

 
� Similar results were also 

observed at 5.4 GHz. 
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• Data rates in table below are based on the following 
conditions: 

– Transmit power = 2 watt 
– Gain for both transmit and receive antennas = 15.6 dBi 
– Receiver noise figure = 4 dB 
– QPSK modulation 
– Free space losses based on link distance when vehicle 

located 10 degrees elevation above the horizon 
– Signal-to-noise ≥ 14 dB, bit error rate ≤10-6 

– No coding gain 
– Receiver implementation losses = 3 dB 

• When vehicle is directly overhead (see figures) free 
space losses are reduced by 7.5 dB 

– Allowable data rates are 5.7 times higher than when the 
vehicle is 10 degrees elevation above the horizon 

Aerogel transmit and receive antennas (2x4 element phased arrays, 15.6 dBi gain) at  
5000 MHz, communications link from directly overhead to 10 from horizon 

cubesat 
(350 km) 

commercial 
airplane  

(30,000 ft) 

unmanned aerial 
vehicle  

(70,000 ft) 

ground terminal 

Achievable data rates with different link scenarios 
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� The suitability of  Polyimide aerogel antennas for supporting digital 
communication links with traditionally used modulation schemes 
was demonstrated through error vector magnitude measurements has 
been discussed in this paper.  
 

� The EVM data indicate that 2x4 aerogel polyimide arrays can 
support digital communications links under commonly used 
modulation schemes for aerospace communication applications. 
 

� Besides communications these antennas could be applicable to radars 
mounted in small platforms (i.e., CubeSats and UAV’s) where their 
bandwidth, Gain, and weight could be used advantageously.  

Conclusions 
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