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[1] The aerosol products retrieved using the Moderate Resolution Imaging
Spectroradiometer (MODIS) collection 5.1 Deep Blue algorithm have provided useful
information about aerosol properties over bright-reflecting land surfaces, such as desert,
semiarid, and urban regions. However, many components of the C5.1 retrieval algorithm
needed to be improved; for example, the use of a static surface database to estimate surface
reflectances. This is particularly important over regions of mixed vegetated and
nonvegetated surfaces, which may undergo strong seasonal changes in land cover. In order
to address this issue, we develop a hybrid approach, which takes advantage of the
combination of precalculated surface reflectance database and normalized difference
vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the
spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been
extended from the arid and semiarid regions to the entire land areas. In this paper, the
changes made in the enhanced Deep Blue algorithm regarding the surface reflectance
estimation, aerosol model selection, and cloud screening schemes for producing the MODIS
collection 6 aerosol products are discussed. A similar approach has also been applied to the
algorithm that generates the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Deep Blue
products. Based upon our preliminary results of comparing the enhanced Deep Blue aerosol
products with the Aerosol Robotic Network (AERONET) measurements, the expected error
of the Deep Blue aerosol optical thickness (AOT) is estimated to be better than 0.05 + 20%.
Using 10 AERONET sites with long-term time series, 79% of the best quality Deep Blue
AOT values are found to fall within this expected error.
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1. Introduction

[2] The impact of natural and anthropogenic sources of air
pollution has gained increasing attention from scientific
communities in recent years. Indeed, tropospheric aerosols
not only perturb the radiative energy balance by interacting
with solar and terrestrial radiation but also by changing cloud
properties and lifetime. The Intergovernmental Panel on
Climate Change (IPCC) estimated that the global-mean direct

forcing due to anthropogenic aerosols is �0.5 ±0.4 Wm�2

[IPCC, 2007], of smaller magnitude and opposite sign to the
forcing exerted by greenhouse gasses. These results suggest
that the aerosol cooling effect may have partially counteracted
the warming contributed by greenhouse gas increases over the
past few decades. Aerosol indirect and semidirect radiative
effects are known with significantly larger uncertainty
[Lohmann and Feitcheer, 2005; Stevens and Feingold,
2009], although in recent years, attempts have been made to
assess their strengths with model simulations and satellite data
[e.g., Bauer and Menon, 2012; Wilcox, 2012]. In addition to
radiative effects on climate, knowledge of the atmospheric aero-
sol burden is of interest for topics including effects on air quality
andhumanhealth [Pope, 2000],mineral transportation and fertil-
ization of distant ecosystems [Meskhidze et al., 2005], and effects
on solar power yield [Breikreutz et al., 2009], among others.
[3] The retrieval of aerosol properties from satellite mea-

surements with sufficient accuracy for use in climate studies
is a highly challenging task; it is an ill-posed problem where
there are more unknowns about the microphysical and optical
properties of aerosols than the information content that can
be measured by current satellite sensors [e.g., Hasekamp
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and Landgraf, 2007; Knobelspiesse et al., 2012]. For single-
view satellite sensors such as the Advanced Very High
Resolution Radiometer (AVHRR), Sea-viewing Wide
Field-of-view Sensor (SeaWiFS), Moderate Resolution
Imaging Spectrometer (MODIS), and Visible Infrared
Imaging Radiometer Suite (VIIRS), the most important
factors/components that could substantially impact the perfor-
mance of aerosol retrievals involve the following: (1) surface
reflectance determination, including both their spectral and an-
gular dependencies, (2) aerosol microphysical and optical
model selection, (3) cloud screening, and (4) identification of
snow/ice-covered surfaces, particularly over seasons where
melting occurs. Adequate representation of aerosol microphys-
ical and optical properties becomes an increasingly important
factor in determining the accuracy of aerosol retrievals as the
aerosol loading increases [Jeong et al., 2005], while accurate
characterization of surface reflectance becomes comparatively
more important as aerosol loading decreases [Mi et al., 2007].
Since the midvisible aerosol optical thickness is not high over
most of the world (climatologically less than 0.25 [e.g.,
Remer et al., 2008]), surface reflectance determination remains
one of the most important inputs to aerosol remote sensing
from space, especially over land surfaces.
[4] Due to the brightness of land surfaces, aerosol retrieval

over land is a much more intricate task compared to retrieval
over ocean. In particular, the top-of-atmosphere (TOA)
reflectances acquired by the satellite sensors at red and near-
infrared wavelengths, available from most heritage sensors,
are overwhelmed by the surface contributions over desert
and semidesert regions, making it difficult to separate the
contribution of aerosols to the TOA signal from that of the sur-
face. As a result, previous satellite aerosol retrieval algorithms
from these single-view sensors, including the operational
SeaWiFS, AVHRR, and MODIS ones that rely on the Dark
Target approach [Kaufman et al., 1997; Levy et al., 2007],
were unable to provide aerosol properties over such bright-
reflecting regions. It is worth noting that multiangular, polariza-
tion, or active (lidar) measurements provide extra constraints
on the retrieval system and do enable retrieval of aerosol
properties over these bright surfaces with reasonable accuracy
[e.g., Deuzé et al., 2001; Martonchik et al., 2009; Omar
et al., 2009; Lyapustin et al., 2011; Sayer et al., 2012b];
however, existing sensors and algorithms with these
capabilities typically have comparatively narrow swath widths,
shorter data records, and/or require temporal compositing of
data, thus making them less suitable for some applications.
[5] The development of the Deep Blue algorithm narrowed

these gaps in SeaWiFS and MODIS aerosol products by
performing retrievals over bright-reflecting surfaces. The
Deep Blue algorithm utilizes blue wavelength measurements
from instruments such as SeaWiFS and MODIS, where the
surface reflectance over land is much lower than for longer
wavelength channels, to infer the properties of aerosols
[Hsu et al., 2004, 2006]. Using MODIS reflectance data,
the Deep Blue technique successfully produced a suite
of aerosol products, including aerosol optical thickness,
Ångström exponent, and dust absorption over desert and
semidesert areas and urban regions, that are an integral part
of the operational MODIS collection 5.1 (C5) MOD04 and
MYD04 aerosol products for Terra and Aqua, respectively.
[6] Although successful, many of the approximations and

assumptions utilized in the first generation of the Deep

Blue algorithm needed to be refined and improved to yield
better retrievals. One of the most important issues is improv-
ing the surface reflectance determination scheme in the re-
trieval. In the MODIS C5 algorithm, the use of static surface
databases limited the algorithm’s capability to retrieve aero-
sols over regions with seasonal vegetation changes, such as
in the Sahel and many urban sites. Also, the retrievals were
only performed over bright-reflecting surfaces, leading to
insufficient information content for retrievals over regions
with mixed vegetated and nonvegetated surfaces. Therefore,
in order to optimize estimates of surface reflectance, extensive
efforts have been made to develop the second generation of
the Deep Blue algorithm, which adopts a hybrid approach to
take advantage of both the surface reflectance database
method and a dynamical surface reflectance method.
[7] In this paper, we will describe the improvements made

to the surface reflectance determination, aerosol model
selection, and cloud screening schemes in the enhanced
Deep Blue algorithm used for processing the MODIS data to
create collection 6 (C6) of the Deep Blue products, as well
as the SeaWiFS Version 3 products. Section 2 illustrates the
methodology of this new algorithm and detailed changes made
in each key component compared to the previous C5 algo-
rithm. Section 3 summarizes the results of the aerosol products
generated from the new algorithm. Finally, we show provi-
sional validation of the newMODISDeep Blue C6 products in
section 4, followed by some conclusions in section 5. It is
noted that the primary goal of this paper is to serve as the over-
all umbrella document for the development of the enhanced
Deep Blue algorithm, while a detailed evaluation of the
SeaWiFS andMODIS Deep Blue aerosol product performance
using Aerosol Robotic Network (AERONET)measurements is
provided by Sayer et al. [2012a, 2013], respectively.

2. Development of theEnhancedDeepBlueAlgorithm

[8] To retrieve aerosol properties over land, we employ a
polarized radiative transfer model [Dave, 1972] to compute
the reflected intensity field, which is defined by

R μ;μ0;ϕð Þ ¼ π I μ;μ0;ϕð Þ
μ0 F0

(1)

where R is the normalized radiance (or apparent reflectance),
F0 is the extraterrestrial solar flux, I is the radiance at the top
of the atmosphere, μ is the cosine of the view zenith angle,
μ0 is the cosine of the solar zenith angle, and ϕ is the relative
azimuth angle between the direction of propagation of
scattered radiation and the incident solar direction. This
radiative transfer code includes full multiple scattering and
takes into account polarization; in the blue wavelength range
of 0.412 to 0.49μm, which is vital for this study, Rayleigh
scattering is relatively important compared to the longer
wavelengths and neglect of polarization in the radiative
transfer code would lead to significant errors in the calculated
reflectances [Mishchenko et al., 1994].
[9] Since the retrieval of aerosol properties from spaceborne

sensors requires highly accurate and precise radiometric
measurements, sensor calibration and characterization are
extremely critical before high quality long-term satellite aero-
sol data can be achieved for climate study. This is particularly
important for Terra/MODIS, which has suffered from aging of
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the optics and detectors since its launch in 1999. In fact, the
characteristics of the detectors of certain bands, especially
band 8 (0.412μm), have changed significantly over time,
leading to increased calibration uncertainty. In order to ad-
dress this issue, we have utilized a cross-calibration method
developed for characterizing the Terra/MODIS detectors by
the NASA Ocean Biology Processing Group [Meister et al.,
2005; Franz et al., 2008; Kwiatkowska et al., 2008]. Both
response versus scan angle and polarization sensitivity correc-
tions have been applied to the MODIS Level 1B reflectances at
these blue bands, which are vital to the Deep Blue algorithm.
This calibration correction was performed to Terra/MODIS
C5 and resulted in substantial improvements in the quality of
Deep Blue aerosol retrievals (see Jeong et al. [2011] for details).
Similar procedures have been also applied to Terra/MODIS C6.
[10] After performing necessary calibration corrections to

the Level 1B reflectances, multiple bands (i.e., 0.412, 0.47,
0.65, 0.86, 1.24, 1.38, 2.11, 11, and 12μm for MODIS) are
ingested by the Deep Blue algorithm as inputs for the Level
2 aerosol product retrievals. An overview of the enhanced
Deep Blue algorithm over land is provided in the data flow
diagram shown in Figure 1. The fundamental steps of the
processing stream used to account for different types of land
surfaces are described as follows:
[11] 1. Scenes are screened for the presence of clouds by

examining the spatial variation of the reflectances from the
0.412μm channel, the brightness temperatures from 11 and
12 microns, and the 1.38μm MODIS reflectances. Similar
to C5, pixels are first tested for the presence of clouds as well
as snow/ice surfaces in the C6 algorithm before the aerosol
retrieval processing begins. The retrieval is not performed
for cloud- or snow/ice-contaminated pixels.
[12] 2. For a given pixel, the surface reflectances are

determined for the 0.412, 0.47, and 0.65μm channels using

one of three different methods: (i) by a dynamic surface re-
flectance approach, (ii) based upon its geolocation using a
precalculated surface reflectance database created from the
MODIS or SeaWiFS measurements, or (iii) a combination
of the first two approaches. The selection of which method
is used depends on the TOA reflectance at shortwave-infrared
(SWIR) or near-infrared (NIR) wavelengths (i.e., 2.1μm for
MODIS and 0.865μm for SeaWiFS) and the normalized
difference vegetation index (NDVI), which is defined as

NDVI ¼ R0:86� R0:65ð Þ= R0:86þ R0:65ð Þ

where R0.65 and R0.86 correspond to the TOA reflectance
measured at 0.65 and 0.86μm, respectively.
[13] 3. The 0.412, 0.47, and 0.65μm TOA reflectances

are then compared to reflectances contained in lookup
tables with dimensions consisting of the solar zenith, satel-
lite (viewing) zenith, and relative azimuth angles, and the
surface reflectance, aerosol optical thickness, and single-
scattering albedo. A maximum likelihood method is used
to match the appropriate values of aerosol optical thickness
and mixing ratio to the measured reflectances. Reflectance
data from the 0.65μm channel is used when the aerosol
cloud is thick. For details of the algorithm, see Hsu et al.
[2004, 2006].
[14] Except for extremely blue-light-absorbing dust, the

basic procedures used for aerosol model generation and
selection in the enhanced Deep Blue algorithm are similar
to the MODIS C5 version. Also, no significant modifications
were made in the methodology of deriving Ångström expo-
nent and dust absorption as compared to C5. However, both
cloud screening and surface reflectance determination have
been substantially changed to improve the accuracy of the
retrieved aerosol properties. Details of the cloud screening

Figure 1. Flowchart of the enhanced MODIS Deep Blue algorithm.
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scheme (in particular for cirrus) are described below,
while the calculation of surface reflectances is discussed in
section 2.2.

2.1. Cloud and Snow/Ice Screening

[15] There are several improvements made in the MODIS
C6 Deep Blue algorithm regarding flagging procedures in
the presence of clouds and snow/ice. The flowchart of
detailed steps used in the cloud screening scheme is depicted
in Figure 2. Previously, the C5 algorithm used a simple con-
servative filter based on the variability of TOA reflectance at
0.412μm (R0.412) within a 3 × 3 pixel area. However, in
order to sufficiently filter out cloudy pixels, pixels over areas
of highly variable surface reflectance sometimes also got
flagged as cloud contaminated. In C6, new checks on
brightness temperature (BT) at 11μm (BT11) and the BT
difference (BTD) between 11μm and 12μm (BTD11–12)
have been implemented in addition to the R0.412 variability
filter. By combining the thermal infrared channels with the
blue channel, the contrast between clouds and the underlying
surface becomes much more discernible, particularly over
regions with high surface inhomogeneity. This allows us to
relax the criteria for the 0.412μm variability filter previously
used in C5, and more pixels are subsequently retained for
aerosol retrievals while still maintaining minimum contami-
nation from clouds.
[16] In addition, significant efforts have been made toward

the identification of thin cirrus in C6. In the C5 Deep Blue
algorithm, the use of a single threshold method based upon
MODIS band 26 (i.e., 1.38μm), although proven to be robust
in general [Huang et al., 2011], led to pixels that were some-
times overscreened for cirrus. This was particularly true over
moisture-deprived desert regions such as the Sahara; since
this MODIS band is strongly sensitive to water vapor absorp-
tion, a very low amount of column water vapor in the
atmosphere (i.e., less than 5mm in total precipitable water)
could result in elevated values of TOA reflectance at

1.38 μm (R1.38) and thus a false detection of cirrus.
Together with the aforementioned spatial variability test,
the C6 improvements were found by Sayer et al. [2013] to
treble the data volume in C6 relative to C5 for some areas.
[17] One such example (for 7 March 2006) is shown in

Figure 3. On this day, a significant gap in the C5 Deep
Blue retrieved aerosol optical thickness (AOT) (Figure 3b)
is seen over the Sahara around 20°N–25°N and 0°–10°E; this
gap is triggered by the cirrus flag due to high values of R1.38
over this region. The corresponding MODIS true color image
does not seem to indicate the presence of cirrus over this
region and the gap in AOT is, therefore, most likely due to
the overscreening of cirrus under very dry atmospheric
conditions (Figure 3d).
[18] In order to alleviate this problem, we implemented a

scheme to jointly use R1.38, BT11, BTD11–12, and the total
precipitation water (TPW) obtained from the National
Centers for Environmental Prediction (NCEP) as part of the
ancillary data input into the C6 algorithm. The use of
BTD11–12 has been shown to effectively identify the
presence of cirrus cloud [Hansell et al., 2007]. As seen in
Figure 3e, the regions covered by clouds including cirrus
are generally associated with positive BTD11–12 values,
consistent with the simulation results ofHansell et al. [2007].
[19] In order to account for the coarse resolution (1° lati-

tude × 1° longitude) of the NCEP TPW data and the effects
of underlying surfaces on BTD11–12 near the edge of thin
cirrus, different steps and thresholds are selected to achieve
optimal cirrus screening for different surface types according
to the reflectances of underlying surfaces at 0.65μm based
upon the precalculated surface reflectance database. These
steps and thresholds are shown in Figure 2. As shown in
Figure 3g, this improved scheme results in a substantial
increase in the number of aerosol retrievals in C6 from those
areas that were previously overscreened in C5.
[20] As shown in Figure 4, we also improved the identifica-

tion of underlying snow/ice surfaces in C6 by adapting the

Figure 2. Flowchart of cloud screening used in MODIS C6 Deep Blue algorithm.
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method described by Hall et al. [1995]. The value of
Normalized Difference Snow/Ice Index (NDSI) used in the
C6 algorithm is defined as

NDSI ¼ R0:555–R2:1ð Þ= R0:555þ R2:1ð Þ
where R0.555 and R2.1 correspond to the TOA reflectance
measured by MODIS at 0.555 and 2.1μm, respectively. We
use the reflectance from 2.1μm instead of the 1.6μm channel
used by Hall because of a detector issue associated with this
channel on MODIS/Aqua. Since the snow albedo decreases
dramatically from visible wavelengths to near infrared and
shortwave infrared, the spectral shape of snow/ice surface is
opposite to that of snow-free land surfaces, which allows us
to separate snow/ice surfaces from other types of land. To
achieve optimal screening of the snow/ice-contaminated

Figure 3. (a–g) A thin cirrus overscreening case over Sahara on 7 March 2006. The impacts of improved
cirrus screening on the spatial coverage of AOT retrievals are seen when comparing the C5 AOT map in
Figure 3b with the C6 in Figure 3g. The corresponding values of TOA reflectance at 1.38μm, total
precipitable water, brightness temperature difference (BTD11–12), brightness temperature (BT11) used
for cirrus screening are depicted in Figure 3c, 3d, 3e, and 3f, respectively. The MODIS true color image
is also included in Figure 3a.

Figure 4. Flowchart of screening for snow/ice surfaces in
MODIS C6.
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pixels, the resulting NDSI values are also employed in con-
junction with R0.86 and R0.555 as well as BT11 to check
their surface temperature and reflectance for potential water
and aerosol-laden pixels. In our C6 algorithm testing, this
snow/ice identification scheme was found to be particularly
important in filtering out erroneous pixels for aerosol re-
trievals at high latitudes in the Northern Hemisphere during
the spring snow/ice melting season.

2.2. Surface Reflectance Determination

[21] To obtain high quality aerosol retrievals, an accurate
determination of the underlying surface reflectance is
imperative. The surface reflectance used for aerosol retrievals
in the previous C5 algorithm was based upon a static
precalculated database that was only a function of season.
This approach provided reasonable performance over desert
and semidesert regions, where the surface reflectances are
relatively invariant with time and the effects of the surface
bidirectional reflectance distribution function (BRDF) are
weaker than those over vegetated areas. However, the surface
reflectance database approach was sometimes found to be
unsuccessful over vegetated surfaces, especially where sea-
sonal and interannual changes are significant. To improve
the estimate of surface reflectance in such cases, it is neces-
sary to instantaneously account for dynamic changes among
diverse types of vegetation.
[22] In order to address this issue, extensive efforts have

been made in the enhanced Deep Blue algorithm to improve
the calculation of surface reflectance. As a result, three differ-
ent surface reflectance schemes, as depicted in Figure 1, have
been adopted in MODIS C6 Deep Blue to optimize retrievals
of aerosol properties based upon different surface types.
Specifically, we use the MODIS Land Cover and Land
Cover Dynamics product (MCD12C1) [Friedl et al., 2002]
to separate pixels into three categories: (1) arid and semiarid
regions, (2) general vegetation, and (3) urban/built-up and
transitional regions. The map of regions where these three

surface reflectance schemes have been applied is depicted
in Figure 5. We also note that, although different wavelength
pairs are used for MODIS (0.412, 0.47, 0.65, and 2.1μm) and
for SeaWiFS (0.412, 0.49, 0.67, and 0.87μm), similar
approaches have been applied for calculating surface reflec-
tances to both MODIS C6 and SeaWiFS version 3 (and later)
Deep Blue products. The details of surface reflectance calcu-
lation for each land category are described below.
2.2.1. Deep Blue Surface Database
[23] For arid and semiarid regions, the surface database

method continues to be used in MODIS C6 for determining
the surface reflectance. However, several major changes
were made in constructing the database. Similar to what
was used in C5, the C6 surface database was compiled based
upon the minimum reflectivity method at the resolution of
0.1° latitude × 0.1° longitude for each season using MODIS
TOA reflectances at 0.412, 0.47, and 0.65μm (cf. Hsu et al.
[2004] for details). In C6, better sample statistics have been
achieved by increasing MODIS TOA reflectance input data
from the 2 years (2005–2006) previously used in C5 to more
than 7 years (2002–2009). Additionally, in order to account
for potential changes in land cover type within the given sea-
son over the same location, the C6 surface database is not
only a function of season as in C5 but also of NDVI. The de-
tails of construction of the C6 surface database are as follows.
[24] First, to ensure only clear pixels are included in the

analysis, the TOA reflectance pixels at the three MODIS
bands in the database were tested for clouds, as well as
cloud edges and thick aerosol plumes, by employing a
conservative screening scheme based upon the standard
deviations of 0.412μm TOA reflectances within a 3 × 3 pixel
area centered on the pixel in question. Also, to account for
seasonal/transient inland water bodies, water pixels were fil-
tered out if the computed NDVI was negative. Reflectance
values that pass these tests are corrected for the contribution
from molecular (Rayleigh) scattering and averaged into a
daily mean for the given grid.

Figure 5. Geographic regions where the three surface reflectance schemes are used in the enhanced Deep
Blue algorithm of (1) deserts and semideserts (blue color), (2) general vegetation (green color), and (3) urban/
built-up and transitional zones (orange color). The regions with white colors are associated with either water
or snow/ice surfaces and thus no overland aerosol retrieval algorithm is applied over these regions.
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[25] Next, these grid cells were divided into four separate
groups according to their NDVI: NDVI< 0.18, 0.18<=
NDVI< 0.24, NDVI> = 0.24, and an “all NDVI” group.
To further alleviate the problem of outliers due to any rem-
nant presence of cloud shadow or solar eclipse, one addi-
tional check was performed to screen out any pixels that lay
outside the range of twice the standard deviation from the
mean of the samples over every 10° angular bin collected
for the given grid cell. Finally, the surface reflectance values
in the C6 database are calculated by a second-order polyno-
mial fit through the lowest 15 percentile of grid cell samples
against the scattering angles over the given location. The
scattering angle (Φ) is defined as

Φ ¼ cos�1 �cosθ0cosθþ sinθ0sinθ cosϕð Þ

where θ0, θ, and ϕ are the solar zenith, sensor view zenith,
and relative azimuth angles, respectively. These angular
curve fittings of surface reflectance are performed for each
NDVI group collected over the given grid cell, provided that
a sufficient sample size (50 or more points) is acquired. The
derived surface reflectance database therefore depends upon
the scattering angle, NDVI, and season. One example of the
procedure is provided in Figure 6 using MODIS data over
Tinga Tingana, Australia (29°S, 140°E) for the fall season.
It is apparent that, for this dry region, the derived surface
reflectance at 0.65 μm (Figure 6c) is not only substantially
brighter than that at 0.412μm (Figure 6a) but also its corre-
sponding anisotropy is much larger (shown in the slope of
resulting surface reflectance as a function of scattering
angle). This is consistent with the expected characteristics
of desert surfaces. We note that similar procedures have also
been applied to the SeaWiFS data at 0.412, 0.49, and 0.67μm

for constructing the surface reflectance database at these
wavelengths.
[26] Figures 7 and 8 show the C6 global maps of surface re-

flectances at 0.412 and 0.65μm constructed from our surface
database, based upon more than 7 years of MODIS Aqua data,
for each season using the above approach for the all NDVI
group. In general, the surface reflectance at 0.65 is higher than
at 0.412μm, particularly over dry regions, and exhibits a much
more discernible contrast between vegetation and desert areas.
We note that there are still gaps in the derived surface reflec-
tance database due to the frequent presence of clouds or
snow/ice over certain parts of the world, such as the Amazon
and equatorial Africa. As a result, the sample size of data pass-
ing our conservative cloud screening scheme was insufficient
for computing surface reflectance polynomial fitting with
rigorous statistics over such regions. However, these regions
are associated with vegetated land areas, which will not
require the use of this surface database to determine the
surface reflectance in the C6 algorithm.
2.2.2. Vegetated Land Surfaces
[27] Over vegetated land surfaces, we retrieve aerosol prop-

erties by taking advantage of the spectral relationship in
surface reflectance between visible and longer wavelengths
(i.e., 0.87 for SeaWiFS and 2.1μm for MODIS) to account
for the effect of the ever-changing dynamics of vegetation
phenology on the surface reflectance. However, in order to
better determine the spectral surface reflectance relationship,
contributions from the atmosphere need to be removed from
the satellite-measured signals. This task was accomplished
by collocating satellite measurements from MODIS and
SeaWiFS with ground-based Aerosol Robotic Network
(AERONET) [Holben et al., 1998] data. The satellite-derived
surface reflectances at visible wavelengths (i.e., 0.47 and

Figure 6. Example of constructing the Deep Blue surface database over Tinga Tingana, Australia for the
fall season as a function of scattering angle using MODIS reflectivity (%) at (a) 0.412, (b) 0.47, and (c)
0.65 μm. Blue symbols denote the lowest 15 percentile and the red curve is the polynomial fit through
the blue symbols.
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0.65 μm for MODIS and 0.49 and 0.67 μm for SeaWiFS)
were then obtained using AERONET AOT and single-
scattering albedo information to perform an atmospheric
correction. Hereinafter, such derived surface reflectances
based on the explicit atmospheric corrections performed using
collocated satellite measurements and AERONET data will be
referred to as “benchmark” surface reflectances. Since the un-
certainty of deriving surface reflectance increases significantly
as aerosol loading becomes larger, we only include samples
for analysis when the AERONET AOT at 0.5μm< 0.5. The
correction procedure is described below.
[28] For MODIS data, our approach estimates the surface

reflectances at visible channels based upon the TOA reflec-
tances at 2.1μm (R2.1) and land cover type using the follow-
ing formulas:

ESR0:65 ¼ aþ b*R2:1þ c* R2:1ð Þ2 (2)

ESR0:47 ¼ dþ e*ESR0:65 (3)

where ESR is the estimated surface reflectance and a, b, c, d,
and e are coefficients determined by a least squares fitting to
the derived benchmark surface reflectance data over the
AERONET sites. The spectral surface reflectance relation-
ships given by the above formulas can vary depending upon
the land cover type and season.
[29] Figure 9 shows an example of these spectral relation-

ships for different surface types over the United States, based
upon 2004 springtime MODIS data. It is apparent that the
spectral surface reflectance relationships for most naturally

Figure 8. Same as Figure 7, except for 0.65μm.

Figure 7. (a–d) Seasonal maps of surface reflectance database at 0.412μm used in the Deep Blue
algorithm. The color scale indicates reflectance, in percent. The black colored regions are associated with
water body, snow/ice surface, or the frequent presence of clouds.
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vegetated surfaces can be collapsed into a single relationship,
while the relationships for cropland (gray color) or for urban
and built-up regions (light blue color) deviate distinctively
from those for naturally vegetated surfaces. Based on
these findings, we derive the surface reflectance relationship

separately for each land cover type (i.e., naturally vegetated
area and cropland) and seasons, with a consideration of the
changes of surface property for cropland by establishing
subgroups depending on the values of NDVISWIR, which is
defined as

Figure 9. MODIS-derived spectral surface reflectance relationships (left) between 0.65 and 2.11μm and
(right) between 0.47 and 0.65μm during March-April-May 2004, as a function of land cover type from
MODIS (MCD12C1).

Figure 10. (top) The spectral relationship of (left) 0.65 versus 2.1μm and (right) 0.47 versus 0.65μm
based upon benchmark surface reflectances from MODIS for naturally vegetated regions during March-
April-May 2004. The dotted line represents the second-order least squares fit through the data points.
(Bottom) Comparisons between the derived benchmark and estimated surface reflectance for (left) 0.65
and (right) 0.47μm channels. The dashed line denotes the one-to-one line.
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NDVISWIR ¼ R1:24� R2:1ð Þ= R1:24þ R2:1ð Þ

We note that this approach is not applied to the urban/built-
up zones, since the hybrid method is used in the enhanced
Deep Blue algorithm over such regions.
[30] An example of the derivations of spectral surface re-

flectance relationships for naturally vegetated surfaces during
the March-April-May season is provided in the upper panels
of Figure 10. The values of the coefficients for estimating the
surface reflectances in equations (2) and (3) are determined
by a second-order polynomial least squares curve fit through
the data points. The resulting coefficients a–e in equations (2)
and (3) for each season are tabulated in Tables 1 and 2 for
naturally vegetated regions and croplands, respectively. To
validate the fit, comparisons between these estimated surface
reflectances at 0.47 and 0.65μm and the corresponding
benchmark surface reflectances were performed, and these
comparisons are presented in the lower panels of Figure 10.
As shown in the figure, the estimated surface reflectances
show reasonable agreement (root-mean-square error of
1.2% for 0.65μm, 0.67% for 0.47μm) with the benchmark
surface reflectances.
[31] For SeaWiFS aerosol retrievals over vegetated regions,

the enhanced Deep Blue algorithm utilizes the 0.49, 0.67, and
0.865μm bands to derive surface reflectances due to lack of
the SWIR bands for SeaWiFS. Figure 11 shows that, for all
the collocated SeaWiFS/AERONET data acquired over the
continental U.S. during spring 2004, the atmospherically
corrected surface reflectances (i.e., benchmark surface
reflectances) from SeaWiFS exhibit a linear relationship
with the corresponding TOA reflectances at 0.865μm (after
the Rayleigh scattering contribution has been removed).
Figure 11 also shows that this relationship is a function of
NDVI. Based on these results, we developed an approach that
estimates the surface reflectance at visible channels based
upon the Rayleigh-corrected TOA reflectances at the near-
infrared channel (i.e., 0.865μm) and NDVI values using the
following formulas:

ESR0:67 ¼ RCR0:865* a*NDVI’þ bð Þ þ c (4)

ESR0:49 ¼ RCR0:865* d*NDVI’þ eð Þ þ f (5)

where ESR and RCR are the estimated surface reflectance for
the 0.67 and 0.49μm bands and Rayleigh-corrected reflec-
tances at 0.865μm, respectively; a, b, c, d, e, and f are coef-
ficients determined by least squares fitting to the benchmark
surface reflectances; and

NDVI’ ¼ RCR0:865 � RCR0:67ð Þ= RCR0:865 þ RCR0:67ð Þ (6)

The regression coefficients were derived seasonally and
according to 3 NDVI’ classes: 0.10<NDVI’<= 0.20;
0.20<NDVI’< = 0.55; NDVI’> 0.55. In addition, aerosol
retrievals using this approach are only performed for pixels
with a surface reflectance< 0.23 and an NDVI’> 0.1. The
resulting coefficients for each NDVI’ category and season
are tabulated in Tables 3 and 4 for 0.67 and 0.49μm
SeaWiFS bands, respectively.
[32] Comparisons of the SeaWiFS estimated surface reflec-

tance at 0.49μm using this approach exhibit reasonable agree-
ment for all four seasons with the corresponding benchmark
surface reflectance regardless of the AOT values. Examples
of these comparisons for spring (March-April-May) and fall
(September-October-November) are shown in the upper
panels of Figure 12. The corresponding AOT value for each
pixel is indicated by the color of the symbol. The satellite-
estimated surface reflectances at 0.67μm are seen to also cor-
relate well with the benchmark surface reflectance shown in
the lower panels of Figure 12, except for high AOT cases.
This is likely due to the fact that the slopes of surface reflec-
tance from 0.865 to 0.67μm are more sensitive to the
NDVI’ values than the 0.865 to 0.49μm slopes shown in
Figure 11. Therefore, bias in NDVI’ due to the presence of
aerosols has a stronger impact on retrieving the surface reflec-
tance at 0.67 than it does for 0.49μm using this approach.
[33] The dependence of the deviation between benchmark

0.49 and 0.67 μm surface reflectance and satellite-estimated
values as a function of AOT at 0.49μm from the
AERONET data is further investigated and plotted in
Figures 13a and 13b. We note that, while the surface reflec-
tance bias at 0.49μm appears to be independent of
AERONETAOT, there is a clear correlation between the sur-
face reflectance bias at 0.67 and AOT at 0.49μm. To account
for this effect, the estimated surface reflectance at 0.67μm
was readjusted by using satellite-retrieved AOT at 0.49μm
in conjunction with the linear regression line indicated in
Figure 13b before it is used for aerosol retrievals at 0.67μm.
[34] As a result, the surface reflectance determination

schemes for MODIS and SeaWiFS described above are being
applied to the naturally vegetated regions and cropland indi-
cated by the areas with green color in Figure 5 for aerosol re-
trievals in the enhanced Deep Blue algorithm. For the urban/
built-up and transitional zones, the surface reflectances at vis-
ible wavelengths do not have simple and well-behaved

Table 1. Surface Reflectance Coefficients Over Naturally
Vegetated Regions for MODIS 0.47 and 0.65μma

R0.65/R2.1 (a, b, c) R0.47/R0.65 (d, e)

DJF/MAM 0.5526, 0.4801, 0.0038 �0.3305, 0.4830
JJA 0.4413, 0.4606, 0.0045 �0.5841, 0.4961
SON 1.1749, 0.3560, 0.0067 0.0048, 0.4429

aThese values inside each cell correspond to a, b, c, d, and e in equations
(2) and (3).

Table 2. Surface Reflectance Coefficients Over Cropland for MODIS 0.47 and 0.65μma

NDVISWIR< 0.35 NDVISWIR>= 0.35

R0.65/R2.1 (a, b, c) R0.47/R0.65 (d, e) R0.65/R2.1 (a, b, c) R0.47/R0.65 (d, e)

DJF/MAM 6.2828, 0.1658, 0.0 2.6884, 0.2751 �0.9766, 0.6213, 0.0 0.9126, 0.3982
JJA 5.2395, 0.2077, 0.0 0.2451, 0.5442 �0.1187, 0.5036, 0.0 �0.0736, 0.5345
SON �2.2642, 0.6781, 0.0 1.2493, 0.3576 �1.2799, 0.6161, 0.0 1.2724, 0.2039

aThese values inside each cell correspond to a, b, c, d, and e in equations (2) and (3).

HSU ET AL.: ENHANCED DEEP BLUE AEROSOL RETRIEVAL

9305



relationships with NDVI as those for the densely vegetated
regions and thus a hybrid approach is developed for these
types of land cover as described in the next subsection.
2.2.3. Hybrid Approach Over Urban/Built-Up
and Transitional Regions
[35] The derivation of surface reflectances for aerosol re-

trievals over the urban/ built-up regions and cropland/transi-
tional zones is highly challenging for a number of reasons.
First, as shown in Figure 9, the relationships between the vis-
ible and 2.1μm surface reflectances over these types of land
surfaces exhibit more complex behavior and are not in line
with those for naturally vegetated areas. Second, although
their surface reflectances are not as bright, they are much
more susceptible to seasonal changes of vegetation growing
and dying phases as well as the effects of surface BRDF.
Third, surface inhomogeneity is often a problem, particularly
over large cities where vegetation resides close to buildings,
resulting in high variability of surface brightness throughout
the landscape. To address these issues, we developed a
hybrid approach for determining surface reflectance by com-
bining the Deep Blue surface database with the angular shapes
of surface BRDF derived using AERONET measurements.
[36] To derive these BRDF angular shapes, collocated

satellite/AERONET data sets were compiled using 8 years
of MODIS data (2003–2010) and more than 10 years of
SeaWiFS data (1998–2010) acquired within a distance of
0.1° radius from the AERONET sites over transitional and
urban/ built-up regions. The satellite-estimated surface re-
flectances were then computed at 0.412, 0.47, and 0.65μm
for MODIS and 0.412, 0.49, and 0.67μm for SeaWiFS using
aerosol information from the AERONET measurements by
applying the same atmospheric correction procedures men-
tioned in section 2.2.2. Once again, only pixels with
AERONET AOT< 0.5 were included for such studies in

order to minimize the uncertainty of aerosol contribution in
determining surface reflectance. Also, to account for the ef-
fect of vegetation changes, the resulting surface reflectances
were divided into three different groups according to their
NDVI values: NDVI<= 0.19, 0.19<NDVI< = 0.24,
NDVI> 0.24. Regression lines were then computed as a
function of scattering angle using a second-order polynomial
fit for each NDVI group and each season to obtain the shapes
of surface BRDF. One example of these procedures for
Banizoumbou (13°N, 2°E) in the Sahel is shown in
Figures 14 and 15 for 0.412 and 0.470μm, respectively.
[37] It is apparent in these figures that the surface green-

ness at this location has a strong seasonal cycle, with more
dense vegetation land cover (i.e., higher NDVI) in fall
(September–November) and more dry land surfaces (i.e.,
lower NDVI) in spring (March–May). However, during the
transitional time periods such as summer, the vegetation
grows rapidly over a short period of time due to the arrival
of rainfall in the region, leading to a large temporal gradient
in the NDVI and thus the surface reflectance values. As
shown in Figures 14 and 15, the resulting angular shapes of
surface reflectances are derived by applying polynomial fits
through the data points stratified by NDVI to characterize
the surface properties based upon the state of vegetation.
Finally, we combine these derived angular shapes with sur-
face reflectance values from the Deep Blue surface database
at 135° scattering angle described in section 2.2.1 to compute
surface reflectance for aerosol retrievals over these urban/
built-up and transitional zones. This hybrid method has been
applied to the regions of orange color indicated in Figure 5
for both SeaWiFS and MODIS data.
[38] In order to better track the performances of the three

different approaches mentioned above, a new Scientific Data
Set (SDS) named “Deep_Blue_Algorithm_Flag_Land” was

Figure 11. SeaWiFS derived surface reflectance using aerosol properties from AERONET measurements
at (left) 0.49 and (right) 0.67μm as function of Rayleigh-corrected reflectance at 0.865μm at the top of the
atmosphere and normalized difference vegetation index (NDVI) for the spring season. Color bar shows the
values of NDVI for each point.

Table 3. Surface Reflectance Coefficients Over Vegetated Regions for SeaWiFS 0.67μma

0.10<NDVI’<=0.20 0.20<NDVI’<=0.55 NDVI’> 0.55

MAM �1.5184, 0.9797, �1.2189 �1.0948, 0.8639, �0.6745 �0.7002, 0.6672, �0.9535
JJA �1.5077, 0.9695, �0.8751 �1.0772, 0.8724, �0.9543 �0.6919, 0.6721, �1.1697
SON �1.5244, 0.9743, �1.1274 �1.0676, 0.8650, �0.9757 �0.6497, 0.6204, �0.3580
DJF �1.6123, 0.9736, �0.7547 �1.0597, 0.8491, �0.5760 �0.7054, 0.6767, �0.6852

aThe three values inside each cell are corresponding to a, b, and c in equation (4).
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added into the MODIS C6 Deep Blue products, as shown in
Table 5. One of three different values (i.e., Deep Blue surface
database, vegetated land surfaces, or mixed) will be reported
in this SDS to indicate which one of these three methods
was used in the actual retrieval for the given cell.

2.3. Aerosol Model Selection

[39] The general scheme for selecting aerosol models used
in C6 retrievals is similar to C5 [Hsu et al., 2004, 2006].
However, additional use of MODIS infrared channels has
been employed in C6 to identify the presence of extremely
absorbing mineral dust. According to the findings of
Hansell et al. [2007], the use of the brightness temperature
difference between 8.6 and 11μm (BTD8–11) is robust in
detecting strongly absorbing dust such as the silicates (e.g.,
quartz, clays, etc.), which have strong Restrahlen bands and

often absorb infrared radiation more at 8.6 than at 11μm.
Since these types of mineral dust also exhibit strong absorp-
tion of visible light, in particular for blue wavelengths,
nonidentification of such aerosols will lead to the underesti-
mation of AOT in the Deep Blue retrieval algorithm.
[40] One example of such a case is shown in Figure 16 for 9

July 2007. On this day, extensive dust plumes were seen in the
MODIS/Aqua true color image (Figure 16a) around the
Bodele Depression and the region surrounding it (14°N–20°
N, 10°E–20°E) as well as over the western part of the Sahara
(15°N–30°N, 15°W–5°E, as indicated by the circle). In
Figure 16b, the heavy dust loading near the Bodele
Depression was reflected in the MODIS C5 AOT map; how-
ever, the dust plumes over the western part of the Sahara were
not captured well by the C5 algorithm. In order to address this
issue, we added a new heavy dust flag in the C6 algorithm,

Table 4. Surface Reflectance Coefficients Over Vegetated Regions for SeaWiFS 0.49μma

0.10<NDVI’<=0.20 0.20<NDVI’<=0.55 NDVI’> 0.55

MAM �1.1617, 0.5278, 0.7483 �0.5822, 0.4222, 1.3564 �0.4264, 0.3903, 0.2547
JJA �0.5839, 0.3888, 2.2656 �0.5500, 0.3699, 2.6355 �0.3990, 0.3881, �0.3469
SON �0.9448, 0.4835, 0.9249 �0.5271, 0.3615, 1.9300 �0.3185, 0.3040, 0.3497
DJF �1.3836, 0.4686, 3.2991 �0.6764, 0.4439, 1.4341 �0.4177, 0.4442, �1.2915

aThe three values inside each cell correspond to d, e, and f in equation (5).

Figure 12. Comparisons of the estimated surface reflectance at (top) 0.49 and (bottom) 0.67μm with the
derived benchmark surface reflectance from SeaWiFS at the same wavelength after atmospheric corrections
using AERONET AOT data for (left) March–May and (right) September–November. Color indicates AOT
at 0.49μm interpolated from AERONET AOTs using Ångström exponent.
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which is based upon the D* value developed by Hansell et al.
[2007]; D* is defined as

D* ¼ exp BTD11� 12ð Þ–A½ �= BTD8� 11ð Þ � B½ Þf �g

where parameters A and B are the thermal offsets for BTD11–
12 and BTD8–11, respectively. In the C6 algorithm, the values
of�0.05 and 10.0 are used for A and B for the D* calculation.
When the condition D*> 1.1 is detected, the retrieval algo-
rithm will go directly to the three-wavelength (0.412, 0.47,
and 0.65μm) approach and bypass the two-wavelength
(0.412 and 0.47μm) method. As described in Hsu et al.
[2004], an initial step of using the two-wavelength method is
performed in the Deep Blue algorithm to determine if there
is sufficient aerosol loading in the atmosphere for retrieving
aerosols with the 0.65μm channel over bright surfaces, where
the surface contribution dominates the TOA reflectance under
low to moderate aerosol loading conditions. If the criteria on
aerosol loadings are met for a given pixel, the algorithm will
conduct a three-wavelength retrieval, which is less susceptible

to the presence of strongly blue-light-absorbing aerosols com-
pared to the two-wavelength retrieval.
[41] As displayed in Figure 16c, the dust plumes in the

problematic areas over the western part of the Sahara are well
correlated with elevated values in D*, although other regions
with high dust loadings that are apparent in the MODIS true
color image do not stand out in the D* map. This is likely due
to the combination of the different sensitivity of D* to differ-
ent types of mineral dust as well as the effects of underlying
surface emissivity on D*. By using this new heavy dust flag,
the C6 Deep Blue algorithm is able to produce better results
for retrieved AOT (Figure 16d) for strong blue light-
absorbing dust as compared to the C5 AOT shown in
Figure 16b. It is noted that only the AOT retrievals with a qual-
ity assurance flag (QA) of 2 or 3 were shown in the C5 and C6
AOT maps in Figure 16. Therefore, the gaps in the retrieved
AOT near the middle of MODIS swath caused by the use of
the scattering angles filter in the QA determination scheme
(as described below) were only seen in the C5 map and not
in the C6 one. Other differences in the retrieved AOT values
between C5 and C6 primarily result from the changes made
in the C6 surface reflectance determination scheme.

2.4. Data Quality Flag and Uncertainty Estimate

[42] As shown in Table 5, the values of the QA flag and es-
timated uncertainty assigned to each pixel are now added in
C6 as part of the Deep Blue SDS product suite. Similar to
the convention used in C5, the quality flags in C6 also have
four different levels (i.e., QA= 0, 1, 2, 3 with 0 for no re-
trieval, 1 as the worst quality retrieval and 3 for the best data
quality). However, there are several major changes in the QA
flag selection procedures. For example, in C5 the QA flag
was limited to 1 for scattering angles greater than 168°
due to increasing surface reflectance at high scattering angles
(i.e., BRDF hot spots) over many types of surfaces. This con-
straint is lifted in C6 due to improved statistics obtained by
using more than 7 years of MODIS data over the high scatter-
ing angle range used in the analysis for constructing the Deep
Blue surface database and the use of a hybrid approach to bet-
ter characterize the angular shapes in C6.
[43] As a result of the improvements made in surface

reflectance determination, the selections of QA flag in C6
only simply rely on the number (N) of retrieved AOT pixels
at 0.550μm (i.e., minimum N= 40 and 60 out of 100 for
QA = 2 and 3, respectively) and their standard deviation (σ)
within 10 × 10 pixels (i.e., maximum σ = 0.18 and 0.15 for
QA = 2 and 3, respectively) and no longer depend on surface
types as used in C5. Overall, the criteria for achieving higher
QA is more relaxed in C6, leading to a higher number of re-
trieved pixels reaching QA = 2 or 3 as compared to C5. The
estimated uncertainty of the retrieval for each cell is also
reported in C6 based upon the corresponding viewing
geometry and air mass factor. A detailed description of the
estimated uncertainty calculation is included in Sayer et al.
[2013]. It is important to note that since pixels with QA = 1
for the Deep Blue AOT product could potentially still
have cloud contamination issues, a new SDS named
“Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Est-
imate” was created in C6 to report good quality pixels with
QA = 2 or 3; we highly recommend that this SDS be used
by the general user community.

Figure 13. Differences between estimated and derived sur-
face reflectance (units of percent reflectance) from SeaWiFS
(a) at 0.49 and (b) at 0.67μm as function of aerosol optical
thickness (AOT) at 0.49μm. Gray dashed lines stand for lin-
ear fitting lines. Correlation coefficient (r) and the linear
fitting equations are presented in each plot.
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3. Results and Discussions

[44] We have used the C6 Deep Blue algorithm described
above to process reflectance data from the Aqua MODIS in-
strument for 17–18 July 2004, to compare with data from the
C5 algorithm. Figure 17 illustrates the advantage of the en-
hanced Deep Blue retrieval. As seen in the true color images
(left column), smoke from large fires burning in Alaska and
northwestern Canada traveled across the North American
continent, impacting the Great Lakes region. The C5 Deep

Blue aerosol retrieval, shown in the middle column, is limited
to bright underlying surfaces. The resulting retrieval, there-
fore, covers very little of the mostly vegetated Great Lakes
region. The enhanced Deep Blue algorithm extends the capa-
bility of Deep Blue to the vegetated, or darker, surface types.
The right column of Figure 17 shows nearly complete AOT
data, excluding only cloudy and water surfaces. The areas
of high AOT in the enhanced Deep Blue images (right col-
umn, values in orange, red) appear to correspond well to
the smoke plumes visible in the true color images; the 17

Figure 14. Atmospheric corrected surface reflectance at 0.412μm for MODIS Aqua using AERONET
aerosol measurements over Banizoumbou. The color of the symbol is associated with the NDVI value of
the given pixel. The dash-dotted, dashed, and solid lines represent the line fit for each group of data with
NDVI< 0.19, 0.19< = NDVI <2.4, and NDVI> =2.4, respectively.

Figure 15. Same as Figure 14, except for 0.47μm.
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July image captures the heavy smoke west of the Great
Lakes, while the 18 July image follows the plume eastward
ahead of a cloud front.
[45] Figure 18 compares the monthly mean Deep Blue

AOT (Figures 18a–18d) and Ångström exponent (AE,
Figures 18e–18h) for July and October 2008 using MODIS
Aqua data with QA = 2 or 3 from C5 (left panels) with C6
(right panels). These monthly means are the averages of daily

mean data. The monthly AE shown were weighted by the
AOT on each day, such that they are more representative of
the typical nature of the aerosol in a given grid cell over a
month. This figure clearly shows that the spatial coverage
of retrieved AOT has increased substantially from C5 to
C6, due to the improved surface reflectance determination
scheme used in C6. Aerosol information retrieved over
extensive vegetation-covered areas are now included in

Table 5. List of SDS Names for MODIS Collection 6 Deep Blue Aerosol Products

Name Dimensionsa Description

Deep_Blue_Angstrom_Exponent_Land [Cell_Along_Swath, Cell_Across_Swath] Angstrom Exponent Over Land.
Deep_Blue_Aerosol_Optical_Depth_550_ Land [Cell_Along_Swath, Cell_Across_Swath] Aerosol Optical Depth at 550 nm Over Land.
Deep_Blue_Aerosol_Optical_Depth_550_
Land_Best_Estimate

[Cell_Along_Swath, Cell_Across_Swath] Aerosol Optical Depth at 550 nm Over Land Filtered by
Quality (QA= 2,3 only).

Deep_Blue_Aerosol_Optical_Depth_550_
Land_STD

[Cell_Along_Swath, Cell_Across_Swath] Standard Deviation of Individual Pixel-Level Aerosol
Optical Depth at 550 nm per Cell.

Deep_Blue_Algorithm_Flag_Land [Cell_Along_Swath, Cell_Across_Swath] Flag Indicating the Path Taken Through the Algorithm.
Deep_Blue_Aerosol_Optical_Depth_550_
Land_QA_Flag

[Cell_Along_Swath, Cell_Across_Swath] Quality Assurance Flag for Aerosol Optical Depth at
550 nm.

Deep_Blue_Aerosol_Optical_Depth_550_
Land_Estimated_Uncertainty

[Cell_Along_Swath, Cell_Across_Swath] Estimated Uncertainty in Aerosol Optical Depth at 550 nm.

Deep_Blue_Cloud_Fraction_Land [Cell_Along_Swath, Cell_Across_Swath] Fraction of Pixels per CellWhere Retrieval was not Attempted.
Deep_Blue_Number_Pixels_Used_550_ Land [Cell_Along_Swath, Cell_Across_Swath] Number of Aerosol Property Retrievals Performed per Cell.
Deep_Blue_Spectral_Aerosol_Optical_
Depth_Land

[Num_DeepBlue_Wavelengths,
Cell_Along_Swath, Cell_Across_Swath]

Retrieved Aerosol Optical Depth Over Land at 412, 470,
and 650 nm.

Deep_Blue_Spectral_Single_Scattering_
Albedo_Land

[Num_DeepBlue_Wavelengths,
Cell_Along_Swath, Cell_Across_Swath]

Single-ScatteringAlbedoOver Land at 412, 470, and 650nm.

Deep_Blue_Spectral_Surface_Reflectance_Land [Num_DeepBlue_Wavelengths,
Cell_Along_Swath, Cell_Across_Swath]

Surface Reflectance Used in Aerosol Retrieval Over Land
for 412, 470, and 650 nm.

Deep_Blue_Spectral_TOA_Reflectance_ Land [Num_DeepBlue_Wavelengths,
Cell_Along_Swath, Cell_Across_Swath]

Top-of-Atmosphere Reflectance at 412, 470, and 650 nm.

aCell_Along_Swath = number of cells in the along-track direction. Cell_Across_Swath = number of cells across the swath.
Num_DeepBlue_Wavelengths = number of bands reported by the Deep Blue products, currently has a value of 3 (412, 470, and 650 nm).

Figure 16. The effects of revised aerosol model selection scheme are shown by comparing the (b)
MODIS Deep Blue C5 AOT with (d) MODIS Deep Blue C6 AOT for 9 July 2007. The circle indicates
the area with most significant change in retrieved AOT as a result of this modification in C6 algorithm.
The corresponding (a) MODIS Aqua true color image and (c) D* values are also displayed.
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Deep Blue C6 data. For example, during July 2008, there
were elevated AOT values observed in northern Canada.
This was associated with biomass burning smoke generated
from wildfires ignited by lightning under extreme dry heat
and high wind conditions. At the same time, smoke plumes
produced by forest fires in northeastern Russia spread over
much of that region. Fine mode-dominated aerosol haze is also
observed over eastern China. The AOT maps for October also
reveal biomass burning activity in South America and central
Africa, with high AOT values covering a large portion of these
continents; this information could not have been obtained
from the C5 Deep Blue data. These aerosol features are all
associated with high AE values around 1.8.
[46] The spatial coverage of retrieval over urban/built-up

and transitional zones is also much improved from C5 to
C6. Since the previous C5 algorithm excluded any pixels
with significant vegetation cover, and there are many large
cities that have green vegetation inside the city zones, re-
trievals over such sites were scarce. By performing retrievals
over both dark and bright surfaces inside the city limits,
enough information is acquired to provide adequate quality
for performing aerosol retrievals over these urban regions.
[47] The coverage over desert and semidesert regions is

roughly the same between C5 and C6, as expected.
However, due to the improved surface reflectance database
and aerosol model selection scheme in C6, there are also sig-
nificant differences in the monthly averaged AOT over these
regions, such as higher AOT values in C6 than C5 over the
western part of the Sahara and the southern part of Arabian
Peninsula and lower values over Australia. Dust aerosols
tend to have retrieved AE in the range 0–0.5. These dust,
pollution, and biomass burning AE values are typical for
aerosols of this type [e.g., Eck et al., 1999]; comparison with

the C5 values again shows that C6 data are generally closer to
expected values over much of the world.
[48] In order to study the effects of changes made in the C6

QA selection scheme, comparisons of the aerosol retrieval
fraction (defined as ratio of number of days in the month with
retrievals to total number of days in the month) with “all QA”
and QA = 3 between C5 and C6 for the month of July 2008
are depicted in Figure 19. As expected, for all QA, the
retrieval fractions are in general the same between C5 and
C6 for desert regions but significantly improved from C5 to
C6 over vegetated and urban/built-up regions. For QA = 3,
the retrieval fractions are substantially improved from C5 to
C6 almost everywhere, even over dry regions such as the
Sahara/Sahel and the Arabian Peninsula, as a result of the
QA selection changes in C6 described in section 2.4.
[49] Extensive comparisons of the new Deep Blue data

sets with other satellite data will be the subject of future
analyses, as the full MODIS C6 data set is not available
at present. However, as a first view, Figure 20 presents com-
parisons between MODIS Deep Blue C6, SeaWiFS Deep
Blue version 4, and MODIS Dark Target C5 [Levy et al.,
2007] for the month of October 2008. Final C6 Dark
Target data are not yet available at the time of writing; C5
Dark Target data are used instead as this data set’s strengths
and limitations are fairly well-known [Levy et al., 2010].
To mitigate the effects of aerosol spatiotemporal variability
(although these cannot be removed entirely), data are collo-
cated on a daily basis and the monthly composites in each
case are created only from those days where both data sets
in question provides data in a given grid cell. Thus, for exam-
ple, theMODIS Deep Blue coverage in Figures 20a (compar-
ison with SeaWiFS) and 20d (comparison with Dark Target)
are different.

Figure 17. MODIS granule true color images (left column) and Deep Blue AOT at 0.550μm from C5
(middle column) and C6 (enhanced Deep Blue) (right column) for smoke events over the Great Lakes area
on 17–18 July 2004.
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[50] Global AOT patterns are similar from all three data
sets, and AOT differences in the monthly mean are in most
cases smaller than 0.1. The two Deep Blue data sets retrieve
lower AOT than Dark Target by 0.1–0.2 over many barren
elevated regions (e.g., mountains in central Asia and the
western Americas), although the Dark Target algorithm is
known to be biased high in these areas [Levy et al., 2010].
MODIS Deep Blue is also lower than MODIS Dark Target
in the Amazon; Dark Target is also known to be biased high
here. Interestingly, the difference between SeaWiFS and
MODIS Dark Target in the Amazon is smaller. The areas
of largest difference between Deep Blue applied to MODIS
and SeaWiFS in this month are in the eastern Arabian
Peninsula, near the Pakistan/India border, and eastern
Australasia (all dust cases over bright surfaces), and southern
America (mixture of urban pollution and transported smoke).
The MODIS data set is lower in all these cases. Combined
with the aforementioned differences in the Amazon, this
may suggest that SeaWiFS has a more limited ability to iden-
tify clouds in mixed cloud/smoke scenes, likely due to its
more limited spatial resolution as well as wavelength

coverage. These aspects will be assessed in more detail once
the full Collection 6 data sets are available.

4. Preliminary Comparisons With AERONET
AOT Measurements

[51] Extensive global and regional validation of the new
SeaWiFS and MODIS Deep Blue aerosol data sets has been
performed by Sayer et al. [2012a, 2013]. Here some brief
results are shown for MODIS (Aqua) to illustrate the signifi-
cant improvements of C6 over C5. This analysis uses data
from 10 long-term AERONET sites at which both C5 and
C6 provide retrievals (Agoufou, Banizoumbou, Beijing,
Boulder, Fresno, Hamim, Kanpur, Mongu, Solar Village,
Tinga Tingana); AERONET and MODIS data are spatiotem-
porally matched by averaging MODIS retrievals with QA = 3
within 25 km of each AERONET site and AERONET data
(interpolated spectrally to 0.55μm) within 30min of the
MODIS overpass [Sayer et al., 2013].
[52] Scatter density plots of the matched data are shown in

Figure 21. Although a good level of agreement is found for

Figure 18. Comparisons of monthly averaged AOT at 0.55μm and AE betweenMODIS Aqua C5 and C6
for July and October 2008. To alleviate the effect of sampling issue over the cloudy regions in the monthly
mean, only data with better QA (2 or 3) flag are included in the analysis.
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Figure 19. (a–d) Comparisons of monthly averaged aerosol retrieval fractions between MODIS Aqua C5
and C6 for July 2008 using data with all QA (top panel) and only QA = 3 (bottom panel). The white color
represents region with zero retrieval fraction.

Figure 20. Comparison between monthly averaged AOT for (a, d) MODIS Deep Blue, (e, h) MODIS
Dark Target, and (b, g) SeaWiFS Deep Blue data for October 2008. Each monthly composite is
created by collocating the pair of data sets on a daily basis and then averaging. (c, f, i) Differences in
the monthly means.
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both C5 and C6 data, performance is notably better for C6,
with the number of extreme outliers reduced and a tighter
clustering of points around the 1:1 line. Specifically, there
are improvements in the correlation with AERONET (0.86
in C5, 0.93 in C6), median bias (�0.015 in C5, �0.008 in
C6), root-mean-square error (0.22 in C5, 0.14 in C6), and
proportion of retrievals agreeing within 0.05 + 20% of the
AERONET AOT (62% in C5, 79% in C6). Additionally,
the data volume for these 10 sites has nearly doubled (6335
matchups for C5, 11,234 for C6). These results show that
the C6 data represent a large improvement on C5 both in
terms of extent of coverage of QA = 3 retrievals, as well as
the level of uncertainty of those retrievals. As C5 did not pro-
vide retrievals over vegetated surfaces, it is not possible to
provide a comparative benchmark of this type in a more
global sense; however, the analyses of Sayer et al. [2012a,
2013] show a similar high quality of performance of the
Deep Blue algorithm over vegetated areas.

5. Conclusions

[53] A goal of the MODIS periodic reprocessing strategy is
to provide self-consistent (i.e., no algorithmic discontinuities
through the record) geophysical data sets, leveraging the in-
creased understanding of the sensors and their calibration as
well as the Earth’s physical processes made between the
reprocessings. The Deep Blue aerosol retrieval algorithm
achieves this goal through the many modifications in
MODIS C6 that are based on the latest knowledge of aerosol
remote sensing. The most significant changes in C6 when
compared to C5 include (1) an improved cloud screening
scheme to maximize the aerosol retrieval frequency with
minimal cloud contamination, (2) the use of a newly devel-
oped NDVI-dependent MODIS surface reflectance database
to replace the previous static surface lookup tables, (3) a bet-
ter dust aerosol model selection scheme using visible and
thermal infrared bands simultaneously, and (4) revised qual-
ity flag selection procedures. In particular, the dynamic sur-
face reflectance determination permits expansion of the
spatial coverage of the Deep Blue aerosol products from only
the bright-reflecting surfaces (such as deserts, semideserts,
and nonvegetated urban areas) to all snow-free land surfaces,
including vegetated areas. Consequently, the aerosol re-
trievals have been significantly improved in C6 over regions
withmixed vegetated and nonvegetated surfaces such as urban
areas, providing useful information for the study of air quality

over large cities. In addition to MODIS C6, this enhanced
algorithm has also been applied to SeaWiFS measurements,
in combination with an over-ocean aerosol retrieval algorithm,
to create a 13 year (1997–2010) data set of global aerosol
products over land and ocean from that sensor; this data set
is available from http://disc.gsfc.nasa.gov/dust.
[54] In this paper, we have demonstrated that the overall

performance of the retrieved Deep Blue aerosol properties
for MODIS C6 has improved when compared to C5. Based
upon the preliminary validation of results from the enhanced
Deep Blue algorithm using measurements from 10 selected
long-term AERONET sites, the estimated error for the new
C6 Deep Blue products is better than 0.05 + 20%, with 79%
(compared to 62% in C5) of the best quality AOT (QA = 3)
data falling within this range. The number of AOT retrievals
withQA = 3 has also nearly doubled from C5 to C6. More ex-
tensive and detailed comparisons of the Deep Blue products
with AERONET and other satellite products are provided
for MODIS C6 and SeaWiFS V3 in Sayer et al. [2013] and
Sayer et al. [2012a], respectively.
[55] Finally, in order to achieve a consistent long-term aero-

sol time series, this new enhanced Deep Blue algorithm has
also recently been applied to the VIIRS sensor onboard the
Suomi NPP satellite launched in October 2011.With the aging
of the MODIS sensors, in particular Terra/MODIS, accurate
radiometric calibration at the blue bands is becoming a chal-
lenging task. The use of a consistent satellite retrieval algo-
rithm will make it easier to examine the effect of sensor
calibration on the retrieved AOT by intercomparing aerosol
products between MODIS, SeaWiFS, and VIIRS during their
overlapping years; this, in turn, will result in a better quantita-
tive determination of aerosol long-term trend on a global scale.
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Abstract. 27 

The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm 28 

have provided useful information about aerosol properties over bright-reflecting land surfaces, 29 

such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval 30 

algorithm needed to be improved; for example, the use of a static surface database to estimate 31 

surface reflectances. This is particularly important over regions of mixed vegetated and non-32 

vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to 33 

address this issue, we develop a hybrid approach, which takes advantage of the combination of 34 

pre-calculated surface reflectance database and normalized difference vegetation index in 35 

determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of 36 

aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid 37 

and semi-arid regions to the entire land areas.  38 

In this paper, the changes made in the enhanced Deep Blue algorithm regarding the 39 

surface reflectance estimation and other key schemes for producing the MODIS collection 6 40 

aerosol products are discussed. A similar approach has also been applied to the algorithm that 41 

generates the SeaWiFS Deep Blue products. Based upon our preliminary results of comparing 42 

the enhanced Deep Blue aerosol products with the AERONET measurements, the expected error 43 

of the Deep Blue AOD is estimated to be better than 0.05 + 20%. Using 10 AERONET sites with 44 

long-term time series, 79% of the best-quality Deep Blue AOD values are found to fall within 45 

this expected error.   46 

  47 
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1. Introduction 48 

The impact of natural and anthropogenic sources of air pollution has gained increasing 49 

attention from scientific communities in recent years. Indeed, tropospheric aerosols not only 50 

perturb the radiative energy balance by interacting with solar and terrestrial radiation, but also by 51 

changing cloud properties and lifetime.  Houghton et al. (1990) showed that the aerosol forcing 52 

of climate is comparable in magnitude to the forcing caused by current anthropogenic 53 

greenhouse gases but opposite in sign.  The Intergovernmental Panel on Climate Change (IPCC) 54 

estimated that the global-mean direct forcing due to anthropogenic aerosols is -0.5 ±0.4 Wm-2 55 

(IPCC 2007), while Hansen and Lacis (1990) reported that the calculated forcing due to 56 

anthropogenic greenhouse gases is about 2.3±0.25 Wm-2.  These results suggest that the aerosol 57 

cooling effect may have partially counteracted the warming contributed by greenhouse gas 58 

increases over the past few decades. In addition to radiative effects on climate, knowledge of the 59 

atmospheric aerosol burden is of interest for topics including effects on air quality and human 60 

health (Pope, 2000), mineral transportation and fertilization of distant ecosystems (Meskhidze et 61 

al., 2005), and effects on solar power yield (Breikreutz et al., 2009), among others. 62 

The retrieval of aerosol properties from satellite measurements with sufficient accuracy 63 

for use in climate studies is a highly challenging task; it is an ill-posed problem where there are 64 

more unknowns about the microphysical and optical properties of aerosols than the information 65 

content that can be measured by current satellite sensors (e.g. Hasekamp and Landgraf, 2007; 66 

Knobelspiesse et al., 2012). For single-view satellite sensors such as the Advanced Very High 67 

Resolution Radiometer (AVHRR), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), 68 

Moderate Resolution Imaging Spectrometer (MODIS), and Visible Infrared Imaging Radiometer 69 

Suite (VIIRS), the most important factors/components that could substantially impact the 70 
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performance of aerosol retrievals involve: 1) surface reflectance determination, including both 71 

their spectral and angular dependencies; 2) aerosol microphysical model selection; 3) cloud 72 

screening; and 4) identification of snow/ice-covered surfaces, particularly over seasons where 73 

melting occurs. While the main driver of aerosol retrieval performance is largely determined by 74 

adequate representation of aerosol microphysical properties in conditions of high aerosol loading 75 

[Jeong et al., 2005], accurate characterization of surface reflectance is the main driver for low 76 

aerosol loadings [Mi et al., 2007]. Since the aerosol loading ranges from low to moderate over 77 

most of the world [e.g. Remer et al., 2008], surface reflectance determination remains one of the 78 

most important inputs to aerosol remote sensing from space, especially over land.   79 

Due to the brightness of land surfaces, aerosol retrieval over land is a much more intricate 80 

task compared to retrieval over ocean. In particular, the top-of-atmosphere (TOA) reflectances 81 

acquired by the satellite sensors at red and near-infrared wavelengths, available from most 82 

heritage sensors, are overwhelmed by the surface contributions over desert and semi-desert 83 

regions, making it difficult to separate the contribution of aerosols to the TOA signal from that of 84 

the surface. As a result, previous satellite aerosol retrieval algorithms from these single view 85 

sensors, such as the operational SeaWiFS, AVHRR, and MODIS ones that rely on the Dark-86 

Target approach [Kaufman et al., 1997; Levy et al., 2007], were unable to provide aerosol 87 

properties over such bright-reflecting regions. It is worth noting that multi-angular, polarization, 88 

or active (lidar) measurements provide extra constraints on the retrieval system and do enable 89 

retrieval of aerosol properties over these bright surfaces with reasonable accuracy [e.g. Deuzé et 90 

al, 2001, Martonchik et al., 2009, Omar et al., 2009, Lyapustin et al., 2011, Sayer et al., 2012b]; 91 

however, existing sensors and algorithms with these capabilities typically have comparatively 92 
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narrow swath widths, shorter data records, and/or require temporal compositing of data, thus 93 

making them less suitable for some applications.  94 

The development of the Deep Blue algorithm narrowed these gaps in SeaWiFS and 95 

MODIS aerosol products by performing retrievals over these surfaces. The Deep Blue algorithm 96 

utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS, where 97 

the surface reflectance over land is much lower than for longer wavelength channels, to infer the 98 

properties of aerosols [Hsu et al., 2004, 2006]. Using MODIS reflectance data, the Deep Blue 99 

technique successfully produced a suite of aerosol products, including aerosol optical thickness, 100 

Ångström exponent, and dust absorption over desert and semi-desert areas and urban regions, 101 

that are an integral part of the operational MODIS collection 5.1 (C5) MOD04 and MYD04 102 

aerosol products for Terra and Aqua, respectively.     103 

Although successful, many of the approximations and assumptions utilized in the first 104 

generation of the Deep Blue algorithm needed to be refined and improved to yield better 105 

retrievals. One of the most important issues is improving the surface reflectance determination 106 

scheme in the retrieval. In the MODIS C5 algorithm, the use of static surface databases limited 107 

the algorithm’s capability to retrieve aerosols over regions with seasonal vegetation changes, 108 

such as in the Sahel and many urban sites. Also, the retrievals were only performed over bright-109 

reflecting surfaces, leading to insufficient information content for retrievals over regions with 110 

mixed vegetated and non-vegetated surfaces. Therefore, in order to optimize estimates of surface 111 

reflectance, extensive efforts have been made to develop the 2nd generation of the Deep Blue 112 

algorithm, which adopts a hybrid approach to take advantage of both the surface reflectance 113 

database method and a dynamical surface reflectance method. 114 
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In this paper, we will describe the improvements made to the surface reflectance 115 

determination and many other schemes in the enhanced Deep Blue algorithm used for processing 116 

the MODIS data to create collection 6 (C6) of the Deep Blue products, as well as the SeaWiFS 117 

Version 3 products. Section 2 illustrates the methodology of this new algorithm, and detailed 118 

changes made in each key component compared to the previous C5 algorithm. Section 3 119 

summarizes the results of the aerosol products generated from the new algorithm. Finally, we 120 

show provisional validation of the new Deep Blue C6 products in Section 4, followed by some 121 

conclusions in Section 5.      122 

2.  Description of the Algorithm 123 

To retrieve aerosol properties over land, we employ a polarized radiative transfer model 124 

[Dave, 1972] to compute the reflected intensity field, which is defined by   125 

R (�,�0, �) �
� I(�,�0,�)

�0 F0
     (1) 126 

where R is the normalized radiance (or apparent reflectance), F0 is the extra-terrestrial solar flux, 127 

I is the radiance at the top of the atmosphere, µ is the cosine of the view zenith angle, µ0 is the 128 

cosine of the solar zenith angle, and � is the relative azimuth angle between the direction of 129 

propagation of scattered radiation and the incident solar direction.  This radiative transfer code 130 

includes full multiple scattering and takes into account polarization; in the blue wavelength range 131 

of 0.412 to 0.49 μm, which is vital for this study, Rayleigh scattering is relatively important 132 

compared to the longer wavelengths, and neglect of polarization in the radiative transfer code 133 

would lead to significant errors in the calculated reflectances [Mishchenko et al., 1994].  134 
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Since the retrieval of aerosol properties from space-borne sensors requires highly 135 

accurate and precise radiometric measurements, sensor calibration and characterization are 136 

extremely critical before high quality long-term satellite aerosol data can be achieved for climate 137 

study. This is particularly important for Terra/MODIS, which has suffered from aging of the 138 

optics and detectors since its launch in 1999. In fact, the characteristics of the detectors of certain 139 

bands, especially band 8 (0.412 μm), have changed significantly over time, leading to increased 140 

calibration uncertainty. In order to address this issue, we have utilized a cross-calibration method 141 

developed for characterizing the Terra/MODIS detectors by the NASA Ocean Biology 142 

Processing Group [Meister et al., 2005, Franz et al., 2008, Kwiatkowska et al., 2008]. Both 143 

response versus scan angle (RVS) and polarization sensitivity corrections have been applied to 144 

the MODIS Level 1 reflectances at these blue bands, which are vital to the Deep Blue algorithm. 145 

This calibration correction was performed to Terra/MODIS C5 and resulted in substantial 146 

improvements in the quality of Deep Blue aerosol retrievals (see Jeong et al. [2011] for details). 147 

Similar procedures have been also applied to Terra/MODIS C6. 148 

After performing necessary calibration corrections to the Level 1 reflectances, multiple 149 

bands (i.e., 0.412, 0.47, 0.65, 0.86, 1.24, 1.38, 2.11, 11, and 12 μm for MODIS) are ingested by 150 

the Deep Blue algorithm as inputs for the Level 2 aerosol product retrievals. An overview of the 151 

enhanced Deep Blue algorithm over land is provided in the data flow diagram shown in Figure 1. 152 

The fundamental steps of the processing stream used to account for different types of land 153 

surfaces are described as follows: 154 

1) Scenes are screened for the presence of clouds by examining the spatial variation of 155 

the reflectances from the 0.412 μm channel, the brightness temperatures from 11 and 12 μm, and 156 

the 1.38 μm MODIS reflectances. As in the C5 algorithm, pixels are first tested for the presence 157 
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of clouds as well as snow/ice surfaces before the aerosol retrieval processing begins. The 158 

retrieval is not performed for cloud- or snow/ice-contaminated pixels.  159 

2) For a given pixel, the surface reflectances are determined for the 0.412, 0.47, and 0.65 160 

μm channels using one of three different methods:  i) by a dynamic surface reflectance approach; 161 

ii) based upon its geolocation using a pre-calculated surface reflectance database created from 162 

the MODIS or SeaWiFS measurements; or iii) a combination of the first two approaches.  The 163 

selection of which method is used depends on the TOA reflectance at shortwave-infrared or near-164 

infrared wavelengths (i.e., 2.1 μm for MODIS and 0.865 μm for SeaWiFS) and the normalized 165 

difference vegetation index (NDVI), which is defined as 166 

NDVI = (R0.86 - R0.65) / (R0.86 - R0.65) 167 

where R0.65 and R0.86 correspond to the TOA reflectance measured at 0.65 μm and 0.86 μm, 168 

respectively. 169 

3) The 0.412, 0.47, and 0.65 μm TOA reflectances are then compared to reflectances 170 

contained in look-up tables with dimensions consisting of the solar zenith, satellite (viewing) 171 

zenith, and relative azimuth angles, and the surface reflectance, aerosol optical thickness, and 172 

single scattering albedo. A maximum likelihood method is used to match the appropriate values 173 

of aerosol optical thickness and mixing ratio to the measured reflectances. Reflectance data from 174 

the 0.65 μm channel is used when the aerosol cloud is thick. For details of the algorithm see Hsu 175 

et al. [2004, 2006]. 176 

Except for extremely blue-light absorbing dust, the basic procedures used for aerosol 177 

model generation and selection in the enhanced Deep Blue algorithm are similar to the MODIS 178 

C5 version. However, both cloud screening and surface reflectance determination have been 179 
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substantially changed to improve the accuracy of the retrieved aerosol properties. Details of the 180 

cloud screening scheme (in particular for cirrus) are described below, while the calculation of 181 

surface reflectances is discussed in section 2.2.   182 

2.1 Cloud and snow/ice screening 183 

There are several improvements made in the MODIS C6 Deep Blue algorithm regarding 184 

flagging procedures in the presence of clouds and snow/ice. The flowchart of detailed steps used 185 

in the cloud screening scheme is depicted in Figure 2. Previously, the C5 algorithm used a simple 186 

conservative filter based on the variability of TOA reflectance at 0.412 µm (R0.412) within a 3 x 187 

3 pixel area. However, in order to sufficiently filter out cloudy pixels, pixels over areas of highly 188 

variable surface reflectance sometimes also got flagged as cloud-contaminated. In C6, new 189 

checks on brightness temperature (BT) at 11 µm (BT11) and the BT difference (BTD) between 190 

11 µm and 12 µm (BTD11-12) have been implemented in addition to the R0.412 variability 191 

filter. By combining the thermal infrared channels with the blue channel, the contrast between 192 

clouds and the underlying surface becomes much more discernible, particularly over regions 193 

with high surface inhomogeneity. This allows us to relax the criteria for the 0.412 µm variability 194 

filter previously used in C5, and more pixels are subsequently retained for aerosol retrievals 195 

while still maintaining minimum contamination from clouds.    196 

In addition, significant efforts have been made toward the identification of thin cirrus in 197 

C6. In the C5 Deep Blue algorithm, the use of a single threshold method based upon MODIS 198 

band 26 (i.e., 1.38 �m), although proven to be robust in general [Huang et al, 2011], led to pixels 199 

that were sometimes over-screened for cirrus. This was particularly true over moisture-deprived 200 

desert regions such as the Sahara; since this MODIS band is strongly sensitive to water vapor 201 
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absorption, a very low amount of column water vapor in the atmosphere (i.e., less than 5 mm in 202 

total precipitable water) could result in elevated values of TOA reflectance at 1.38 �m (R1.38) 203 

and thus a false detection of cirrus. Together with the aforementioned spatial variability test, the 204 

C6 improvements were found by Sayer et al. (2013) to treble the data volume in C6 relative to 205 

C5 for some areas.     206 

One such example (for March 7, 2006) is shown in Figure 3. On this day, a significant 207 

gap in the C5 Deep Blue retrieved AOT (Fig. 3b) is seen over the Sahara around 20° N - 25° N 208 

and 00 - 100 E; this gap is triggered by the cirrus flag due to high values of R1.38 over this 209 

region. The corresponding MODIS RGB image does not seem to indicate the presence of cirrus 210 

over this region and the gap in AOT is, therefore, most likely due to the over-screening of cirrus 211 

under very dry atmospheric conditions (Fig. 3d).  212 

In order to alleviate this problem, we implemented a scheme to jointly use R1.38, BT11, 213 

BTD11-12 and the total precipitation water (TPW) obtained from the National Centers for 214 

Environmental Prediction (NCEP) as part of the ancillary data input into the C6 algorithm. The 215 

use of BTD11-12 has been shown to effectively identify the presence of cirrus cloud [Hansell et 216 

al., 2007]. As seen in Fig. 3e, the regions covered by clouds including cirrus are generally 217 

associated with positive BTD11-12 values, consistent with the simulation results of Hansell et al. 218 

[2007].    219 

In order to account for the coarse resolution (1° latitude x 1° longitude) of the NCEP 220 

TPW data and the effects of underlying surfaces on BTD11-12 near the edge of thin cirrus, 221 

different steps and thresholds are selected to achieve optimal cirrus screening for different 222 

surface types according to the reflectances of underlying surfaces at 0.65 µm based upon the pre-223 
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calculated surface reflectance database. These steps and thresholds are shown in Fig. 2. As 224 

shown in Fig. 3g, this improved scheme results in a substantial increase in the number of aerosol 225 

retrievals in C6 from those areas that were previously over-screened in C5.     226 

As shown in Fig 4, we also improved the identification of underlying snow/ice surfaces 227 

in C6 by adapting the method described by Hall et al. [1995]. The value of Normalized 228 

Difference Snow/Ice Index (NDSI) used in the C6 algorithm is defined as 229 

NDSI = (R0.555 – R2.1) / (R0.555 + R2.1) 230 

where R0.555 and R2.1 correspond to the TOA reflectance measured by MODIS at 0.555 μm 231 

and 2.1 μm, respectively. We use the reflectance from 2.1 μm instead of the 1.6 μm channel used 232 

by Hall because of a detector issue associated with this channel on MODIS/Aqua. Since the 233 

snow albedo decreases dramatically from visible wavelengths to near infrared and shortwave 234 

infrared, the spectral shape of snow/ice surface is opposite to that of snow-free land surfaces, 235 

which allows us to separate snow/ice surfaces from other types of land. To achieve optimal 236 

screening of the snow/ice contaminated pixels, the resulting NDSI values are also employed in 237 

conjunction with R0.86 and R0.555 as well as BT11 to check their surface temperature and 238 

reflectance for potential water and aerosol-laden pixels. In our C6 algorithm testing, this 239 

snow/ice identification scheme was found to be particularly important in filtering out erroneous 240 

pixels for aerosol retrievals at high latitudes in the Northern Hemisphere during the spring 241 

snow/ice melting season.    242 

2.2 Surface reflectance determination 243 

To obtain high quality aerosol retrievals, an accurate determination of the underlying 244 

surface reflectance is imperative. The surface reflectance used for aerosol retrievals in the 245 
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previous C5 algorithm was based upon a static pre-calculated database that was a function of 246 

season. This approach provided reasonable performance over desert and semi-desert regions, 247 

where the surface reflectances are relatively invariant with time and the effects of the surface 248 

bidirectional reflectance distribution function (BRDF) are weaker than those over vegetated 249 

areas. However, the surface reflectance database approach was sometimes found to be 250 

unsuccessful over vegetated surfaces, especially where seasonal and inter-annual changes are 251 

significant. To improve the estimate of surface reflectance in such cases, it is necessary to 252 

instantaneously account for dynamic changes amongst diverse types of vegetation.  253 

In order to address this issue, extensive efforts have been made in the enhanced Deep 254 

Blue algorithm to improve the calculation of surface reflectance. As a result, three different 255 

surface reflectance schemes, as depicted in Figure 1, have been adopted in MODIS C6 Deep 256 

Blue to optimize retrievals of aerosol properties based upon different surface types. Specifically, 257 

we use the MODIS Land Cover and Land Cover Dynamics product (MCD12C1) (Friedl et al., 258 

2002) to separate pixels into three categories: 1) arid and semi-arid regions, 2) general 259 

vegetation, and 3) urban/built-up and transitional regions. The map of regions where these three 260 

surface reflectance schemes have been applied is depicted in Figure 5. We also note that, 261 

although different wavelength pairs are used for MODIS (0.412, 0.47, 0.65, and 2.1 μm) and for 262 

SeaWiFS (0.412, 0.49, 0.67, and 0.87 μm), similar approaches have been applied for calculating 263 

surface reflectances to both MODIS C6 and SeaWiFS version 3 (and later) Deep Blue products. 264 

The details of surface reflectance calculation for each land category are described below.   265 

 266 

 267 
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2.2.1 Deep Blue surface database 268 

For arid and semi-arid regions, the surface database method continues to be used in 269 

MODIS C6 for determining the surface reflectance. However, several major changes were made 270 

in constructing the database. Similar to what was used in C5, the C6 surface database was 271 

compiled based upon the minimum reflectivity method at the resolution of 0.1° latitude x 0.1° 272 

longitude for each season using MODIS TOA reflectances at 0.412, 0.47 and 0.65 μm (cf. Hsu et 273 

al [2004] for details). In C6, better sample statistics have been achieved by increasing MODIS 274 

TOA reflectance input data from the two years (2005-2006) previously used in C5 to more than 275 

seven years (2002-2009).  Additionally, in order to account for potential changes in land cover 276 

type within the given season over the same location, the C6 surface database is not only a 277 

function of season as in C5, but also of NDVI. The details of construction of the C6 surface 278 

database are as follows.  279 

First, to ensure only clear pixels are included in the analysis, the TOA reflectance pixels 280 

at the three MODIS bands in the database were tested for clouds, as well as cloud edges and 281 

thick aerosol plumes, by employing a conservative screening scheme based upon the standard 282 

deviations of 0.412 μm TOA reflectances within a 3x3 pixel area centered on the pixel in 283 

question. Also, to account for seasonal/transient inland water bodies, water pixels were filtered 284 

out if the computed NDVI was negative. Reflectance values that pass these tests are corrected for 285 

the contribution from molecular (Rayleigh) scattering, and averaged into a daily mean for the 286 

given grid.  287 

Next, these grid cells were divided into 4 separate groups according to their NDVI: 288 

NDVI < 0.18, 0.18 <= NDVI < 0.24, NDVI >= 0.24, and an ‘all NDVI’ group. To further 289 
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alleviate the problem of outliers due to any remnant presence of cloud shadow or solar eclipse, 290 

one additional check was performed to screen out any pixels that lay outside the range of twice 291 

the standard deviation from the mean of the samples over every 10° angular bin collected for the 292 

given grid cell. Finally, the surface reflectance values in the C6 database are calculated by a 2nd 293 

order polynomial fit through the lowest 15 percentile of grid cell samples against the scattering 294 

angles over the given location. The scattering angle (Φ) is defined as: 295 

Φ = cos-1( - cosθ0 cosθ + sinθ0 sinθ cos�) 296 

where θ0, θ, and � are the solar zenith, sensor view zenith, and relative azimuth angles, 297 

respectively. These angular curve fittings of surface reflectance are performed for each NDVI 298 

group collected over the given grid cell, provided that a sufficient sample size (50 or more 299 

points) is acquired. The derived surface reflectance database therefore depends upon the 300 

scattering angle, NDVI, and season. One example of the procedure is provided in Figure 6 using 301 

MODIS data over Tinga Tingana, Australia (29° S, 140° E) for the fall season. It is apparent that, 302 

for this dry region, the derived surface reflectance at 0.65 μm (Fig. 6c) is not only substantially 303 

brighter than that at 0.412 μm (Fig. 6a), but its corresponding anisotropy is much larger (shown 304 

in the slope of resulting surface reflectance as a function of scattering angle). This is consistent 305 

with the expected characteristics of desert surfaces. We note that similar procedures have also 306 

been applied to the SeaWiFS data at 0.412, 0.49, and 0.67 μm for constructing the surface 307 

reflectance database at these wavelengths.       308 

Figures 7 and 8 show the C6 global maps of surface reflectances at 0.412 and 0.65 μm 309 

constructed from our surface database, based upon more than seven years of MODIS Aqua data, 310 

for each season using the above approach for the ‘all NDVI’ group. In general, the surface 311 
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reflectance at 0.65 μm is higher than at 0.412 μm, particularly over dry regions, and exhibits a 312 

much more discernible contrast between vegetation and desert areas. We note that there are still 313 

gaps in the derived surface reflectance database due to the frequent presence of clouds or 314 

snow/ice over certain parts of the world, such as the Amazon and equatorial Africa. As a result, 315 

the sample size of data passing our conservative cloud screening scheme were insufficient for 316 

computing surface reflectance polynomial fitting with rigorous statistics over such regions. 317 

However, these regions are associated with vegetated land areas, which will not require the use 318 

of this surface database to determine the surface reflectance in the C6 algorithm.  319 

2.2.2 Vegetated land surfaces  320 

Over vegetated land surfaces, we retrieve aerosol properties by taking advantage of the 321 

spectral relationship in surface reflectance between visible and longer wavelengths (i.e., 0.87 μm 322 

for SeaWiFS and 2.1 μm for MODIS) to account for the effect of the ever-changing dynamics of 323 

vegetation phenology on the surface reflectance. However, in order to better determine the 324 

spectral surface reflectance relationship, contributions from the atmosphere need to be removed 325 

from the satellite-measured signals. This task was accomplished by collocating satellite 326 

measurements from MODIS and SeaWiFS with ground-based Aerosol Robotic Network 327 

(AERONET; Holben et al., [1998]) data. The satellite derived surface reflectances at visible 328 

wavelengths (i.e., 0.47 and 0.65 μm for MODIS and 0.49 and 0.67 μm for SeaWiFS) were then 329 

obtained using AERONET AOT and single scattering albedo information to perform an 330 

atmospheric correction. Hereinafter, such derived surface reflectances based on the explicit 331 

atmospheric corrections performed using collocated satellite measurements and AERONET data 332 

will be referred to as “benchmark” surface reflectances. Since the uncertainty of deriving surface 333 

reflectance increases significantly as aerosol loading becomes larger, we only include samples 334 
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for analysis when the AERONET AOT at 0.5 μm < 0.5.  The correction procedure is described 335 

below.  336 

For MODIS data, our approach estimates the surface reflectances at visible channels 337 

based upon the TOA reflectances at 2.1 m (R2.1) and land cover type using the following 338 

formulas:  339 

                     ESR0.65  = a + b * R2.1 + c * (R2.1)2  (2) 340 

ESR0.47    = d + e * ESR0.65                              (3) 341 

where ESR is the estimated surface reflectance and a, b, c, d, and e are coefficients determined 342 

by a least-squares fitting to the derived benchmark surface reflectance data over the AERONET 343 

sites. The spectral surface reflectance relationships given by the above formulae can vary 344 

depending upon the land cover type and season.  345 

These spectral relationships for different surface types, based upon 2004 springtime 346 

MODIS data over the United States, are depicted in Figure 9. It is apparent that the spectral 347 

surface reflectance relationships for most naturally vegetated surfaces can be collapsed into a 348 

single relationship, while the relationships for cropland (grey color) or for urban and built-up 349 

regions (light blue color) deviate distinctively from those for naturally-vegetated surfaces. Based 350 

on these findings, we derive the surface reflectance relationship separately for each land cover 351 

type (i.e., naturally vegetated area and cropland) and seasons, with a consideration of the changes 352 

of surface property for cropland by establishing sub-groups depending on the values of 353 

NDVISWIR, which is defined as 354 

NDVISWIR = (R1.24 - R2.1) / (R1.24 - R2.1) 355 
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We note that this approach is not applied to the urban/built-up zones, since the hybrid method is 356 

used in the enhanced Deep Blue algorithm over such regions.   357 

An example of the derivations of spectral surface reflectance relationships for naturally 358 

vegetated surfaces during the March-April-May season is provided in the upper panels of Figure 359 

10. The values of the coefficients for estimating the surface reflectances in equations 2 and 3 are 360 

determined by a 2nd order polynomial least square curve fit through the data points. The resulting 361 

coefficients a – e in Eq. 2 and 3 for each season are tabulated in Tables 2 and 3 for naturally 362 

vegetated regions and croplands, respectively. To validate the fit, comparisons between these 363 

estimated surface reflectances at 0.47 and 0.65 μm and the corresponding benchmark surface 364 

reflectances were performed, and these comparisons are presented in the lower panels of Fig. 10. 365 

As shown in the figure, the estimated surface reflectances show reasonable agreement (root-366 

mean-square error of 1.2% for 0.65 μm, 0.67% for 0.47 μm) with the benchmark surface 367 

reflectances.  368 

For SeaWiFS aerosol retrievals over vegetated regions, the enhanced Deep Blue 369 

algorithm utilizes the 0.49, 0.67, and 0.865 μm bands to derive surface reflectances due to lack of 370 

the SWIR bands for SeaWiFS. Figure 11 shows that, for all the collocated SeaWiFS/AERONET 371 

data acquired over the continental US during spring 2004, the atmospherically corrected surface 372 

reflectances (i.e., benchmark surface reflectances) from SeaWiFS exhibit a linear relationship 373 

with the corresponding TOA reflectances at 0.865 μm (after the Rayleigh scattering contribution 374 

has been removed).  Figure 11 also shows that this relationship is a function of NDVI. Based on 375 

these results, we developed an approach that estimates the surface reflectance at visible channels 376 

based upon the Rayleigh-corrected TOA reflectances at the NIR channel (i.e., 0.865 μm) and 377 

NDVI values using the following formulas:  378 
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ESR0.67 = RCR0.865 * (a*NDVI’ + b) + c    (4) 379 

ESR0.49 = RCR0.865 * (d*NDVI’ + e) + f    (5) 380 

where ESR and RCR are the estimated surface reflectance for the 0.67 and 0.49  μm bands and 381 

Rayleigh-corrected reflectances at 0.865 μm, respectively;  a, b, c, d, e, and f are coefficients 382 

determined by least-squares fitting to the benchmark surface reflectances; and   383 

NDVI’ = (RCR0.865 - RCR0.67) / (RCR0.865 + RCR0.67)   (6) 384 

The regression coefficients were derived seasonally and according to 3 NDVI’ classes: 0.10 < 385 

NDVI’ <= 0.20; 0.20 <NDVI’ <= 0.55; NDVI’ > 0.55. In addition, aerosol retrievals using this 386 

approach are only performed for pixels with a surface reflectance < 0.23 and an NDVI’ > 0.1. 387 

The resulting coefficients for each NDVI’ category and season are tabulated in Tables 4 and 5 388 

for 0.67 and 0.49 μm SeaWiFS bands, respectively.   389 

Comparisons of the SeaWiFS estimated surface reflectance at 0.49 μm using this 390 

approach exhibit reasonable agreement for all four seasons with the corresponding “benchmark” 391 

surface reflectance regardless of the AOT values. Examples of these comparisons for spring 392 

(March-April-May) and fall (September-October-November) are shown in the upper panels of 393 

Figure 12. The corresponding AOT value for each pixel is indicated by the color of the symbol. 394 

The satellite-estimated surface reflectances at 0.67 μm are seen to also correlate well with the 395 

benchmark surface reflectance shown in the lower panels of Figure 12, except for high AOT 396 

cases. This is likely due to the fact that the slopes of surface reflectance from 0.865 to 0.67 μm 397 

are more sensitive to the NDVI’ values than the 0.865-to-0.49μm slopes shown in Fig. 11. 398 
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Therefore, bias in NDVI’ due to the presence of aerosols has a stronger impact on retrieving the 399 

surface reflectance at 0.67 μm than it does for 0.49 μm using this approach.  400 

The dependence of the deviation between benchmark 0.49 and 0.67 μm surface 401 

reflectance and satellite estimated values as a function of AOT at 0.49 μm from the AERONET 402 

data is further investigated and plotted in Figures 13 a and b. We note that, while the surface 403 

reflectance bias at 0.49 μm appears to be independent of AERONET AOT, there is a clear 404 

correlation between the surface reflectance bias at 0.67 μm and AOT at 0.49 μm. To account for 405 

this effect, the estimated surface reflectance at 0.67 μm was re-adjusted by using satellite 406 

retrieved AOT at 0.49 μm in conjunction with the linear regression line indicated in Figure 13b 407 

before it is used for aerosol retrievals at 0.67 μm.    408 

As a result, the surface reflectance determination schemes for MODIS and SeaWiFS 409 

described above are being applied to the naturally vegetated regions and cropland indicated by 410 

the areas with green color in Fig. 5 for aerosol retrievals in the enhanced Deep Blue algorithm. 411 

For the urban/built-up and transitional zones, the surface reflectances at visible wavelengths do 412 

not have simple and well-behaved relationships with NDVI as those for the densely vegetated 413 

regions and thus a hybrid approach is developed for these types of land cover as described in the 414 

next sub-section.  415 

2.2.3 Hybrid approach over urban/ built-up and transitional regions  416 

The derivation of surface reflectances for aerosol retrievals over the urban/ built-up 417 

regions and cropland/transitional zones is highly challenging for a number of reasons. First, as 418 

shown in Fig. 9, the relationship between the visible and 2.1 µm surface reflectances over these 419 

types of land surfaces exhibit more complex behavior and are not in line with those for naturally 420 
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vegetated areas. Second, although their surface reflectances are not as bright, they are much 421 

more susceptible to seasonal changes of vegetation growing and dying phases as well as the 422 

effects of surface BRDF. Third, surface inhomogeneity is often a problem, particularly over large 423 

cities where vegetation resides close to buildings, resulting in high variability of surface 424 

brightness throughout the landscape. To address these issues, we developed a hybrid approach 425 

for determining surface reflectance by combining the Deep Blue surface database with the 426 

angular shapes of surface BRDF derived using AERONET measurements.   427 

To derive these BRDF angular shapes, collocated satellite/AERONET data sets were 428 

compiled using eight years of MODIS data (2003-2010) and more than ten years of SeaWiFS 429 

data (1998-2010) acquired within a distance of 0.1° radius from the AERONET sites over 430 

transitional and urban/ built-up regions. The satellite estimated surface reflectances were then 431 

computed at 0.412, 0.47, and 0.65 μm for MODIS and 0.412, 0.49, and 0.67 μm for SeaWiFS 432 

using aerosol information from the AERONET measurements by applying the same atmospheric 433 

correction procedures mentioned in section 2.2.2. Once again, only pixels with AERONET AOT 434 

< 0.5 were included for such studies in order to minimize the uncertainty of aerosol contribution 435 

in determining surface reflectance. Also, to account for the effect of vegetation changes, the 436 

resulting surface reflectances were divided into 3 different groups according to their NDVI 437 

values: NDVI <= 0.19; 0.19 < NDVI <= 0.24; NDVI > 0.24. Regression lines were then 438 

computed as a function of scattering angle using a 2nd order polynomial fit for each NDVI group 439 

and each season to obtain the shapes of surface BRDF. One example of these procedures for 440 

Banizoumbou (13°N, 2°E) in the Sahel is shown in Figures 14 and 15 for 0.412 and 0.470 μm, 441 

respectively.   442 
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It is apparent in these figures that the surface greenness at this location has a strong 443 

seasonal cycle, with more dense vegetation land cover (i.e., higher NDVI) in fall (September - 444 

November) and more dry land surfaces (i.e., lower NDVI) in spring (March - May). However, 445 

during the transitional time periods such as summer, the vegetation grows rapidly over a short 446 

period of time due to the arrival of rainfall in the region, leading to a large temporal gradient in 447 

the NDVI and thus the surface reflectance values. As shown in Figure 14 and 15, the resulting 448 

angular shapes of surface reflectances are derived by applying polynomial fits through the data 449 

points stratified by NDVI to characterize the surface properties based upon the state of 450 

vegetation. Finally, we combine these derived angular shapes with surface reflectance values 451 

from the Deep Blue surface database at 135° scattering angle described in section 2.2.1 to 452 

compute surface reflectance for aerosol retrievals over these urban/built-up and transitional 453 

zones. This hybrid method has been applied to the regions of orange color indicated in Fig. 5 for 454 

both SeaWiFS and MODIS data.  455 

In order to better track the performances of the three different approaches mentioned 456 

above, a new SDS named “Deep_Blue_Algorithm_Flag_Land” was added into the MODIS C6 457 

DB products, as shown in Table 1. One of three different values (i.e., Deep Blue surface 458 

database, vegetated land surfaces, or mixed) will be reported in this SDS to indicate which one of 459 

these three methods was used in the actual retrieval for the given cell.  460 

2.3 Aerosol model selection 461 

The general scheme for selecting aerosol models used in C6 retrievals is similar to C5 462 

[Hsu et al., 2004, 2006]. However, additional use of MODIS infrared channels has been 463 

employed in C6 to identify the presence of extremely absorbing mineral dust. According to the 464 
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findings of Hansell et al. [2007], the use of the brightness temperature difference between 8.6 465 

and 11 µm (BTD8-11) is robust in detecting strongly-absorbing dust such as the silicates (e.g., 466 

quartz, clays, etc.), which have strong Restrahlen bands and often absorb infrared radiation more 467 

at 8.6 µm than at 11 µm. Since these types of mineral dust also exhibit strong absorption of 468 

visible light, in particular for blue wavelengths, non-identification of such aerosols will lead to 469 

the underestimation of AOT in the Deep Blue retrieval algorithm.  470 

One example of such a case is shown in Figure 16 for July 9, 2007. On this day, 471 

extensive dust plumes were seen in the MODIS/Aqua RGB image (Fig. 16a) around the Bodele 472 

Depression and the region surrounding it (14ºN-20ºN, 10ºE-20ºE) as well as over the western 473 

part of the Sahara (15ºN-30ºN, 15ºW-5ºE, as indicated by the circle). In Fig. 16b, the heavy dust 474 

loading near the Bodele Depression was reflected in the MODIS C5 AOT map; however, the 475 

dust plumes over the western part of the Sahara were not captured well by the C5 algorithm. In 476 

order to address this issue, we added a new heavy dust flag in the C6 algorithm, which is based 477 

upon the D* value developed by Hansell et al. [2007]; D* is defined as 478 

D* =  exp{[(BTD11-12) – A] / [(BTD8-11) -  B)]} 479 

where parameters A and B are the thermal offsets for BTD11-12 and BTD8-11, respectively. In 480 

the C6 algorithm, the values of -0.05 and 10.0 are used for A and B for the D* calculation. When 481 

the condition D* > 1.1 is detected, the retrieval algorithm will go directly to the three wavelength 482 

(0.412, 0.47, and 0.65 µm) approach and bypass the two wavelength (0.412 and 0.47 µm) 483 

method. As described in Hsu et al. [2004], an initial step of using the two wavelength method is 484 

performed in the Deep Blue algorithm to determine if there is sufficient aerosol loading in the 485 

atmosphere for retrieving aerosols with the 0.65 µm channel over bright surfaces, where the 486 
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surface contribution dominates the TOA reflectance under low to moderate aerosol loading 487 

conditions. If the criteria on aerosol loadings are met for a given pixel, the algorithm will 488 

conduct a three-wavelength retrieval, which is less susceptible to the presence of strongly blue 489 

light absorbing aerosols compared to the two-wavelength retrieval. 490 

As displayed in Fig. 16(c), the dust plumes in the problematic areas over the western part 491 

of the Sahara are well correlated with elevated values in D*, although other regions with high 492 

dust loadings that are apparent in the MODIS RGB image do not stand out in the D* map. This is 493 

likely due to the combination of the different sensitivity of D* to different types of mineral dust 494 

as well as the effects of underlying surface emissivity on D*. By using this new heavy dust flag, 495 

the C6 Deep Blue algorithm is able to produce better results for retrieved AOT (Fig. 16 (d)) for 496 

strong blue light absorbing dust as compared to the C5 AOT shown in Fig. 16(b). It is noted that 497 

only the AOT retrievals with a quality assurance flag (QA) of 2 or 3 were shown in the C5 and 498 

C6 AOT maps in Fig. 16. Therefore, the gaps in the retrieved AOT near the middle of MODIS 499 

swath caused by the use of the scattering angles filter in the QA determination scheme (as 500 

described below) were only seen in the C5 map and not in the C6 one. Other differences in the 501 

retrieved AOT values between C5 and C6 primarily result from the changes made in the C6 502 

surface reflectance determination scheme.   503 

2.4 Data quality flag and uncertainty estimate 504 

As shown in Table 1, the values of the QA flag and estimated uncertainty assigned to 505 

each pixel are now added in C6 as part of the Deep Blue SDS product suite. Similar to the 506 

convention used in C5, the quality flags in C6 also have 4 different levels (i.e., QA=0, 1, 2, 3 507 

with 0 for no retrieval, 1 as the worst quality retrieval, and 3 for the best data quality). However, 508 
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there are several major changes in the QA flag selection procedures. For example, in C5 the QA 509 

flag was limited to 1 for scattering angles greater than 168º due to increasing surface reflectance 510 

at high scattering angles (i.e. BRDF hot spots) over many types of surfaces. This constraint is 511 

lifted in C6 due to improved statistics obtained by using eight years of MODIS data over the 512 

high scattering angle range used in the analysis for constructing the Deep Blue surface database, 513 

and the use of a hybrid approach to better characterize the angular shapes in C6.  514 

As a result of the improvements made in surface reflectance determination, the selections 515 

of QA flag in C6 only simply rely on the number (N) of retrieved AOT pixels at 0.550 μm (i.e., 516 

minimum N = 40 and 60 out of 100 for QA = 2 and 3, respectively) and their standard deviation 517 

(�) within 10 x 10 pixels (i.e., maximum � = 0.18 and 0.15 for QA = 2 and 3, respectively), and 518 

no longer depend on surface types as used in C5. Overall, the criteria for achieving higher QA is 519 

more relaxed in C6, leading to a higher number of retrieved pixels reaching QA=2 or 3 as 520 

compared to C5. The estimated uncertainty of the retrieval for each cell is also reported in C6 521 

based upon the corresponding viewing geometry and air mass factor. A detailed description of 522 

the estimated uncertainty calculation is included in Sayer et al. [2013]. It is important to note that 523 

since pixels with QA=1 for the DB AOT product could potentially still have cloud contamination 524 

issues, a new SDS named “Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate” was 525 

created in C6 to report good quality pixels with AQ=2 or 3; we highly recommend that this SDS 526 

be used by the general user community. 527 

3.  Results and Comparisons between C5 and C6 products 528 

We have used the C6 DB algorithm described above to process reflectance data from the 529 

Aqua MODIS instrument for July 17-18, 2004, to compare with data from the C5 algorithm. 530 
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Figure 17 illustrates the advantage of the enhanced Deep Blue retrieval. As seen in the RGB 531 

images (left column), smoke from large fires burning in Alaska and Northwestern Canada 532 

traveled across the North American continent, impacting the Great Lakes region. The C5 Deep 533 

Blue aerosol retrieval, shown in the middle column, is limited to bright underlying surfaces. The 534 

resulting retrieval, therefore, covers very little of the mostly vegetated Great Lakes region. The 535 

enhanced Deep Blue algorithm extends the capability of Deep Blue to the vegetated, or darker, 536 

surface types. The right column of Figure 17 shows nearly complete AOT data, excluding only 537 

cloudy and water surfaces. The areas of high AOT in the enhanced Deep Blue images (right 538 

column, values in orange, red) appear to correspond well to the smoke plumes visible in the RGB 539 

images; The July 17 image captures the heavy smoke west of the Great Lakes, while the July 18 540 

image follows the plume eastward ahead of a cloud front.  541 

We have also compared the monthly mean AOT for July and September 2012 using the 542 

MODIS Aqua data with QA=2 or 3 from C5 (left panel) with C6 (right panel) in Figure 18. This 543 

figure clearly shows that the spatial coverage of retrieved AOT has increased substantially from 544 

C5 to C6 due to the improved surface reflectance determination scheme used in C6. Aerosol 545 

information retrieved over extensive vegetation-covered areas are now included in Deep Blue C6 546 

data. For example, during July 2012, there were elevated AOT values observed in northern 547 

Alberta and Saskatchewan, Canada. This was associated with biomass burning smoke generated 548 

from wildfires ignited by lightning under extreme dry heat and high wind conditions. At the 549 

same time, smoke plumes produced by forest fires in Russia traveled thousands of miles, leading 550 

to the elevated AOT observed over a large area at high latitudes in the Northern Hemisphere. 551 

The AOT maps for September also reveal high biomass burning activity in South America with 552 
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high AOT values covering a large portion of the continent; this information could not have been 553 

obtained from the C5 Deep Blue data.   554 

The spatial coverage of retrieval over urban/built-up and transitional zones is also much 555 

improved from C5 to C6. Since the previous C5 algorithm excluded any pixels with significant 556 

vegetation cover, and there are many large cities that have green vegetation inside the city zones, 557 

retrievals over such sites were scarce. By performing retrievals over both dark and bright 558 

surfaces inside the city limits, enough information was acquired to provide adequate quality for 559 

performing aerosol retrievals over these urban regions.   560 

The coverage over desert and semi-desert regions is roughly the same between C5 and 561 

C6, as expected. However, due to the improved surface reflectance database and aerosol model 562 

selection scheme in C6, there are also significant differences in the monthly averaged AOT over 563 

these regions, such as higher AOT values in C6 than C5 over the western part of the Sahara and 564 

the southern part of Arabian Peninsula and lower values over Australia. 565 

In order to study the effects of changes made in the C6 QA selection scheme, 566 

comparisons of the fractions of aerosol retrievals (defined as ratio of number of retrievals to total 567 

number of observations) with ‘all QA’ and QA=3 between C5 and C6 for the month of July 2012 568 

are depicted in Figure 19. As expected, for ‘all QA’ the retrieval fractions are in general the same 569 

between C5 and C6 for desert regions, but significantly improved from C5 to C6 over vegetated 570 

and urban/built-up regions. For QA=3, the retrieval fractions are substantially improved from C5 571 

to C6 almost everywhere, even over dry regions such the Sahara/Sahel and the Arabian 572 

Peninsula, as a result of the QA selection changes in C6 described in section 2.4.    573 

 574 
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4.  Preliminary comparisons with AERONET AOT measurements 575 

Extensive validation of the new SeaWIFS and MODIS Deep Blue aerosol datasets has 576 

been performed by Sayer et al. [2012a, 2013]. Here, some brief results are shown for MODIS 577 

(Aqua) to illustrate the significant improvements of C6 over C5. This analysis uses data from 10 578 

long-term AERONET sites at which both C5 and C6 provide retrievals (Agoufou, Banizoumbou, 579 

Beijing, Boulder, Fresno, Hamim, Kanpur, Mongu, Solar Village, Tinga Tingana); AERONET 580 

and MODIS data are spatiotemporally matched by averaging MODIS retrievals with QA=3 581 

within 25 km of each AERONET site, and AERONET data (interpolated spectrally to 550 nm) 582 

within 30 minutes of the MODIS overpass [Sayer et al., 2013]. 583 

Scatter density plots of the matched data are shown in Figure 20. Although a good level 584 

of agreement is found for both C5 and C6 data, performance is notably better for C6, with the 585 

number of extreme outliers reduced and a tighter clustering of points around the 1:1 line. 586 

Specifically, there are improvements in the correlation with AERONET (0.86 in C5, 0.93 in C6), 587 

median bias (-0.015 in C5, -0.008 in C6), root mean square error (0.22 in C5, 0.14 in C6), and 588 

proportion of retrievals agreeing within 0.05+20% of the AERONET AOT (62% in C5, 79% in 589 

C6). Additionally, the data volume for these 10 sites has nearly doubled (6,335 matchups for C5, 590 

11,234 for C6). These results show that the C6 data represents a large improvement on C5 both 591 

in terms of extent of coverage of QA=3 retrievals, as well as the level of uncertainty of those 592 

retrievals. As C5 did not provide retrievals over vegetated surfaces, it is not possible to provide a 593 

comparative benchmark of this type in a more global sense; however, the analyses of Sayer et al. 594 

[2012a, 2013] show a similar high quality of performance of the DB algorithm over vegetated 595 

areas. 596 
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5. Conclusions   597 

A goal of the MODIS periodic reprocessing strategy is to provide self-consistent (i.e. no 598 

algorithmic discontinuities through the record) geophysical datasets, leveraging developments in 599 

understanding made between these reprocessings. In order to achieve this goal of continual 600 

improvement, the Deep Blue aerosol retrieval algorithm has undergone many modifications in 601 

C6 based on the latest knowledge of aerosol remote sensing. As compared to C5, the most 602 

significant changes include (1) improved cloud screening scheme to maximize the aerosol 603 

retrieval frequency with minimal cloud contamination; (2) the use of a newly-developed NDVI-604 

dependent MODIS surface reflectance database to replace the previous static surface look-up 605 

tables; (3) a better dust aerosol model selection scheme using visible and thermal infrared bands 606 

simultaneously; and (4) revised quality flag selection procedures. In particular, the dynamic 607 

surface reflectance determination permits expansion of the spatial coverage of the Deep Blue 608 

aerosol products from only the bright-reflecting surfaces (such as deserts, semi-deserts, and non-609 

vegetated urban areas) to all snow-free land surfaces, including vegetated areas. Consequently, 610 

the aerosol retrievals have been significantly improved in C6 over regions with mixed vegetated 611 

and non-vegetated surfaces such as urban areas, providing useful information for the study of air 612 

quality over large cities. 613 

Besides the substantial increase in spatial coverage as the results of enhanced surface 614 

reflectance determination and cloud screening schemes, the overall performance of the retrieved 615 

aerosol properties for MODIS C6 has also been improved as compared to C5. Based upon the 616 

preliminary validation results of the enhanced Deep Blue algorithm using measurements from 617 

selected ten long-term AERONET sites, the estimated error for the new C6 Deep Blue products 618 

is better than 0.05+20%, with 79% of best quality AOT (QA=3) data that fall within this range, 619 
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as compared to the 62% in C5. The number of the AOT retrieval with QA=3 has also nearly 620 

doubled from C5 to C6. 621 

Finally, in order to achieve consistency in continuous long-term aerosol time series from 622 

the EOS-era sensors such as SeaWiFS and MODIS to VIIRS onboard the Suomi NPP satellite, 623 

the new enhanced Deep Blue algorithm, which has been used in generating MODIS C6 as well 624 

as SeaWiFS version 3 aerosol products, will also be applied to VIIRS to extend the consistent 625 

long-term satellite aerosol data record for climate studies.   626 

 627 
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Table 1. List of SDS names for MODIS collection 6 Deep Blue aerosol products 731 

Name Dimensions Description 

Deep_Blue_Angstrom_Exponent_Land 
[Cell_Along_Swath, 

Cell_Across_Swath] 

Angstrom exponent over 

land.  

Deep_Blue_Aerosol_Optical_Depth_550_ 

Land 

[Cell_Along_Swath, 

Cell_Across_Swath] 

Aerosol optical depth at 

550nm over land. 

Deep_Blue_Aerosol_Optical_Depth_550_ 

Land_Best_Estimate 

[Cell_Along_Swath, 

Cell_Across_Swath] 

Aerosol optical depth at 

550nm over land filtered 

by quality (QA=2,3 only). 

Deep_Blue_Aerosol_Optical_Depth_550_ 

Land_STD 

[Cell_Along_Swath, 

Cell_Across_Swath] 

Standard deviation of 

individual pixel-level 

aerosol optical depth at 

550nm per cell. 

Deep_Blue_Algorithm_Flag_Land 
[Cell_Along_Swath, 

Cell_Across_Swath] 

Flag indicating the path 

taken through the 

algorithm. 

Deep_Blue_Aerosol_Optical_Depth_550_ 

Land_QA_Flag 

[Cell_Along_Swath, 

Cell_Across_Swath] 

Quality assurance flag for 

aerosol optical depth at 

550nm. 

Deep_Blue_Aerosol_Optical_Depth_550_ 

Land_Estimated_Uncertainty 

[Cell_Along_Swath, 

Cell_Across_Swath] 

Estimated uncertainty in 

aerosol optical depth at 

550nm. 

Deep_Blue_Cloud_Fraction_Land 
[Cell_Along_Swath, 

Cell_Across_Swath] 

Fraction of pixels per cell 

where retrieval was not 

attempted. 

Deep_Blue_Number_Pixels_Used_550_ 

Land 

[Cell_Along_Swath, 

Cell_Across_Swath] 

Number of aerosol 

property retrievals 

performed per cell. 

Deep_Blue_Spectral_Aerosol_Optical_ 

Depth_Land 

[Num_DeepBlue_Wavelen

gths, Cell_Along_Swath, 

Cell_Across_Swath] 

Retrieved aerosol optical 

depth over land at 412 nm, 

470 nm, and 650 nm. 

Deep_Blue_Spectral_Single_Scattering_ 

Albedo_Land 

[Num_DeepBlue_Wavelen

gths, Cell_Along_Swath, 

Cell_Across_Swath] 

Single scattering albedo 

over land at 412 nm, 470 

nm, and 650 nm. 

Deep_Blue_Spectral_Surface_Reflectance

_Land 

[Num_DeepBlue_Wavelen

gths, Cell_Along_Swath, 

Cell_Across_Swath] 

Surface reflectance used in 

aerosol retrieval over land 

for 412 nm, 470 nm, and 

650 nm. 

Deep_Blue_Spectral_TOA_Reflectance_ 

Land 

[Num_DeepBlue_Wavelen

gths, Cell_Along_Swath, 

Cell_Across_Swath] 

Top-of-atmosphere 

reflectance at 412 nm, 470 

nm, and 650 nm.  

 732 

Cell_Along_Swath = number of cells in the along-track direction. 733 
Cell_Across_Swath = number of cells across the swath. 734 
Num_DeepBlue_Wavelengths = number of bands reported by the Deep Blue products, currently has 735 
a value of 3 (412nm, 470nm, and 650nm). 736 
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 737 

Table 2. Surface reflectance coefficients over naturally vegetated regions for MODIS 0.47 and 738 

0.65 μm  739 

 R0.65/R2.1 (a, b, c) R0.47/R0.65 (d, e) 

DJF/MAM 0.5526, 0.4801,  0.0038 -0.3305, 0.4830 

JJA 0.4413, 0.4606, 0.0045 -0.5841, 0.4961 

SON 1.1749, 0.3560, 0.0067 0.0048, 0.4429 
Note. These values inside each cell are corresponding to a, b, c, d, and e in equations 2 and 3. 740 
 741 

 742 

Table 3. Surface reflectance coefficients over cropland for MODIS 0.47 and 0.65 μm   743 

 NDVISWIR < 0.35 NDVISWIR >= 0.35 

 R0.65/R2.1 (a, b, c) R0.47/R0.65 (d, e) R0.65/R2.1 (a, b, c) R0.47/R0.65 (d, e) 

DJF/MAM 6.2828, 0.1658, 0.0 2.6884, 0.2751 -0.9766, 0.6213, 0.0 0.9126, 0.3982 

JJA 5.2395, 0.2077, 0.0 0.2451, 0.5442 -0.1187 , 0.5036, 0.0 -0.0736, 0.5345 

SON -2.2642, 0.6781, 0.0 1.2493, 0.3576 -1.2799, 0.6161, 0.0 1.2724, 0.2039 
Note. These values inside each cell are corresponding to a, b, c, d, and e in equations 2 and 3. 744 
 745 

  746 
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Table 4. Surface reflectance coefficients over vegetated regions for SeaWiFS 0.67 μm 747 

 0.10< NDVI’ <=0.20 0.20< NDVI’ <=0.55 NDVI’ >0.55 

MAM -1.5184,  0.9797, -1.2189 -1.0948,  0.8639, -0.6745 -0.7002,  0.6672, -0.9535 

JJA -1.5077,  0.9695, -0.8751 -1.0772,  0.8724, -0.9543 -0.6919,  0.6721, -1.1697 

SON -1.5244,  0.9743, -1.1274 -1.0676,  0.8650, -0.9757 -0.6497,  0.6204, -0.3580 

DJF -1.6123,  0.9736, -0.7547 -1.0597,  0.8491, -0.5760 -0.7054,  0.6767, -0.6852 
Note. The three values inside each cell are corresponding to a, b, and c in equation 4. 748 
 749 

Table 5. Surface reflectance coefficients over vegetated regions for SeaWiFS 0.49 μm  750 

 0.10< NDVI’ <=0.20 0.20< NDVI’ <=0.55 NDVI’ >0.55 

MAM -1.1617,  0.5278,  0.7483 -0.5822,  0.4222,  1.3564 -0.4264,  0.3903,  0.2547 

JJA -0.5839,  0.3888,  2.2656 -0.5500,  0.3699,  2.6355 -0.3990,  0.3881, -0.3469 

SON -0.9448,  0.4835,  0.9249 -0.5271,  0.3615,  1.9300 -0.3185,  0.3040,  0.3497 

DJF -1.3836,  0.4686,  3.2991 -0.6764,  0.4439,  1.4341 -0.4177,  0.4442, -1.2915 
Note. The three values inside each cell are corresponding to d, e, and f in equation 5. 751 
 752 
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 756 

Figure 1.  Flowchart of the enhanced MODIS Deep Blue algorithm 757 
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 760 

Figure 2.  Flowchart of cloud screening used in MODIS C6 Deep Blue algorithm 761 
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 767 

 768 

Figure 3.  A Thin Cirrus Over-Screening Case over Sahara on March 7, 2006.  The impacts of 769 

improved cirrus screening on the spatial coverage of AOT retrievals are seen when comparing 770 

the C5 AOT map in Fig. 3b with the C6 in Fig. 3g. The corresponding values of TOA reflectance 771 

at 1.38 μm, total precipitable water, brightness temperature difference (BTD11-12), brightness 772 

temperature (BT11) used for cirrus screening are depicted in Fig. 3c, 3d, 3e, and 3f, respectively. 773 

The MODIS RGB image is also included in Fig. 3a.  774 
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 776 

Figure 4.  Flowchart of screening for snow/ice surfaces in MODIS C6 777 
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 782 

 783 

Figure 5.  Geographic regions where the three surface reflectance schemes are used in the 784 

enhanced Deep Blue algorithm of (1) deserts and semi-deserts (blue color), (2) general 785 

vegetation (green color), and (3) urban/built-up and transitional zones (orange color). The 786 

regions with white colors are associated with either water or snow/ice surfaces and thus no over-787 

land aerosol retrieval algorithm is applied over these regions. 788 
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 796 

 797 

Figure 6.  Example of constructing the Deep Blue surface database over Tinga Tingana, 798 

Australia for the fall season as a function of scattering angle using MODIS reflectivity (%) at (a) 799 

0.412, (b) 0.47, and (c) 0.65 μm. Blue symbols denote the lowest 15 percentile and the red curve 800 

is the polynomial fit through the blue symbols.  801 
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 803 

Figure 7.  Seasonal maps of surface reflectance database at 0.412 μm used in the Deep Blue 804 

algorithm. The black color regions are associated with water body, snow/ice surface, or the 805 

frequent presences of clouds.  806 
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 809 

Figure 8.  Same as Figure 7, except for 0.65 μm. 810 
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 814 

Figure 9.  (Left) Spectral surface reflectance relationship (0.65 μm versus 2.11 μm) during 815 

March-April-May, 2004, as a function of IGBP land cover from MODIS (MCD12C1).  (Right) 816 

The relationship in surface reflectance between 0.47 μm and 0.65 μm during March-April-May, 817 

2004, as a function of IGBP land cover from MODIS (MCD12C1).  818 
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 820 

Figure 10.  (Top) The spectral relationship of 0.65 vs. 2.1 µm (left) and 0.47 vs. 0.65 µm (right) 821 

based upon benchmark surface reflectances for naturally vegetated regions during March-April-822 

May, 2004. The dotted line represents the 2nd order least square fit through the data points. 823 

(Bottom) Comparisons between the derived benchmark and estimated surface reflectance for 824 

0.65 µm (left) and 0.47 µm (right) channels. The dashed line denotes the one-to-one line.    825 
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 827 

Figure 11.  Derived surface reflectance using aerosol properties from AERONET measurements 828 

at 0.49 μm (left) and 0.67 μm (right) as function of Rayleigh-corrected reflectance at 0.865 μm at 829 

the top of the atmosphere and normalized difference vegetation index (NDVI) for the spring 830 

season. Color bar shows the values of NDVI for each point.  831 
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 841 

Figure 12.  Comparisons of the estimated surface reflectance at 0.49 μm (top) and 0.67 μm 842 

(bottom) with the derived benchmark surface reflectance at the same wavelength after 843 

atmospheric corrections using AERONET AOT data for March-May (left) and September-844 

November (right). Color indicates AOT at 0.49 μm interpolated from AERONET AOTs using 845 

Angstrom exponent.   846 
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 849 

Figure 13.  Differences between estimated and derived and surface reflectances (a) at 0.49 μm 850 

and (b) at 0.67 μm as function of aerosol optical thickness (AOT) at 0.49 μm. Gray dashed lines 851 

stand for linear fitting lines. Correlation coefficient (r) and the linear fitting equations are 852 

presented in each plot.  853 
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 855 

 856 

Figure 14.  Atmospheric corrected surface reflectance at 0.412 μm for MODIS Aqua using 857 

AERONET aerosol measurements over Banizoumbou. The color of the symbol is associated 858 

with the NDVI value of the given pixel. The dash-dot, dashed, and solid lines represent the line 859 

fit for each group of data with NDVI < 0.19, 0.19<= NDVI <2.4, and NDVI >=2.4, respectively.  860 
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 862 

Figure 15.  Same as Figure 14, except for 0.47 μm. 863 
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 868 

Figure 16.  The effects of revised aerosol model selection scheme are shown by comparing the 869 

(b) MODIS Deep Blue C5 AOT with (d) MODIS Deep Blue C6 AOT for July 9, 2007. The 870 

circle indicates the area with most significant change in retrieved AOT as a result of this 871 

modification in C6 algorithm. The corresponding MODIS Aqua RGB image and D* values are 872 

also displayed in (a) and (c), respectively. 873 

 874 

  875 



53 
 

 876 

 877 

Figure 17.  MODIS granule RGB images (left column) and Deep Blue AOT at 0.550 μm from 878 

C5 (middle column) and C6 (enhanced Deep Blue) (right column) for smoke events over the 879 

Great Lakes area on 17-18 July 2004.  880 
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 883 

Figure 18.  Comparisons of monthly averaged AOT at 0.55 μm between MODIS Aqua C5 and 884 

C6 for July and September 2012. To alleviate the effect of sampling issues over the cloudy 885 

regions in the monthly mean, only data with better QA (2 or 3) flag are included in the analysis. 886 
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 888 

Figure 19.  Comparisons of monthly averaged aerosol retrieval fractions between MODIS Aqua 889 

C5 and C6 for July 2012 using data with all QA (top panel) and only QA=3 (bottom panel). The 890 

white color represents regions with zero retrieval fraction.  891 
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 899 

Figure 20.  Scatter density plots of AERONET and MODIS Deep Blue AOT at 0.550 μm for (a) 900 

C5 and (b) C6, for 10 AERONET sites for which both Collections provide retrievals. The 1:1 901 

line is shown in solid black; dotted lines indicate +/- 0.05+20% of the AERONET AOT.  902 
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