Abstract Submittal Form

Title: Liquid and Solid Propulsion Systems Attributes - Unique, Common and Complementary

Submitted to: [] JPM [] SMBS* [] PEDCS* [] RNTS* [] SEPS*

Mission Area: [] 1 [] 2 [] 3 [] 4 [] 5 [] 6 [] 7 [] 8 [] 9 [] 10

Security Classification: [] Secret [] Unclassified

Updated Paper? [] Yes [] No

Student Paper? [] Yes [] No

Sponsoring organization if SBIR-funded:

Primary Author (this author will receive all correspondence regarding participation in this program)

Name: James L. Cannon
Organization: Propulsion Systems Department
Address: NASA/Marshall Space Flight Center
City: Huntsville
State: AL
ZIP Code: 35812
Phone: (256) 544-7072
Email: james.l.cannon@nasa.gov

2nd Author
Name: Pat Lampton
Organization: Propulsion Systems Department
Address: NASA/Marshall Space Flight Center
City: Huntsville
State: AL
ZIP Code: 35812
Phone: (256) 544-3628
Email: pat.lampton@nasa.gov

3rd Author
Name: Thomas J. Williams
Organization: Propulsion Systems Department
Address: NASA/Marshall Space Flight Center
City: Huntsville
State: AL
ZIP Code: 35812
Phone: (256) 544-7101
Email: thomas.j.williams@nasa.gov

4th Author
Name:
Organization:
Address:
City:
State:
ZIP Code:
Phone:
Email:

Approval
[] Approved by Management
[] Placeholder

* Additional Abstracts for SMBS, PEDCS, RNTS & SEPS will be considered on a space available basis. You are welcome to contact the Mission Area Chairs to inquire whether abstracts are needed.
In this study, attributes are described for solid and liquid propulsion systems based on historical data. This study is not intended to compare liquid and solid propulsion system attributes, rather to present options for their use in various mission scenarios. US launch vehicle data from 1970 to 2008 was analyzed to assess solid and liquid propulsion development cost and schedule characteristics, performance features, and safety and mission success attributes. The study assessed historical trends for liquid and solid systems, and investigated implications of those trends. It was found that the two propulsion technologies have unique, common and complementary attributes that can be leveraged to meet mission requirements.

By submitting an abstract, you agree to both complete a final paper for publication and to attend the meeting to present this information.

Submit abstracts electronically; submittal instructions are found in the call for papers.

Direct questions to Shelley Cohen, by phone at 410.992.7302 x 215, or email to scohen@cpiac.jhu.edu.