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Abstract

To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic
Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two software environments for the analysis,
simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware
components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced
from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties that
make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bio-inspired
tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control
challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion.

The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity
structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant
Tensegrity Robot (ReCTeR), is used to empirically validate the accuracy of simulation.
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I. Introduction
Prior work has investigated the unique structural properties of

tensegrity systems, their role in biology, and control strategies

for different tensegrity morphologies. One of the centers for

this research is NASA Ames Research Center, where there is

interest in these systems for planetary exploration missions.

I.1 Tensegrity Structures
Tensegrity structures are composed of compression elements

encompassed within a network of tensional elements; conse-

quently, each element experiences either pure compression or

pure tension. This allows individual elements to be extremely

lightweight, as designs do not need to resist bending or shear

forces. Active motion in tensegrity structures can be performed

with minimal energy expenditure since actuators work linearly

along load paths in tension elements, avoiding torques caused

by long lever arms of traditional robotic designs.

A unique property of tensegrity structures is how they inter-

nally distribute forces. Since there are no lever arms, forces

do not magnify around joints or other common points of fail-

ure. Rather, externally-applied forces distribute through the

structure via multiple load paths, creating system-level me-

chanical robustness and tolerance to forces applied from any

direction or failure of individual actuation elements [1]. Thus,

tensegrity structures are ideally suited for operation in dynamic

environments where contact forces cannot always be predicted.

I.2 Tensegrity and Biology

Figure 1: Computer simulations of a nucleated tensegrity cell
model exhibits mechanical coupling between the cell, the cy-
toskeleton, and the nucleus. Adapted by permission from
Macmillan Publishers Ltd: Nature Reviews Molecular Cell
Biology [2], 2009

Tensegrity structures are being discovered in many aspects

of biological systems, which motivates this work’s bio-inspired

modeling and controls approaches. The tensegrity concept ap-

pears at various scales, from the cytoskeleton of individual cells

(see Figure 1) [2, 3, 4] to mammalian physiology [5]. Emerg-

ing biomechanical theories are shifting focus from bone-centric

models to fascia-centric models. Fascia is the connective tissue

in our bodies (including muscles, ligaments, tendons, etc.) that

forms a continuous web of tension, even surrounding and sup-

porting bones, which, unlike traditional mechanical systems,

have no rigid connections between them [6]. This new view is

challenging the "common sense" view of skeletal structures as

the primary load-bearing elements of human and mammalian

bodies (see Figure 2). In the emerging "bio-tensegrity" model,

bones are still under compression, but they are not passing com-

pressive loads to each other; rather, it is the continuous tension

network of fascia that are the primary load-bearers [5, 6].

Figure 2: Tensegrity models of the spine show how vertebrae
float without touching. Image courtesy of Tom Flemons (copy-
right 2006) [7]

I.3 Tensegrity Robotics for Space Exploration
NASA is supporting research into tensegrity robotics to create

planetary rovers with many of the same qualities that bene-

fit biological systems. The high strength-to-weight ratio of

tensegrity structures is attractive due to the impact of mass

on mission launch costs. Likewise, large tensegrity structures

are deployable from compact configurations, enabling them

to fit into space-constrained spacecraft. While these qualities

have inspired studies of deployable antennae and other large

space structures [8], the unique force distribution of tensegrity

robots has only recently been investigated for planetary ex-

ploration [9]. Initial work in the NASA Innovative Advanced

Concepts (NIAC) project [10] shows that controllable compli-

ance and force distribution properties allow for reliable and

robust environmental interactions during landing and planetary

surface exploration.

A key goal of this NASA work is to develop a tensegrity

probe with an actively controlled tensile network, enabling

compact stowage for launch followed by deployment for land-

ing. Compliant tensegrity probes can safely absorb significant

impact forces, enabling high-speed Entry, Descent, and Land-

ing (EDL) scenarios where the probe acts like an airbag [9].

However, unlike an airbag that must be discarded after a single

use, the tensegrity also provides rolling mobility (Figure 3).

This enables compact and lightweight planetary exploration
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Figure 3: Mission Scenario - A tightly packed set of tensegri-
ties expands, spreads out, falls to surface of moon, and then
safely bounces on impact. The same tensegrity structure cush-
ioning landing is then used for exploration.

missions with the capabilities of traditional wheeled rovers,

but with a mass and cost similar to a stationary probe. Dual

use of structure allows a tensegrity mission to have a high

mass fraction between science payload and overall weight (as

measured at atmospheric entry). This reduces mission cost

and enables new forms of surface exploration utilizing the

tensegrity’s natural tolerance to impacts [9].

I.4 Tensegrity Control

Tensegrity structures are a fairly modern concept having been

initially explored in the 1960s by Buckminster Fuller [11] and

the artist Kenneth Snelson [12]. Initial tensegrity research was

mostly concerned with form-finding techniques [13] and the

design and analysis of static structures [14, 15]. Research into

control of tensegrity structures began in the mid-1990s, with

initial efforts at formalizing the dynamics of tensegrity struc-

tures only recently emerging [15]. The very properties that

make tensegrities ideal for physical interaction with the envi-

ronment (compliance, multi-path load distribution, nonlinear

dynamics, etc.) also present significant challenges to tradi-

tional control approaches. A recent review shows that there are

still problems actively controlling tensegrities [16]. Work has

continued in the analytical understanding of the equations of

motion and dynamics of tensegrity structures [17]. However,

environmental interactions cause additional modeling difficul-

ties, typically limiting the effectiveness of such approaches.

Consequently, successful demonstrations of tensegrity mobil-

ity have primarily used non-analytical methods [1, 18, 19, 20].

Our approach to these problems is therefore to develop con-

trol algorithms based on Central Pattern Generators (CPGs),

distributed learning, and genetic algorithms instead of more

traditional control approaches.

I.4.1 Central Pattern Generators

CPGs are neural circuits found in both vertebrate and inverte-

brate animals that produce rhythmic patterns of neural activity

without receiving rhythmic inputs. CPGs have been studied

from a biological perspective and have been used extensively

in robotics [21]. The term central indicates that rhythms of the

CPG are not driven by sensory input, but are self-generated.

CPGs are the fundamental building blocks for locomotor neural

circuits in many animals, and are also key to other fundamental

rhythmic activities such as chewing, breathing, and digesting.

Recent research shows a close relationship between CPGs and

motion primitives in the spine that enable both rhythmic and

discrete motions [22]. Alongside their biological inspiration

for use in robotic motion, CPGs present several interesting and

useful properties including distributed control, robustness to

perturbations, inherent tolerance to redundancies, fast control

loops, and the ability to modulate locomotion by simple control

signals.

CPGs are therefore well suited for controlling tensegri-

ties [23] and other biomimetic structures [24]. Additionally,

there is intuition for pairing tensegrity robots with CPG net-

works: the dynamics of physical forces propagating through

a tensegrity structure are similar to the dynamics of control

patterns propagating through CPG networks.

I.4.2 Evolutionary Algorithms

Instead of defining a control policy directly, evolutionary al-

gorithms can be used to learn a control policy. This is accom-

plished through an iterative cycle, where in simulation a control

policy is run and evaluated, and this evaluation is fed back into

the genetic algorithm so that it can improve the control policy.

Evolutionary algorithms have the following advantages:

1. Complex, nonlinear control policies can be learned.

2. Underlying dynamics need not be known.

3. Control policies can be learned or parameters of existing

control policies can be optimized.

4. Distributed learning can be used to scale to larger tenseg-

rities and to accelerate learning.

Moreover, coevolutionary algorithms provide distributed

learning for multiagent problems [25]. Each component can

individually learn a control policy that decides how to actuate

its individual end cap in such a way that global performance

is maximized [26]. Challenges controlling tensegrity robots
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using traditional approaches have led some researchers to con-

sider biologically-inspired evolutionary or coevolutionary al-

gorithms [1, 27, 28, 29].

I.5 Outline

This paper is organized as follows: section II introduces our

simulators and hardware platform; section III presents our

simulator validation results; section IV describes our various

control strategies; and section V discusses our future work and

our results and control strategies in context of other work. And

last, section VI presents our conclusions.

II. Systems and Models
We introduce three systems to evaluate the design and con-

trol of tensegrity structures. The first two are simulation

environments, while the third is an untethered, lightweight

robot prototype. Our simulators and hardware designs

are Open Source and can be obtained from our website:

http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/.

II.1 Spring-Cable Assemblies

All tensile members of the structures we study in this work

are compliant and we refer to them as spring-cable assemblies.

Although various implementations are possible, all spring-

cable assemblies in this work can be modeled as a zero rest-

length passive spring in series with a non-elastic cable. The

tension on spring-cable assembly i is given by:

fi = ki max(‖pi,0 − pi,1‖ − �i, 0), (1)

where ki is the spring stiffness, ‖pi,0 − pi,1‖ is the Euclidean

distance between the attachments of the spring-cable assembly,

and �i is the cable length. Actuated members have a control-

lable rest length �i.

II.2 Euler-Lagrange Simulator

We extended the Euler-Lagrange formulation described in Skel-

ton’s reference work on tensegrity systems by adding support

for ground contacts and gravity [15]. In Skelton’s work, the

tensegrity structure struts are modeled as cylinders with in-

finitesimal radius. Strut-to-strut contacts are not modeled,

which is an acceptable approximation for NASA-scale mis-

sions.

We found that this environment provides particularly accu-

rate results for two types of experiments: tests of structural

forces, and tests of effective structural stiffness. This simula-

tor is used for payload acceleration prediction during impacts

from drop tests, as well as stiffness analyses and form-finding.

However, its simple underlying model makes it unsuited for

the study of complex environmental interactions.

II.3 NASA Tensegrity Robotics Toolkit
Our main simulation environment, the NASA Tensegrity

Robotics Toolkit (NTRT), is built on the discrete time Bul-

let Physics engine (a game physics simulator) [30].

Since game physics require real-time simulation, Bullet is

designed to handle collisions without excessive processing

power. However, the Bullet physics library does not currently

provide models of ropes, cables, or springs with realistic ma-

terial properties and stress analysis. Instead of using these

default soft body models, we built an additional library to sim-

ulate spring-cable assemblies as two-point tensional elements

that apply directional forces to rigid bodies.

This approach gives the ability to calculate the amount of

stretch and tension for each simulated cable, as well as the force

exerted to the bodies, using more mathematically-rigorous

models. A current limitation of this method is that the cables do

not exist in the simulation world as physical bodies. Thus, their

collisions and interaction with rigid bodies are not simulated.

For locomotion tasks and terrain types we have explored so

far, this is not a problem, but will be addressed in the future to

simulate more extreme terrain interactions.

II.4 Prototype
In addition to these two software environments, a physical

prototype of the six-bar tensegrity was constructed. ReCTeR is

a highly compliant, lightweight (1.1kg), underactuated tenseg-

rity icosahedron robot, as shown in Figure 4. The robot’s 24

Figure 4: ReCTeR: an untethered, highly compliant, spherical
tensegrity robot. Top left: deployed robot. Center right: active
folding. Bottom: ReCTeR rolling from right to left.

outer tensile elements are passive spring-cable assemblies with

low stiffness springs (28.4N/m) under moderate pretension (≈
10N). Six actuated spring-cable assemblies run through the

robot connecting active and passive end caps (also see section
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II.5). Their rest length is adjusted by a rotational DC mo-

tor (4.5W, 4.4:1 gear ratio) that spins a snag-resistant bobbin

(5.5mm diameter). The other end of the cable attaches to a

stiffer spring (81N/m) affixed to a passive end cap. We use low

stiffness springs to allow active folding (Figure 4) without plas-

tic deformation of the 24 passive tensile members or excessive

motor power requirements.

The six active spring-cables run through the robot and con-

nect non-parallel struts in an advantageous way. Stiffness

analysis revealed that this pattern allows for large shape de-

formations with low motor power requirements. As a conse-

quence of low spring stiffnesses, the lowest natural frequencies

of oscillatory modes for the structure are on the order of a few

Hz.

Sensing and feedback control are achieved by 24 tension sen-

sors using strain gages, six ground reaction force sensors, and

three six-DOF inertial measurement units distributed evenly

among the actuated end caps. To allow dynamic motion and

rolling, each self-contained strut holds a hardware module with

battery power and wireless communication. The battery is

mounted in the center of the strut to minimize the moment of

inertia around its longitudinal axis. This makes ReCTeR fully

untethered.

II.5 Robot Models

Our control methods are implemented on platforms with vary-

ing configurations. Figure 5 shows the three tensegrity icosa-

hedra analyzed in this paper.

We put a particular emphasis on spherical icosahedron

tensegrities. This symmetric configuration provides a large

interior volume with a moderate number of members and can

be folded easily. It lends itself naturally to rolling locomotion

because of its triangular faces. Additionally, tensile-member

failure will result in reduced locomotion capabilities instead

of full failure, due to its redundant number of tensile mem-

bers [31].

The basic tensegrity icosahedron is shown on the left. This

structure has 24 spring-cable assemblies and six rigid rods.

The spring-cable assemblies are also referred to as outer shell
elements.

A tensegrity icosahedron with a payload is displayed in

the center. This structure has an additional 12 spring-cable

assemblies to suspend the payload in the center of the robot.

We also refer to these as inner members.

The model on the right displays ReCTeR’s configuration

with actual dimensions. ReCTeR has the basic tensegrity icosa-

hedron configuration with six extra actuated spring-cable as-

semblies.

tensegrity icosahedron tensegrity icosahedron

with payload

ReCTeR

payload

strutsshell spring-cable assemblies
payload spring-cable assemblies
ReCTeR actuated spring-cable assemblies

1m

Figure 5: The various tensegrity configurations used in this
paper. Left: tensegrity icosahedron with only outer shell mem-
bers. Center: tensegrity icosahedron with a payload by inner
elements. Right: ReCTeR configuration with passive outer
shell and actuated spring-cable assemblies.

III. Validation of Simulations

III.1 Experimental Setup

To track the full state of the robot, an active marker motion

capture setup was used. Passive struts were fitted with two

markers, active struts received three markers.

III.2 Kinematics

The forward kinematics of the Euler-Lagrange and NTRT

simulators were compared against motion capture data from

ReCTeR.

The six-strut ReCTeR robot was placed on one of its trian-

gular faces and two top spring-cable assemblies were actuated,

as shown in Figure 6. We tracked vertical displacement of an

end cap not directly actuated by one these two members. The

incident strut was suspended in air by a total of ten springs.

Lengths of the two actuated spring assemblies were var-

ied from the point of no tension in the given configuration

(slack) to 0.32m beyond this length. Each range was sampled

at ten equally spaced lengths, resulting in 100 measurement

positions. Ranges were manually tuned to maximally deform

the robot without causing it to roll. This experiment was re-

peated three times with no meaningful difference in observed

displacements.

The average observed difference between motion capture

data and the Euler-Lagrange simulator was 6.5mm. For NTRT,

we obtained an average error of 15mm (0.5% and 1.3% of

ReCTeR’s diameter).

III.3 Dynamics

Next, we compared dynamics of the NTRT simulator to

ReCTeR hardware. This experiment was designed for two

purposes: to first verify that the simulator can replicate ground

5



Design and Control of Compliant Tensegrity Robots • K. Caluwaerts et al. • J. R. Soc. Interface

Figure 6: Kinematic comparison of Euler-Lagrange and NTRT simulators and ReCTeR motion capture data. The top left plot
shows the experimental setup. The rest length of two actuated spring-cable assemblies (dashed lines) is modified. The full range
of tracked end-cap motion during the experiment is shown in light yellow (convex hull). The end caps indicated by small black
squares are on the ground. The three other plots show vertical displacement of the end cap indicated by the large black dot
in the top left plot as a function of the lengths of the two actuated cables. The end cap where we trace the displacement is not
directly actuated and is floating. The nodal displacement as a function of the actuator position is nonlinear, even for modest
displacements. Note that the left-most point (0.05,0.05,0) is the reference point; displacements are relative to this initial state.
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Figure 7: Comparing the dynamics of the robot and NTRT. The tensioned spring-cable assembly indicated by the dashed line is
released (0.32m to 0.535m at 0.6m/s), causing the robot to topple. Two other actuated members are also tensioned, while the
other three actuated springs are at their initial lengths, resulting in two slack springs. We observed a time-averaged error of the
end caps’ vertical positions of less than 5% of ReCTeR’s diameter for all end caps.

interactions; and second, that it can simulate conversion of

potential energy into kinematic energy when a spring is re-

leased. The experimental setup is shown in Figure 7. The robot

initially has a non-minimal ground contact (four end caps on

the ground instead of just three), and three actuated springs

are tensioned. Next, one of the tensioned, actuated springs is

loosened by its actuator, causing the robot to roll over.

Since the experiment also depends on ReCTeR’s initial state,

the observed initial state from the motion capture data was

copied to the NTRT simulator. The ReCTeR model in the

NTRT simulator was then released from this initial configura-

tion, allowing it to reach the simulated, predicted equilibrium.

Recorded motor positions from the physical test were then

applied into the simulator, causing a similar roll-over motion.

IV. Locomotion Control

Once it had been determined that the NTRT simulator modeled

these robotic dynamics reasonably well, locomotion experi-

ments were performed with tensegrity robots in both simulation

and hardware. The algorithms described in section IV.1 apply

to various configurations, but are presented here in simulation

for the first configuration, as shown in Figure 5 with 1.5 me-

ter rods, weighing 15kg. The controls in section IV.2 were

applied to simulations of the second configuration. Section

IV.3 presents hardware results on ReCTeR and a comparison

of those results to previously-simulated implementations. Ap-

pendix A provides a summary of the control methods in this

work and an overview of related work.

IV.1 Coevolutionary Control

The first control method from our group is based on coevolu-

tionary algorithms [25]. We demonstrated successful rolling

locomotion of a tensegrity icosahedron with this technique in

the NTRT [29]. In this scheme, each spring-cable assembly is

active and has a controller that evolves independently from the

other controllers (i.e., in independent pools), but cooperation

is used to optimize behavior of the entire robot. The objec-

tive function for this maximization was set to be ReCTeR’s

distance traveled during a fixed amount of time. The simplest

implementation of this technique is an optimization of open-

loop control signals that are only a function of time; sinusoidal

functions performed well.

After this method was explored, the effects of different com-

plexities and frequencies of these open-loop signals were ana-

lyzed. More precisely, we optimized step-wise functions with

varying numbers of via points. This enables the study of com-

putational load and scaling properties needed to estimate power

consumption of various controllers, as well as to investigate

effects of actuator failure. Figure 8 shows the learning curve

of this process. In this case, optimized rest length signals had

four via points. An analysis of practical aspects of these results

(power consumption, actuator failure, etc.) is under way.

While these open-loop controllers demonstrated basic
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rolling behavior, they commonly failed in the presence of

external forces or unexpected terrain conditions. To solve

this problem, we developed a simple rolling algorithm that

uses ground contact sensors located on the simulated end caps.

Preliminary results have shown steerable rolling on various

terrains.

This brief analysis of coevolutionary learning for icosahedral

tensegrity locomotion demonstrates that learning-based con-

trols can provide robust rolling locomotion without analytical

knowledge of the robot’s dynamics.
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Figure 8: Distance covered by the robot in 60s with distributed
learning of open-loop controllers based on coevolutionary
algorithms. Each of the 24 outer shell spring-cable assembly
controllers has a different evolution pool, but their combined
behavior is optimized.

IV.2 Bio-Inspired Control
In contrast to the direct learning technique presented above,

our second set of approaches is more designer-involved and

specific to this structure. State feedback was used to increase

rolling performance of the tensegrity robot with payload simu-

lated with the NTRT (Figure 5).

The idea behind these control laws is to create torque by

moving the robot’s center of mass with respect to ground con-

tact surface to cause the robot to roll, as illustrated in Figure 9.

This motion is achieved with a two-layer control architecture:

the robot’s heading and speed are controlled by displacement

of the central payload using the inner spring-cable assemblies,

and motion is simplified by actuating the outer shell.

Three control approaches test inner spring-cable assemblies:

reactive controls, Inverse Kinematics-based controls (IK), and

CPG-based controls. Outer spring-cable assemblies are con-

trolled with hand-tuning. Actuation of the outer shell reduces

ground contacts, not directly influencing heading or speed.

This affects motion in several ways. First, it allows for creation

of greater torques with the same payload displacement. Second,

it smoothens rolling behavior of the structure by preventing

discontinuities due to excessive ground contact.

For each control approach, inputs were taken as functions of

the robotic state. The height of each strut was computed using

simulated omnidirectional distance sensors located at the end

of each rod. The height assigned to each spring-cable assembly

Figure 9: Regular icosahedron tensegrity shape with central
payload (see Figure 5 center). The triangular contact surface
with the ground, highlighted in green, creates a reaction force
N that, at rest, balances the weight of the structure, represented
on the figure by the red arrow mg. Torque is created on the
whole structure when displacement of the center of mass from
its rest position occurs.

was computed as the average of the two end points’ height.

We understand that omnidirectional distance sensors can be

difficult to realize in hardware; it is not practical to rely on the

full state of the robot as input. However, multiple solutions to

this problem exist. An interesting approach is to embed ground

reaction-force sensors in a protective soft cap on each rod end.

A second possibility, motivated by the separation principle of

control theory [32], is to estimate system states from other

sources, such as accelerometer and gyroscope measurements.

This second approach could be augmented with the knowledge

that this icosahedron robot often rolls over an edge of a face

triangle [20]. Finally, one could use a CPG to emulate rhythmic

activation of sensors, similar to the approach in section IV.2.2.

The control for the outer-shell cables was designed to tighten

the bottom part of the structure when rolling, changing the lever

arms of the gravitational force from the robot’s center of mass,

requiring less force to induce a roll. Typically in the presence

of a slope, reduction of ground contact surface is sufficient

to cause a roll down the slope. In order to take this into ac-

count, we added a measure of speed, which is computed as

the dot product between the center-of-mass position and the

robot’s overall heading direction vector. With this method,

speed is a scalar number and its sign depends on the robot’s

heading(positive in the desired direction and negative other-

wise). Speed can then be used as feedback to influence the

spring actuator command. Rest lengths of the shell spring-

8
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cable assemblies are computed using the following actuation

rule:{
�̇i = ws

(
�0 + min(h2

i , h2
0)− �i

)
, speed ≥ 0

�̇i = ws
(
�̄− �i

)
, otherwise

(2)

where hi is the height of spring-cable assembly i as measured

from the distance sensors; �i is its current rest length; �0, h0,

and �̄ are constant parameters; and ws ∈ R+ accounts for

the time scale where length corrections occur. �0 and h0 rep-

resent the offset-rest length of the spring and the maximum

height measurement. The parameter �̄ represents the default

rest lengths of the springs that, if given as a command to all

motors, puts the tensegrity in a stable position on the ground.

Input and output parameters of this control law are updated

continuously through feedback control. Impedance control,

which was adapted to tensegrities previously [24, 33], is used

to modify spring-cable rest lengths.

IV.2.1 Reactive Controls

The first technique for actuation of inner payload spring-cable

assemblies was the use of reactive controllers.We note that the

only controllable parameter is cable length. The variables �i
here are the rest length of the inner springs. Global heading

direction in a chosen inertial reference frame is defined by the

unit vector v and the orientation of each spring in this same

reference frame, represented by the vector vi. For each inner
spring-cable assembly, we use the dot product di = v · vi as

feedback to control the position of the payload as follows:

�̇i = (�0 + diγ − ‖pi,0 − pi,1‖)wr (3)

�i(0) = �0 (4)

where the weight wr determines reactivity of the system and

γ < 0 is a fixed parameter. Thus, without any external pertur-

bation, the system has a stable equilibrium position at �0 + diγ.

Rest length of the spring-cable assemblies where the orienta-

tion aligns with the global heading is reduced. Vice-versa,

springs pointing in the opposite direction are elongated. The

global result is displacement of the payload in the direction

of the heading vector, as shown in Figure 10. Note that the

heading direction v can be chosen arbitrarily and adjusted dy-

namically. This method resulted in stable and smooth rolling

gaits, allowing a roll of up to 1m/s (≈1 body-length per sec-

ond) over flat terrain. The robot could also handle slopes up to

8◦, bumpy terrain, obstacles, and collisions.

The main disadvantage of the reactive method is the type

and amount of sensor feedback required to implement this

approach in hardware. This issue is addressed by the control

methods presented next, which are based on the same physical

principle but require less feedback information.
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Figure 10: Computation of new rest lengths according to
the spring-cable assemblies’ individual orientations �vi (time
t(n−1)). Length modification is indicated by colored lines,
dashed red if reduced and green if elongated. The resulting
effect is displacement of the central payload in the desired
direction �v (time t(n) = t(n−1) + dt).

IV.2.2 CPG Controls

CPGs have been successfully used in past tensegrity sys-

tems [23]. Such controls are a feasible alternative to reac-

tive controllers that enable generation of regular motion pat-

terns. For this control, full-state information is used to generate

smooth motion under reactive controls. Then, resulting peri-

odic commands were stored as a stable limit cycle of a CPG.

Once this process completes, the tensegrity can be driven by

CPG output with much less feedback. We used an adaptive

frequency Hopf oscillator [34] during the learning phase where

the tensegrity was reactively control-driven. The underlying

dynamical system reads:

u̇ = γ(μ − (u2 + g2))u − ωg + εb(t) (5)

ġ = γ(μ − (u2 + g2))g + ωu (6)

ω̇ = −εb(t)
g

u2 + g2 (7)

where u, g, and ω are state variables of the dynamical system,

γ is a time constant, μ is the target frequency, and ω the target

pulsation of the signal. Note the element and time indices

are dropped to simplify notation: u designates ui(t), with

i the index of the spring-cable assembly. The output u can

synchronize to any periodic input signal b(t) and replaces the

feedback signal from the previous section.

di(t) = ui(t). (8)

Once the signal is learned, time dependency of the pulsation

is removed, i.e., ω is held constant and a term accounting for

ground-contact coupling is added to the dynamical system:

u̇ = γ(μ − (u2 + g2))u − ωg − ηh(t) (9)

ġ = γ(μ − (u2 + g2))g + ωu (10)

ω̇ = 0 (11)

9
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where h(t) denotes the height signal fed back by the omnidi-

rectional ranging sensors and η ∈ R+ is a coefficient. This

method has the advantage of requiring minimal feedback and

thus, minimal computations. However, it is important to note

that the dynamical system runs on a much larger time scale

than perturbations disturbing the system. A tensegrity driven

only by a CPG would then, in the best case, only have a stable

rolling gait on a flat, obstacle-free terrain. Consequently, it is

necessary to include a second control method that works on

this smaller time scale and gives an appropriate response to

external perturbations.

IV.2.3 Hybrid CPG - Inverse Kinematics Controls

The final control method we tested is a hybrid technique with

inverse kinematics. First, the position of the central payload

p =
(

px, py, pz
)

is defined as a function of the inner cable

lengths � = (�1, ..., �n). We can write this as a small displace-

ment δp of the payload:

δpi ≈ pi(�
(0)) +

n

∑
j=1

∂pi(�
(0))

∂�j
δ�j

+
1
2

n

∑
j=1

n

∑
k=1

∂2 pi(�
(0))

∂�j∂�k
δ�jδ�k (12)

or

δpi ≈ pi(�
(0)) +

(
J(p(0))δ�

)
i

+
1
2

δ�T H
(

pi(�
(0))

)
δ� (13)

for i ∈ {x, y, z} and where H(pi) =

[
∂2 pi

∂�j∂�k

]
jk

is the

Hessian matrix associated with pi and J = [∂pi/∂lj]ij.

Considering Eq. 13, we additionally define Δp = δp −
p(�(0)) and f(δ�; Δp) as

fi(δ�; Δp) =
(

J(p(0))δ�
)

i
+

1
2

δ�T H
(

pi(�
(0))

)
δ�− Δpi.

(14)

Computation of the spring-cable rest length changes δ� for a

desired payload displacement Δp corresponds to finding the δ�
that cause f = 0. Since this last equation is over-determined,

nonlinear, and might not possess a real solution, we employed a

quasi-Newtonian iterative method to approximate the solution.

Starting from a candidate solution, e.g., δ�0 = 0, the next

iteration is computed as:

δ�k+1 = δ�k − J−1
k f(δ�k; Δp) (15)

until convergence. J−1 here denotes the Moore-Penrose

reactive CPG Hybrid
average speed [m/s] 1.00 0.50 0.38

complex terrain Yes No No

Table 1: Bio-inspired control strategies summary

pseudo-inverse of the Jacobian defined by:

J =

[
∂ fi

∂(δ�j)

]
ij

. (16)

Note that this matrix is not the same as the one in the Taylor

expansion of p(�).
The outputs of the IK algorithm ξ = δ�∞ (where ∞ indi-

cates convergence) represent length corrections that have to

be made to reposition the payload at the desired location. The

outputs ξ can be used together with the adaptive frequency

oscillator as presented in section IV.2.2. This approach is in-

spired by two previous works by Ajallooeian et al. [35] and

Gay et al. [36]. We update ξ if and only if the payload position

lies on the opposite side of the robot’s center of mass, and

we continuously adjust ξ with time according to the following

evolution rule:
d
dt

ξ(t) = −αξ(t) (17)

with α ∈ R+. In this way, corrections are made only if the

tensegrity can potentially roll in an undesired direction. Note

also that in order to use this method, both the position of the

payload and the center of mass are required inputs. Combining

a corrective term with the output of the oscillator, the resulting

dynamical system reads:

u̇ = γ(μ − (u2 + g2))(u − ξ(t))− ωg − ηh(t) (18)

ġ = γ(μ − (u2 + g2))g + ω(u − ξ(t)), (19)

If the value of ξ(t) is constant over time, the dynamical system

converges asymptotically to u(t) = ξ [36]. While the pure

CPG implementation does not allow any steering control, this

implementation enables guidance on a desired trajectory on

flat terrain (see Figure 11).

Table 1 provides a summary of results obtained with differ-

ent control strategies over regular, flat terrain.

Note that results do not take the trajectory of the path into

account and, consequently, even if the distance traveled using

the CPG controller without any trajectory control is larger than

with hybrid control, the "quality" of the path is worse (e.g.,

see Figure 11). Interestingly, we observe the stable gait pat-

tern obtained in simulation is a sequence of contacts defined

as energetically optimal by Koizumi et al. [20] for a tenseg-

rity icosahedron. With the current implementation, only the

reactive controller manages to induce rolling efficiently over

10
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Figure 11: Trajectory of the tensegrity (top view). The black
curve represents the trajectory while the robot is driven by
the reactive control algorithm and the CPG is in the learning
mode (50s). Motion is regular and the heading is maintained
throughout the entire period. Yellow and red trajectories repre-
sent the path traveled once the CPG controller takes over (40s).
When the CPG is coupled to the height signal and receives in-
puts from the second-order inverse kinematics algorithm (red
curve), the resulting trajectory is a long and relatively straight
line extending well the reactive control.

complex terrain and obstacles. To the best of our knowledge,

this last result is the only implementation of a tensegrity robot

controller demonstrating such capabilities. Figure 12 presents

such results from within the NTRT simulator.

Experimentation demonstrated that the hybrid controller’s

performance is highly sensitive to some parameters appearing

in the CPG equations, such as the ones presented in Eq. 18

and 19. As a result, future work will incorporate other methods

to optimize feedback data and compute corrections to more

accurately navigate complex environments. A good exam-

ple of such an improvement can be found in Gay et al. [37],

where sensory information is preprocessed by a neural network

and trained using particle-swarm optimization methods before

being fed back to the CPG. In the same idea, Reservoir Com-

puting can also be a suitable tool for feedback computation, as

detailed in the following section.

IV.3 Learning a Matsuoka Oscillator With
Physical Reservoir Computing

This section presents the final controls results of this work: an

implementation of the Physical Reservoir Computing (PRC)

principle on the ReCTeR hardware prototype. These results val-

idate use of the NTRT in an untethered, underactuated feedback

control of tensegrity icosahedra with string force sensors [38,

section 5.1.1]. Here, closed-loop feedback control is used

when motor signals are generated by a Matsuoka oscillator.

This demonstrates a successful adaptation of our simulation

results to a physical platform (ReCTeR), with similar learning

Figure 12: Examples of successful locomotion over complex
terrains, such as slopes, bumps and obstacles

times and robustness.

A static linear feedback controller is designed, which ro-

bustly generates a set of desired oscillatory motor signals after

a short learning phase. For this experiment, the target spring-

cable rest lengths (�i) are generated using a random Matsuoka

oscillator [39] (see [38, section 3.1] for oscillator parameters

and motivation). These signals represent desired actuator sig-

nals. We manually scaled target signals so that the resulting

behavior corresponds to a motion pattern with large shape

deformations while keeping the physical structure from mov-

ing too fast (as this impeded motion tracking). The resulting

gait was a slow crawling motion that allowed motion-capture

tracking of the full experiment.

The algorithm proceeds by first applying target rest lengths

to actuators in an open-loop setup, inducing the robot to start

moving. Next, online learning is applied to approximate de-

sired signals based on sensor readings. These approximations

are the feedback signals. The ratio of open-loop versus feed-

back signals is gradually decreased until signals are generated

by the feedback loop alone. At this point, the robot will ro-

bustly maintain oscillatory patterns. The precise equations and

parameters used in the experiment are provided in [38] and the

supplementary material.

In our prior simulation work, we used the term PRC to

describe how nonlinear computations, which are inherently

performed by a physical system, can be easily exploited to

simplify control of tensegrities [38]. PRC extends the Reser-

voir Computing (RC) concept that, at its origin, is a simple
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technique to train recurrent neural networks [40, 41]. The com-

mon idea is that a system with complex dynamics is perturbed

externally, but is otherwise left untouched. Instead, a simple

readout mechanism is trained to perform the desired computa-

tional task. A number of related demonstrations have recently

appeared in the soft robotics fields, e.g., RC applied to a soft,

simulated octopus arm [42, 43].

Controller feedback signals are obtained from ReCTeR’s 24

force transducers. Since these sensors are mounted perpendicu-

larly to the robot’s struts, output values depend on the angle of

attack and tension of the attached spring-cable assembly. Thus,

the sensors provide a readout of the robot’s state, similar to

state observations in RC. The robot’s behavior was evaluated

using the motion capture setup described in section III.1.

Figure 13 shows the result of an experiment where we first

outsourced motor-signal generation to the feedback loop by

online learning of the feedback weights. After training, we

disturbed the system (lifting and constraining the robot). In this

case, the robot stops moving and switches back to its original

oscillatory mode when released, demonstrating robustness of

the learned feedback controller, corresponding to our simula-

tion results.

This experiment is a first demonstration of a simple, robust

feedback control strategy implemented in both hardware and

simulation for this class of untethered tensegrity robots. Ad-

ditionally, this result shows the usefulness of tension sensors

for tensegrity control. These PRC experiments are part of a

continuous effort to develop low-level controllers for compli-

ant robots that maximally exploit the robots’ proper dynamics,

and that allow mitigation of stringent sensor requirements. We

discussed many variations and extensions on the hardware

experiment presented here in our prior simulation work [38].

V. Future Work

Current prototype hardware allows for multiple verification

levels of NTRT simulations. However, a more capable robot

design is required to implement fully dynamic controls from

the CPG systems and related work. ReCTeR has a maximum

tension-force limit in its cables, as well as with the number

of cables actuated. We are currently working on a redesigned

six-strut robot with twice the number of actuators, with torque

and velocity capabilities an order of magnitude higher than

ReCTeR [44]. This robot will be able to implement the more

advanced control schemes described in this paper. Design of

this new robot will also target payload protection, a crucial

feature for space exploration.

On the control side, one of our future goals is further inte-

gration of CPG and RC approaches, to maximally exploit the

advantages of both.

VI. Conclusion

Tensegrity is a curious design concept, spanning art, science,

and biology. This work presented the tensegrity workflow de-

veloped at the NASA Ames Research Center. Our simulator se-

tups were described and demonstrated, and a new, highly com-

pliant, untethered tensegrity robot - ReCTeR - was used to vali-

date simulator setups in both dynamic and kinematic situations.

Next, various control strategies were presented, based on evo-

lutionary algorithms and CPGs, and a feedback controller was

implemented on the hardware platform to demonstrate sensor

capabilities. The biologically-inspired control approaches we

are exploring appear naturally suited for biologically-inspired

tensegrity structures, due to their matching nonlinear and oscil-

latory qualities.

An important aspect of this work is the creation of an Open

Source simulation environment (the NTRT) for tensegrity-

based mobility and manipulation controls research that has

now been validated against hardware. This simulation environ-

ment enables us to develop an understanding of the structure

and qualities of successful control approaches. Using evolu-

tionary exploration of parameters for different structural and

biologically-inspired control approaches, this system can be

used to develop performance-driven hardware requirements,

such as the forces experienced in the rods, speed and torque

requirements for actuators, elasticity constants for springs, and

sensor requirements and placements. Developing the right

toolset and design workflow enables progress beyond tenseg-

rity robots that merely move, and into a realm where tensegrity

systems purposefully interact with the environment and execute

tasks.
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strain-gauge sensors. The top left plot shows the fraction of feedforward versus feedback control. During learning, both feedback
and feedforward controllers (training signals) are active. The influence of the open-loop feedforward controller decreases, and
when its fraction is below 0.2, learning stops and only the trained feedback controller is active. The left plot on the second row
shows vertical coordinates (in mm) of the four end caps with the largest vertical displacements as a function of time. The five
surrounding plots are details of this plot, showing different training and testing phases. A) Fully open-loop control. B) Switch
from partially open-loop and feedback control to full feedback control, learning stops. C) We perturb the robot by pushing it
down, preventing all movements. D) The feedback controller recovers after the robot was lifted from the ground. E) Behavior of
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13



Design and Control of Compliant Tensegrity Robots • K. Caluwaerts et al. • J. R. Soc. Interface

controller type main features type of locomotion

robot HW/SIM loop actuators sensors references

motion capture experiments untethered, underactuated control, and simulator validation rolling, single flop, forward kinematics

ReCTeR HW & SIM open 6 (motion capture) Section III

reactive controller with coevolution robust feedback controller with minimal assumptions steerable rolling over unknown terrain

icosahedron with/without payload SIM closed 24 touch sensors [45] & Section IV.1

Bio-inspired strategies (CPG) robust and bioinspired steerable rolling over unknown terrain

icosahedron with payload SIM closed 36 distance sensors Section IV.2

physical reservoir computing robust controller with uncalibrated sensors, link with CPGs crawling (HW), various (SIM)

ReCTeR (HW), icosahedron (SIM) HW & SIM closed 6 (HW), variable (SIM) tension sensors [38] & Section IV.3

sine waves with coevolution simple, distributed implementation forward rolling on flat terrain

icosahedron with/without payload SIM open 24/36 - [29]

stepwise functions with coevolution HW constraints and power consumption information forward rolling

icosahedron with/without payload SIM open 24 - Section IV.1

morphological communication communication through body dynamics, distributed control crawling like

15 bar tensegrity tower SIM closed 30 tension sensors [27]

genetic algorithms first dynamic locomotion crawling

3 and 4 bar prisms SIM open 9/12 - [1]

pneumatic actuators insightful control, original hardware implementation rolling

icosahedron with pneumatic actuators HW open 24 - [19, 20]

feedback non-linear control control theory approach position/trajectory control

any tensegrity SIM closed all full state [15]

vibration driven cheap hardware, exploits body dynamics various

various HW open 1 - [46]

kinematic controllers tested on HW platforms and well studied none

various (constrained) HW & SIM both variable - [47, 48]

CPG resonance entrainment demonstration of HW CPG control none

class two tensegrity beam HW & SIM both 2 linear actuators tension & position [23]

Table 2: Overview of various types of controllers for tensegrity robots and our experiments.
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A. Tensegrity Control Methods
Overview

Table 2 provides an overview of various control methods for

tensegrity structures. We list their main features and the type

of locomotion.
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