NASA Space Rocket Logistics Challenges

Chris Bramon, Presenter; James R. Neeley, James V. Jones, Dr. Michael D. Watson, Sharon K. Inman, Loraine Tuttle; NASA Marshall Space Flight Center/EO and Kennedy Space Center/GP

SpaceOps2014, May 5-9, 2014, Pasadena, California, USA
Abstract

- The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2017.
- SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges.
- This presentation will address the SLS challenges, along with the analysis and decisions to mitigate the threats posed by each.
Design Architecture
Traditional Approach for “Logistics”

- Concepts and processes of Integrated Logistics Support (ILS) provide a significant opportunity to minimize life cycle cost of ownership of a system.

- Traditional application of ILS during the design, development, test and evaluation (DDT&E) of a system typically consists of two different, but highly related processes:
 - Designing a supportable system.
 - Developing a reasonable, responsive and cost effective support solution.
ILS During System Development

Integrated Logistics Support

Supportability Analysis

Focus on:
- Design Characteristics
- Testability
- Reliability
- Accessibility
- Maintainability
- Standardization
- Human Factors
- Obsolescence

Create a better design solution

Create a cost effective support solution

Minimize Cost of Ownership

Maintenance Task Analysis

Focus on:
- Support Solution
 - Personnel
 - Facilities
 - Support Equipment
 - Transportation
 - Supply Support
 - Technical
 - Documentation
 - Training
Tailoring ILS

- A simple comparison of traditional ILS concepts and processes with the unique circumstances of the SLS Program (SLSP) indicates that application of ILS must be drastically different to be effective.
- SLSP is performing a comprehensive, but non-traditional ILS program that will contribute to the program goals.
- Specific details of SLS challenges and ILS tailoring are addressed in the remaining charts.
Supply Chain Impacts Due to Multiple Projects, Contractors, and Vendors
NASA SLS Common Challenges and Threats

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Threat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration of multiple geographically separated programs</td>
<td>Stakeholder communication, conflicting schedules, lack of commonality, gaps in</td>
</tr>
<tr>
<td></td>
<td>requirements and funding</td>
</tr>
<tr>
<td>Integration of multiple geographically separated projects within a program</td>
<td>Stakeholder communication, conflicting & complex schedules, lack of commonality,</td>
</tr>
<tr>
<td>and multiple contactors</td>
<td>gaps in requirements, different goals, lack of flowed down requirements</td>
</tr>
<tr>
<td>Funding constraints</td>
<td>Increased risk</td>
</tr>
</tbody>
</table>
NASA SLS Unique Challenges and Threats

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Threat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low manifest rates and frequencies (Up to four years apart)</td>
<td>Costly logistics solutions, increased risk for availability of skilled personnel resources</td>
</tr>
<tr>
<td>Architecture Block upgrade approach</td>
<td>Delay for operational phase, increased cost for changing support solutions: LSA, resources, sparing philosophy</td>
</tr>
<tr>
<td>Mixed new and heritage hardware</td>
<td>Obsolescence, parts marking, commonality</td>
</tr>
<tr>
<td>Multiple projects (elements) with individual milestone reviews</td>
<td>Limited personnel resources, design interface issues</td>
</tr>
<tr>
<td>Dictated flat funding constraints, no inflation allowed</td>
<td>Increased risk for adequate logistics support</td>
</tr>
</tbody>
</table>
NASA SLS Common Threats and Analysis

<table>
<thead>
<tr>
<th>Threat</th>
<th>Analysis/Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Programs: Stakeholder communication, conflicting schedules, lack of commonality, gaps in funding.</td>
<td>Cross-Program Logistics Integration Team (LIT) established to provide communication and work concerns/issues.</td>
</tr>
<tr>
<td>Multiple Projects: Stakeholder communication, conflicting schedules, lack of commonality.</td>
<td>SLSP ILS Team established for integration of Elements’ schedules, data, and analysis.</td>
</tr>
<tr>
<td>Multiple prime contractors: Different goals, lack of flowed down requirements.</td>
<td>Contractors included in SLSP ILS Team activities, tailored Data Requirements Descriptions (DRDs) implemented.</td>
</tr>
<tr>
<td>Schedules: Conflicts, complexity.</td>
<td>SLS Integrated Master Schedule (IMS) established with inter-relationships. Logistics Support Date (LSD) concept implemented.</td>
</tr>
<tr>
<td>Funding: Increased risk.</td>
<td>Implemented engineering bottoms-up life cycle cost (LCC) and identified program risks for mitigation.</td>
</tr>
<tr>
<td>Threat</td>
<td>Analysis/Activities</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Low manifest rates: Costly logistics solutions, increased risk for</td>
<td>Minimal approach for first two flights (2017 & 2021). Phased approach for 30-year</td>
</tr>
<tr>
<td>availability of skilled personnel resources.</td>
<td>life cycle integrated logistics.</td>
</tr>
<tr>
<td>Block upgrade approach: Delay for operational phase, increased cost</td>
<td>Risk assessments.</td>
</tr>
<tr>
<td>for changing support solutions: LSA, resources, sparing philosophy.</td>
<td></td>
</tr>
<tr>
<td>Hardware: Obsolescence, parts marking, commonality.</td>
<td>Materials assessment, sustaining engineering planning.</td>
</tr>
<tr>
<td>Milestone reviews: Individual project element reviews, limited</td>
<td>Integrated reviews. Element supportability reviews.</td>
</tr>
<tr>
<td>personnel resources, design interface issues.</td>
<td></td>
</tr>
<tr>
<td>Funding: Increased risk for adequate logistics support.</td>
<td>Identification of budget risks.</td>
</tr>
</tbody>
</table>
Element Analysis Types and Data

• SLS Program Data Requirements Description (DRD) for “Element Logistics Support Data”:
 - Maintenance Significant Items (MSI)
 - Provisioning Requirements
 - Long Lead Items, Interim Support Items
 - Line Replaceable Units (LRUs)
 - Maintenance Task Analysis (MTA)
 - Level of Repair Analysis (LORA)
 - Logistics Support Resources
Lessons Learned from Ares 1-X

- Supply chain responsibilities not clear between contracts.
- Supply Support process issues.
 - Material quantities uncertain, real time demands constant.
 - No processes ready to transfer material between programs.
 - Inventory management was resource intensive: multiple databases, no accountability identified for parts.
- Material distribution issues.
 - Mystery shipments caused delays, processing received expedited shipments time-consuming and degraded intent.
- Receiving inspection issues, confusion over requirements.
Applying Lessons Learned

• Progress has been made to apply several Lessons Learned from Space Shuttle, Constellation Ares/Ares 1-X, and Space Station.
 - Established an engineering bottoms-up Life Cycle Cost capability.
 - Established a Program ILS Team that includes Elements, contractors, and collaboration with launch site.

• Cross-Program Logistics Integration Team (LIT) includes the three NASA Exploration Programs.
Applying Lessons Learned (continued)

- Reliability, Availability, Maintainability, Supportability. Cost, and Testability considered.
- LRU remove and replace analysis.
- Collaboration on-going with launch site for streamlined shipping and receiving processes, common warehouse, and improved inventory management.
- Flight and ground hardware transfer points, processes, and procedures being addressed.
- Launch processing requirements for materials, fluids, etc., being worked, to include plans to fund the launch site to provide these items.
Applying Lessons Learned (continued)

- Clarifying Supply Chain Management (SCM), subject matter expert study in-progress.
- Commonality (Standardization) included as evolving consideration for materials and parts.
- Supportability Engineering exists as a discipline of Systems Engineering and Integration (SE&I) at Program level.
- Sustaining Engineering part of early planning.
- Maintenance planning and analysis included.
- Technical Performance Metrics (TPMs) include Launch Availability and Maintenance Down Time.
Initiatives

- Established and implemented SLSP ILS Team, includes Elements and contractors.
- Performed Program supportability assessments of Elements’ ILS and LSA plans and execution.
- Established PowerLOG-J as common LSA Record (LSAR) database with launch site.
- Modification of existing water barge for large item transport, avoidance of major new design effort.
Initiatives (continued)

- Supportability applied to Ground Support Equipment (GSE) along with flight hardware.
- Proposed efforts to evolve current integrated vehicle fault management (IVFM) model capability to include isolation capability to ambiguity group of 4-5 LRUs.
- Logistics Support Date (LSD) approach that addresses readiness of support infrastructure.
Decisions - Drivers

- Policy Drivers
 - Maximize use of contractor Best Practices.
 - Limited Program-imposed management and control plans.
 - Architecture Block upgrade approach.
 - SE&I Program Oversight and Insight with Elements.
- Key target is initial launch in December, 2017.
- Risk-based approach to affordability.
Decisions (continued)

- **Process tailoring**
 - Ensure the vehicle support infrastructure is adequate, has everything we need….nothing we don’t.
 - Ensure the design is successful within cost constraints.
 - Integrate ILS efforts across the Elements for support of vehicle assembly and integration activities.
 - Perform Logistics Support Analysis (LSA) under systems engineering to integrate an economical support approach.
Decisions (continued) for SLS Supportability Implementation
Decisions (continued)

- **SLSP ILS Team Insight and Oversight**
 - Functional team within the SE&I Operations Discipline Lead Engineering (ODLE) organization.
 - Includes capability to perform integration analysis and collaboration with the SLS Elements and launch site

- **SLSP LSD is April 15, 2017.**
- **Identify and mitigate risks for Block 1.**
- **Implement life-cycle logistics support.**
Conclusion

- SLSP is applying modified traditional and innovative concepts for supportability and logistics engineering.
- SLSP is applying lessons learned where possible.
- Path Forward:

 Ensure hardware availability for the first two test-oriented flights in 2017 and 2021 and work toward design-in-supportability and ILS for maturing designs for a thirty-year program.