Launch Vehicle Production and Operations Cost Metrics

Dr. Michael D. Watson
NASA Marshall Space Flight Center
Jim Neeley and Ruby Blackburn
Jacobs ESSSA Group
Traditional Cost Metrics

• Cost per Mass
 – Assumes 100% payload mass capacity utilized
 – Must have a common reference orbit
 • Altitude and Inclination

 – Examples:
 • Delta IV Medium
 – (1030 kg, GEO: 0 deg at 35,786 km circular)
 – (4210 kg, GTO: 27.0 deg at 35,786 km x 185 km)
 – (9190 kg, LEO: 28.7 deg at 200 km circular)
 – (8510 kg, LEO ISS: 51.6 deg at 407 km circular)
 – (7690 kg, LEO Polar: 90 deg at 200 km circular)

 • Atlas V 501
 – (3780 kg, GTO: 27.0 deg at 35,786 km x 185 km)
 – (8210 kg, LEO: 28.7 deg at 200 km circular)
 – (7540 kg, LEO ISS: 51.6 deg at 407 km circular)
 – (6770 kg, LEO Polar: 90 deg at 200 km circular)

 • Falcon 9
 – $4296/kg ($56.5M/13,150 kg, 28.5 deg inclination to LEO)
 – $11,649/kg ($56.5M/4,850 kg, 27.0 deg inclination to GEO)
Work Breakdown Structure (WBS)
- Labor Cost View
 - Tasks across all vehicles
 - Manufacturing Base embedded
 - Unit Cost not visible

Product Breakdown Structure (PBS)
- Unit Cost View
 - Cost per unit
 - Manufacturing Base Separate
 - Labor tasks may span multiple products
Life Cycle Costs

• Add costs of Development Phase and Production and Operations Phase

• Advantages
 – Full life of the program view

• Limitations
 – Must assume program duration
 • P&O costs are weighted more heavily the longer the program duration extends after development
 – Shuttle anticipated 10 years of operations, achieved 30 years
 – B-52 projected to be operational for almost 100 years at end of life
 – Greatly skews results
 – Funding is done on annual basis, not on a lifetime basis
 • U.S. Government Space programs are funded annually
 • Corporations report annual earnings, not life cycle earnings
Cost Drivers

♦ Development Testing
 • Primary cost driver in the Development phase
 – Driven by prototype production
 – Test facility costs

♦ Manufacturing Base
 • Maintenance of
 – equipment and facilities
 – training and retention of the workforce
 – retained viability during any low launch periods

♦ Manufacturing processes
 • labor required to operate and maintain the equipment
 • Material costs are not generally substantial compared to labor cost
Cost Drivers

♦ Launch Site Base Operations
 • Maintenance of
 – servicing facilities
 – launch pad services
 – launch towers
 – consumables (i.e., fuel and oxidizer)
 – control center
 • 20 – 35% of the annual launch vehicle program costs

♦ Learning Curve
 • Reduction in production and launch site operation costs as experience gained in production, assembly, launch of launch vehicle

♦ Inflation Rate
 • Varies with economy
 • Significant over time
Annual Production and Operations Cost

- Provides the annual cost of all production costs and operations costs
- Based on unit cost
 - Constant cost independent of payload mass or orbit achieved
- Production
 - Manufacturing costs for each unit leading to unit delivery
- Operations
 - Post manufacturing unit costs
 - Green run testing
 - Shipping
 - Assembly
 - Launch

- Learning curve sources are visible in production and operations
- Inflation rate is visible on P&O costs, manufacturing base, and launch site base operations
• Includes fixed costs (Manufacturing Base and Launch Site Base Operations)
 – Separately identifiable
 – Fixed costs are generally independent of flight rate with the following exceptions
 • Flight rate << production/operations capacity leads to higher fixed costs to maintain unused facilities and equipment
 – Idle systems experience freeze up, lose calibration, increased corrosion, and soft goods expiration
 – Failures due to these cases are not often detected until manufacturing and operations restart
 – If capacity is leased out, the leased uses affect machine wear and life.
 – Low utilization of workforce tends to lead to many continuous improvement ideas for production and operation performance
 – Increased cost of upgrade and modifications
 • Flight rate >> production/operations capacity leads to higher fixed costs to expand facilities and equipment to meet flight rate
 – Added production lines
 – Storage facilities to allow lower rate lines build ahead and store for higher flight rates

100% efficient
variable cost

Fixed Cost

75% efficient
variable cost

Fixed Cost
Manufacturing Base and Launch Operations maintenance costs provide partial unit cost capability

- Varies by manufacturing and launch site
- Overlap defined by comparing unit cost to base cost
 - Effort to produce unit assigned as part of unit cost
 - Effort to maintain facilities and equipment assigned to base cost
 - If a production lapse occurs, all costs revert to base case
 - Transition is accounted for as production stop and restart costs
Unit Cost

Advantages
- Calculates cost of a single unit
- Constant cost independent of payload mass or orbit achieved
- Metric compares actual unit cost to planned unit cost
- Includes all costs associated with vehicle production and launch
 - Production
 - Manufacturing costs for each unit leading to unit delivery
 - Operations
 - Post manufacturing unit costs
 - Green run testing
 - Shipping
 - Assembly
 - Launch

Limitations
- Manufacturing base and launch site base operations are not accounted
- Can be amortized but varies greatly with launch rate fluctuations
 - Extreme low actual flight rates from planned flight rates eliminate this as a useful metric
 - Shuttle had early estimates of 50-150 flights per year, and averaged 5
 - Learning curve and Inflation causes unit cost to be a variable
 - Must be accommodated for when using unit cost
$/lb, $/Kg, (€/Kg) to orbit

• Traditional Metric

• Metric is an idealistic optimum
 – Rarely, if ever, do vehicles carry the maximum mass to orbit
 – Orbits very greatly with missions
 • GEO: 0 deg at 35,786 km circular
 • GTO: 27.0 deg at 35,786 km x 185 km
 • LEO: 28.7 deg at 200 km circular
 • LEO ISS: 51.6 deg at 407 km circular
 • LEO Polar: 90 deg at 200 km circular
 • Reference: ULA Atlas and Delta Product Card, March 2013

• Launch Vehicle costs vary directly with launch vehicle mass between launch vehicle classes and inversely within a specific class of launch vehicle
 – Simpler manufacturing costs, more economic materials, are generally higher mass solutions at lower cost
Cost Metrics

♦ $/lb, $/Kg, (€/Kg) to orbit
 • Manufacturing base, launch site base operations are amortized (over an assumed program duration and flight rate) and are very uncertain

 • Learning curve and inflation rate are not visible (would need to be averaged over assumed program duration)

 • Scaling in the cost/mass calculation lead to a sensitivity reduction of 4 or 5 magnitudes
 – Very small variations represent significant cost changes

 • The large number of assumptions required make this metric very uncertain
COST METRICS

Options

<table>
<thead>
<tr>
<th></th>
<th>1 Budget Baseline vs P&O Cost Model</th>
<th>2 Unit Cost Goal vs Model Unit Cost</th>
<th>3 $/# to LEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Curve</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Inflation</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Curve & Inflation</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mnfg/Ops Base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o Mnfg/Ops Base</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparison Sensitivities

<table>
<thead>
<tr>
<th>Sensitive to all Cost Factors</th>
<th>Not Sensitive to</th>
<th>Based on Total Mass to Orbit Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Budget Inflation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mnfg/Ops Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Sensitive to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Budget Inflation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Manufacturing/Oper.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weakly Sensitive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Learning Curve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Big Changes on Cost Make Small Changes in Metric</td>
<td></td>
</tr>
</tbody>
</table>
WBS vs. PBS
- Both breakdown structures are useful to manage programs
- PBS provides basis for unit costs necessary in metrics

Life Cycle Costs
- Requires assumption on program duration

Cost Drivers
- Development Testing
 - Major cost during development relying on early P&O capabilities
- Manufacturing Base and Launch Site Base Operations
 - Significant costs during P&O
- Learning Curve
- Inflation Rate

Cost Metrics
- Cost/Mass to orbit
 - Traditional
 - Requires assumptions on flight rate, 100% payload mass, orbit, program duration
 - Inherent scaling makes metric weakly sensitive to major changes
 - Large uncertainty
- Unit Cost
 - Relative measure to planned cost
 - Insensitive to manufacturing base and launch site base operations costs
- Annual Production and Operation Costs
 - Direct measure of actual costs
 - Not dependent on program duration assumptions
 - Sensitive to all major cost drivers