
Towards Real-time, On-board, Hardware-supported Sensor and
Software Health Management for Unmanned Aerial Systems

Johann Schumann1, Kristin Y. Rozier2, Thomas Reinbacher3, Ole J. Mengshoel4, Timmy Mbaya5, and Corey Ippolito6

1 SGT, Inc., NASA Ames Research Center, Moffett Field, CA 94035, USA

johann.m.schumann@nasa.gov

2,6 NASA Ames Research Center, Moffett Field, CA 94035, USA

Kristin.Y.Rozier@nasa.gov

corey.ippolito@nasa.gov

3 Vienna University of Technology, Treitlstrasse 3, 1040 Wien, Austria

treinbacher@ecs.tuwien.ac.at

4 Carnegie Mellon University, Moffett Field, CA 94035, USA

ole.mengshoel@sv.cmu.edu

5 University of Southern California, Los Angeles, CA 90033, USA

mbaya@usc.edu

ABSTRACT

Unmanned aerial systems (UASs) can only be deployed if

they can effectively complete their missions and respond to

failures and uncertain environmental conditions while main-

taining safety with respect to other aircraft as well as hu-

mans and property on the ground. In this paper, we design

a real-time, on-board system health management (SHM) ca-

pability to continuously monitor sensors, software, and hard-

ware components for detection and diagnosis of failures and

violations of safety or performance rules during the flight

of a UAS. Our approach to SHM is three-pronged, provid-

ing: (1) real-time monitoring of sensor and/or software sig-

nals; (2) signal analysis, preprocessing, and advanced on-

the-fly temporal and Bayesian probabilistic fault diagnosis;

(3) an unobtrusive, lightweight, read-only, low-power real-

ization using Field Programmable Gate Arrays (FPGAs) that

avoids overburdening limited computing resources or cost-

ly re-certification of flight software due to instrumentation.

Johann Schumann et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 United States License, which

permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

Our implementation provides a novel approach of combin-

ing modular building blocks, integrating responsive runtime

monitoring of temporal logic system safety requirements with

model-based diagnosis and Bayesian network-based proba-

bilistic analysis. We demonstrate this approach using actual

data from the NASA Swift UAS, an experimental all-electric

aircraft.

1. INTRODUCTION

Modern unmanned aerial systems (UASs) are highly com-

plex pieces of machinery combining mechanical and electri-

cal subsystems with complex software systems and controls,

such as the autopilot. Rigorous requirements for safety, both

in the air and on the ground, must be met so as to avoid endan-

gering other aircraft, people, or property. Even after thor-

ough pre-flight certification, mission-time diagnostics and

prognostics capabilities are required to react to unforesee-

able events during operation. In case of problems and faults

in components, sensors, or the flight software, the on-board

diagnosis capability must be able to detect and diagnose the

failure(s) and respond in a timely manner, possibly by trigger-

ing mitigation actions. These actions can range from a simple

1

Annual Conference of the Prognostics and Health Management Society 2013

mode change to following a pre-programmed flight path (in

case of minor problems, such as a lost communications link)

to a controlled emergency landing in a remote and safe area

(in case of more severe problems).

Most current UAS systems, however, only have very rudi-

mentary fault detection systems. There is a need for advanced

health management systems that, in case of anomalies, can

quickly and reliably pinpoint failures, carry out accurate diag-

nosis of unexpected scenarios, and, based upon the deter-

mined root causes, make informed decisions that maximize

capabilities to meet mission objectives while maintaining

safety requirements and avoiding safety hazards.

In this paper, we describe a novel framework for the design

and realization of a powerful, real-time, on-board sensor and

software health management system that can (a) dynamically

monitor a multitude of sensor and software signals; (b) per-

form substantial reasoning for fault diagnosis; and (c) avoid

interfering in any way with the flight software or hardware or

impeding on scarce on-board computing resources.

To this end, we have developed a three-pronged approach that

combines the capabilities of temporal logic runtime moni-

tors, model-based analysis, and powerful probabilistic rea-

soning using Bayesian networks (BNs) (Pearl, 1988; Dar-

wiche, 2009). Models are designed using a number of dif-

ferent building blocks for advanced temporal monitoring,

model-based filtering, signal processing, prognostics, and

Bayesian reasoning. Figure 1 shows a high-level represen-

tation of such a model. In this example, raw sensor or soft-

ware signals are first fed into a smoothing block to weed out

sensor noise. Then, one signal is fed into a temporal moni-

tor, which produces a value indicating whether the temporal

formula is valid, not valid, or unknown at this point in time.

The other signal is fed as a measurement into a Kalman filter.

The outputs of both blocks are fed into a Bayesian network

block, which performs statistical reasoning and produces pos-

terior probabilities of a fault mode (see also Mengshoel et al.,

2008; Ricks & Mengshoel, 2009a, 2009b, 2010; Mengshoel

et al., 2010).

The simple example in Figure 1 shows how an SHM capabil-

ity can be constructed in a scalable, modular, and hierarchi-

cal manner and highlights the potential benefit of our three-

pronged approach. It separates temporal properties, model-

specific properties, and the (time and memory-free) proba-

bilistic reasoning into separate components that are easy to

model and efficient to execute. Our framework encourages

this separation of concerns.

In this paper, we discuss in detail the three major building

blocks and describe a novel method to implement such a

health management system on a Field Programmable Gate

Array (FPGA) for highly efficient processing and minimal

intrusiveness. We detail how to instrument NASA’s Swift

ra
w

 s
en

so
r

da
ta

Smooth [](a > a0)

NETWORK

BAYES

Kalman

Bayesian reasonermonitor
temporal

processing
signal

model−based
processing

P(e)

Figure 1. An example instantiation of an SHM model,
illustrating one possible interconnection between signal pro-
cessing, temporal monitoring, model-based processing, and
Bayesian reasoning blocks.

UAS with this new SHM capability.

Monitoring Sensors and Software. On-board sensor read-

ings are used by on-board software during flight; any flight-

time sensor failures should be detected and diagnosed. How-

ever, there can be dangerous interactions between the sensors

and the software. Perfectly working sensors can trigger soft-

ware faults, when, for example, operating in an unexpected

environment. Alternatively, a faulty sensor can cause unex-

pected software behavior, e.g., originating from a dormant

software bug. Finally, sensor and software failures can trigger

issues in entirely different subsystems. For example, a soft-

ware failure in the navigation system can cause the communi-

cation system to fail, as happened when F-22 Raptors crossed

the international date-line on their deployment to Kadena in

2007 (Johnson, 2007).1

Although pre-deployment verification and validation (V&V)

can be very effective in minimizing bugs in on-board soft-

ware, it is impossible to eliminate all software bugs due to the

size and complexity of the software as well as unanticipated,

and therefore unmodelled, environmental conditions. The

need to catch fault scenarios not detected by pre-deployment

V&V is even more pressing when considering software in

unmanned systems, since these systems often do not have to

undergo the same highly rigorous and costly V&V processes

required for manned systems (e.g., according to DO-178C

(RTCA, 2012) for commercial transports).

It is therefore mandatory for both sensor and software moni-

toring to be performed during flight, for failure and faults to

be detected and diagnosed reliably, and for root-cause anal-

ysis to be performed in real time. Only then can appropriate

mitigation strategies be activated to recover the UAS or return

it to the ground in the safest possible manner.

Temporal and Model-based Data Processing. The collec-

tion of all readings of sensors and software state comprises

a high-dimensional and fast (around 20Hz or more) real-time

data stream that needs to be processed by our health man-

agement system. On a high level, our approach to coordi-

nated, multilevel system-wide sensor and software monitor-

1See Section 8.3 for a more detailed discussion.

2

Annual Conference of the Prognostics and Health Management Society 2013

ing transforms this fast, high-dimensional data stream into

an informed basis for making intelligent decisions. We dis-

cuss a new method for runtime monitoring of temporal logic

system safety requirements, in order to enable better prob-

abilistic reasoning compared to what was previously possi-

ble. Model-based data processing components include, for

example, Kalman filters, Fast Fourier Transforms, or a model-

based prognostics component. We can thus reason about sen-

sors, software, and the outputs of prognostics components

(e.g., end of useful component life) in a single framework.

Bayesian Reasoning. Our framework uses a Bayesian net-

work to perform diagnostic reasoning and root cause analysis.

Although dynamic BNs (DBNs) have, in theory, the capabil-

ity to directly process high-dimensional time-series data, such

an approach may not be realistic in many applications due to

scalability limitations and high computational requirements.

We therefore separate the processing of temporal and model-

based aspects of the data from the actual statistical reasoning

part.

In order to address practical considerations including sensor-

software interdependencies, the demands of real-time tempo-

ral and model-based data processing, and Bayesian reason-

ing for decision making, we present a novel modeling frame-

work for sensor and software health monitoring. The frame-

work separates model-based analysis, temporal monitoring,

and statistical reasoning, thus making SHM more efficient,

easier to model, and more robust. To enable its application

in real-time systems, e.g., on-board of unmanned aerial sys-

tems, we will demonstrate how this framework, using tem-

poral logic monitors, model-based preprocessing units, and

static Bayesian networks, facilitates modular model design

and can be executed highly efficiently on FPGA hardware.

The rest of this paper is structured as follows. After dis-

cussing related approaches in Section 2, we introduce our

problem domain in Section 3, including the architecture of

NASA’s Swift UAS and the requirements that must be met

for its safe operation. In Section 4, we discuss major design

requirements for our approach and present an overview of the

building blocks comprising our SHM framework. In the fol-

lowing sections, we give further details of the major com-

ponents of this framework, namely monitors using temporal

logic in Section 5, model-based monitors in Section 6, and

Bayesian reasoning components in Section 7. We then pro-

vide further details on our implementation of all these com-

ponents, and discuss experimental results for flight test data

from the Swift UAS in Section 8. Section 9 discusses future

work and concludes.

2. RELATED WORK

2.1. System Health Management

Vehicle health management performs similar tasks to Fault

Detection, Diagnosis, and Recovery (FDDR). There exist

many FDDR approaches and (commercial) tools that are

being actively used in the aerospace industry. For exam-

ple, TEAMS2 is a model-based tool used for diagnosis and

test planning. It enables hierarchical, multi-signal diagno-

sis, but does not model temporal or probabilistic relation-

ships. The underlying paradigm of FACT3 is fault propa-

gation with temporal constraints. More complex diagnosis

systems like HyDE4 execute simplified dynamical models on

various abstraction levels and compare model results against

signal values for fault detection and diagnosis. Livingston5 is

a NASA open-source diagnosis and recovery engine that uses

a set of high-level qualitative models; the behaviors are spec-

ified in temporal logic. Formal V&V for such models have

been carried out using the SMV model checker (Lindsey &

Pecheur, 2004).

Bayesian networks are also useful for fault detection, diagno-

sis, and decision making because of their ability to perform

deep reasoning using probabilistic models. Likelihood of

failures, for example, expressed as mean-time between fail-

ure (MTBF), can be cleanly integrated. Whereas there are

a number of tools for Bayesian reasoning (e.g., SamIam6 or

Hugin Expert7), they have not been used extensively for sys-

tem health management, in part because of computationally

intensive reasoning algorithms.

Fortunately, this situation has started to change. A testbed

for electrical power systems in aerospace vehicles, the NASA

ADAPT testbed (Poll et al., 2007), has been used to bench-

mark several system health management techniques. One

of them is ProADAPT, a system health management algo-

rithm using Bayesian networks (Ricks & Mengshoel, 2009a,

2009b, 2010). ProADAPT uses compilation of Bayesian net-

works into arithmetic circuits (Darwiche, 2003; J. Huang,

Chavira, & Darwiche, 2006; Chavira & Darwiche, 2007) for

efficient sub-millisecond computation. In addition, ProAD-

APT demonstrates how to diagnose a comprehensive set of

faults, including faults of a continuous and dynamic nature,

by means of discrete and static Bayesian networks. This work

also shows how Bayesian system health models can be gener-

ated automatically from electrical power system wiring dia-

grams (Mengshoel et al., 2008, 2010).

2http://www.teamqsi.com/products/teams-designer/
3http://w3.isis.vanderbilt.edu/Projects/Fact/Fact.htm
4http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/hyde
-diagnostics/

5http://ti.arc.nasa.gov/opensource/projects/livingstone2/
6http://reasoning.cs.ucla.edu/samiam/
7http://www.hugin.com/

3

Annual Conference of the Prognostics and Health Management Society 2013

2.2. Runtime Verification

Existing methods for Runtime Verification (RV) (Barringer

et al., 2010) assess system status by automatically generat-

ing (mainly software-based) observers to check the state of

the system against a formal specification. Observations in

RV are usually made accessible via software instrumentation

(Havelund, 2008); they report only when a specification has

passed or failed, e.g., through adding hooks in the code base

to detect changes in the state of the system being monitored.

Such instrumentation may make re-certification of the sys-

tem onerous, alter the original timing behavior, or increase

resource consumption (Pike, Niller, & Wegmann, 2011); we

seek to avoid this problem. Also, reporting only the outcomes

of specifications does not provide the real-time responsive-

ness we require for our SHM framework.

Systems in our applications domain often need to adhere

to timing-related flight rules like: after receiving the com-
mand “takeoff” reach an altitude of 600 ft within five min-
utes. These flight rules can be easily expressed in tempo-

ral logics; often in some flavor of Linear Temporal Logic

(LTL) (Bauer, Leucker, & Schallhart, 2010). To reduce run-

time overhead, restrictions of LTL to its past-time fragment

have been used for RV applications previously, mainly due to

promising complexity results (Basin, Klaedtke, & Zălinescu,

2011; Divakaran, D’Souza, & Mohan, 2010). Though specifi-

cations including past time operators may be natural for some

other domains (Lichtenstein, Pnueli, & Zuck, 1985), flight

rules like those we must monitor for the Swift UAS require

future-time reasoning. To enable more intuitive specifica-

tions, others have studied monitoring of future-time claims;

see (Maler, Nickovic, & Pnueli, 2008) for a survey and

(Geilen, 2003; Thati & Roşu, 2005; Divakaran et al., 2010;

Maler, Nickovic, & Pnueli, 2005, 2007; Basin, Klaedtke,

Müller, & Pfitzmann, 2008) for algorithms and frameworks.

Most of these RV algorithms, however, were designed with a

software implementation in mind and require powerful com-

puters that would far exceed the weight, size, power, band-

width, and other limits of the Swift UAS.

2.3. Hardware Architectures

The above approaches to system health management are typi-

cally implemented in software executing on traditional CPUs.

However, with the recent developments in parallel comput-

ing hardware, including in many-core graphics processing

units (GPUs), Bayesian inference can be performed more effi-

ciently (Kozlov & Singh, 1994; Namasivayam & Prasanna,

2006; Xia & Prasanna, 2007; Silberstein, Schuster, Geiger,

Patney, & Owens, 2008; Kask, Dechter, & Gelfand, 2010;

Linderman et al., 2010; Jeon, Xia, & Prasanna, 2010; Low et

al., 2010; Bekkerman, Bilenko, & Langford, 2011; Zheng,

Mengshoel, & Chong, 2011; Zheng & Mengshoel, 2013).

Several of the recent many-core algorithms are based on the

junction tree data structure, which can be compiled from a BN

(Lauritzen & Spiegelhalter, 1988; Dawid, 1992; C. Huang &

Darwiche, 1994; Jensen, Lauritzen, & Olesen, 1990). Junc-

tion trees can be used for both marginal and most probable

explanation (MPE) inference in BNs. A data parallel imple-

mentation for junction tree inference was developed already

in the mid-1990s (Kozlov & Singh, 1994), and the basic sum-

product computation has been implemented in a parallel fash-

ion on GPUs (Silberstein et al., 2008). Based on the cluster-

sepset mapping method (C. Huang & Darwiche, 1994), node-

level parallel computing techniques have recently been devel-

oped for GPUs (Zheng et al., 2011; Zheng & Mengshoel,

2013), resulting in as much as a 20-fold speed-up in process-

ing compared to sequential techniques.

Other authors have used the benefits of a hardware archi-

tecture to natively answer statistical queries on BNs. For

example, Lin, Lebedev, and Wawrzynek (2010) discuss a

BN computing machine with a focus on high throughput.

Their architecture contains two switching crossbars to inter-

connect process units with memory. Their implementation,

however, targets a resource intensive grid of FPGAs, making

this approach unsuitable for our purposes. Kulesza and Tyl-

man (2006) present another approach to evaluate Bayesian

networks on reconfigurable hardware. Their approach targets

embedded systems as execution platforms and is based on

evaluating Bayesian networks through elimination trees. The

major drawback of their approach is that the hardware struc-

ture is tightly coupled with the elimination tree and requires

that the hardware be re-synthesized with every change in the

BN.

3. SYSTEM BACKGROUND

Due to the increasing interest in using unmanned aircraft for

different military, civilian, and scientific applications, NASA

has been engaged in UAS research since its inception. The

Swift aircraft was designed to support NASA’s research inter-

ests in aeronautics and earth science—particularly in auton-

omy, intelligent flight control, and green aviation. For safe

operation, the UAS must meet a large number of require-

ments that in large part come from NASA and FAA processes

and standards. In the following, we will briefly describe the

characteristics of the Swift UAS and discuss types of safety

requirements and flight rules.

3.1. The NASA Swift UAS

For full scale flight testing of new UAS concepts, the

NASA Ames Research Center has developed the Swift

UAS (Ippolito, Espinosa, & Weston, 2010), a 13 meter

wingspan all-electric experimental platform based upon a

high-performance sailplane (Figure 2). Swift has a full-

featured flight computer and control for sensor payloads. The

individual components are connected via a common bus inter-

4

Annual Conference of the Prognostics and Health Management Society 2013

face and running a C/C++ reflection architecture, which pro-

vides a component-based plug-and-play infrastructure. Typi-

cal sensors include barometric altitude sensor, airspeed indi-

cator, GPS, and a laser altimeter to measure the altitude above

ground.

Figure 2. The Swift all-electric UAS.

3.2. Requirements and Flight Rules

The system safety requirements we want to monitor during

operation of the Swift UAS can be categorized into these

three types: value checks, relationships, and flight rules.

Value Checks test whether data values are plausible. Exam-

ples in this category include range checks, e.g., the maximal

safe climb or descent rate. For safe operation, the values

must always stay within certain ranges. Such checks can be

combined with additional conditions (e.g., during the flight

phase or above a minimal altitude) or temporal ranges (e.g.,

the maximal current drawn from the battery must not exceed

50A for more than 60 seconds to avoid overheating).

Relationships encode dependencies among sensor data that

may originate from different subsystems. For example, alti-

tude readings obtained by GPS and barometric altitude should

be highly correlated. For another example, whenever the

Swift UAS is in the air, its indicated airspeed reading should

be greater than its stall speed; if not there is certainly a prob-

lem.

Finally, Flight Rules are defined by national or international

institutions (e.g., part 91 of the Federal Aviation Regulations

(FAR) in the USA (Federal Aviation Administration, 2013))

or by mission/system constraints that govern flights. For

example, a common flight rule defines the minimum altitude

an aircraft needs to climb to after takeoff: reach an altitude

of 600ft within five minutes after takeoff. In a similar way,

we can specify a timeout for the landing procedure of the

Swift UAS: after receiving the landing command, touchdown

needs to take place within three minutes. We discuss in detail

how these requirements and flight rules can be specified in

our framework and how they can be translated into efficient

hardware.

4. SYSTEM HEALTH MANAGEMENT FRAMEWORK

Our modeling framework for sensor and software health man-

agement separates signal processing and model-based analy-

sis, temporal monitoring, and statistical reasoning with BNs.

We first discuss the overarching design requirements before

we focus on the description of the design framework. Each of

the framework’s three prongs will then be described in detail

in the subsequent sections.

4.1. Design Requirements

For autonomous systems running on ultra-portable hardware

such as the Swift UAS, the following properties are required

for a deployable SHM framework.

UNOBTRUSIVENESS The SHM framework must not alter

crucial properties of the Swift UAS, such as: function-

ality (not change its behavior), certifiability (avoid re-

certification of, e.g., autopilot flight software or certi-

fied hardware), timing (not interfere with timing guaran-

tees), and tolerances (not exhaust size, weight, power, or

telemetry bandwidth constraints). The framework must

be able to run and perform analysis externally to the (pre-

viously developed and tested) Swift architecture.

RESPONSIVENESS The framework must continuously

and in real time monitor adherence to the safety require-

ments of the Swift UAS. Changes in the validity of mon-

itored requirements must be detected within tight and a

priori known time bounds. Responsive monitoring of

specifications enables responsive input to the BN-based

probabilistic reasoner. In turn, the BN reasoner must

efficiently support decision-making to mitigate any prob-

lems encountered (e.g., for the Swift UAS an emergency

landing in case the flight computer fails) to avoid damage

to the UAS and its environment.

REALIZABILITY The framework must operate in a plug-

and-play manner by connecting via a read-only interface

to existing communication interfaces of the Swift UAS.

The framework must be usable by test-engineers with-

out assuming in-depth knowledge of hardware design

and must be able to operate on-board existing UAS com-

ponents without requiring significant re-configuration or

additional components. The framework must be recon-

figurable so that health models can be updated without

a lengthy re-compilation process and can be used both

during testing of the UAS and after deployment.

Considering these requirements, it seems natural to imple-

ment our SHM framework in hardware. This allows us to

build a self-contained unit, operating externally to the estab-

5

Annual Conference of the Prognostics and Health Management Society 2013

lished Swift UAS architecture, thereby complying with the

UNOBTRUSIVENESS requirement. Multiple safety require-

ments can be monitored in parallel, with status updates

delivered at every tick of the system clock, establishing the

RESPONSIVENESS requirement. Previous implementations

of system monitors in hardware, however, have often violated

the REALIZABILITY requirement as a reconfiguration, e.g.,

due to changes in the SHM model, necessitates a redesign of

the framework’s hardware.8 To provide greater flexibility in

this regard, we design an efficient, highly parallel hardware

architecture that runs on the Swift UAS’ native FPGA hard-

ware, yet keep it programmable and modular to quickly adapt

to changes in our SHM models.

4.2. Design Framework

Our SHM model is constructed hierarchically in a graphical

manner out of powerful building blocks. In contrast to most

existing systems, we do not separate between an (informal)

signal preprocessing step and the proper health management

model. Rather, we elevate all processing steps to first class

status and model them all in the same framework. With that

approach, we can, in a principled way, deal with all tempo-

ral, probabilistic, and model-based aspects of our health man-

agement model. This uniform way of describing the health

model not only enables more powerful techniques for V&V

but it also directly leads to efficient implementations in pro-

grammable FPGA hardware.

All signals considered in our SHM model are streams of data,

which are processed at fixed time stamps. At each tick of the

system clock, a component reads the input values and calcu-

lates the output values. The order of execution is defined by

a model graph. In this paper, we assume that there exists one

fixed update rate for all of the building blocks of the model.9

Such a stream of individual elements of type T is denoted by

T ⋆; vectors are defined naturally. Table 1 shows the different

data types that are used. Please note that Boolean data types

are implicitly converted into a {0,1} discrete representation.

All data blocks have a number of inputs Ij of a given stream

type, and will produce a number of outputs, again as elements

of a stream. Table 2 shows a list of selected blocks. Only

the current values of the signals are presented to the model.

Depending on its functionality, a block can be memory-less

(e.g., a Boolean function or a Bayesian reasoning block),

or it can contain internal memory (of fixed length) to deal

with previous signal values. Blocks with internal memory

include the Linear Temporal Logic (LTL) processing blocks

and blocks for data smoothing, integration, or model-based

8Or at least a run of a logic synthesis tool, which can easily take tens of
minutes to complete.

9If signals are to be considered with different rates, rate conversion blocks or
sample and hold blocks can be defined and used as needed. Note also that
Bayesian networks handle missing data in a natural way and do not need
conversion, sample, or hold blocks.

Kalman filters (Table 2).

Table 1. Data types for SHM components.

Signal Data Type

Symbol Description

R floating point number, e.g., sensor reading

D discrete set {1, . . . , n}
B Boolean

B+ true, false, maybe
p probability

P probability density

Table 2. Typical SHM building blocks.

Name Function Memory Description

BF Bn → Bm Boolean function

LTLs Bn → B+
m

synchronous LTL
observer

LTLa Bn → Bm ○ asynchronous LTL
observer

THR Rn →Dm discretizer/threshold

FLT Rn → Rn ○ smoothing filter

KF Rn → R2m+n ○ Kalman filter with
x̂, residual and
diag(P −)

BN Dn → Rm discrete Bayes rea-
soner

BNp Rl → R2m Bayes reasoner with
evidence inputs and
posterior outputs

P Rl → R2 Prognostics unit

For example, a block to discretize sensor readings would take

a floating-point number and calculate its discretized value or

a Boolean value for a simple threshold. A smoothing filter,

calculating a moving average, would have the functionality

Rn → Rn and obviously require internal memory. A tempo-

ral monitoring component has Boolean inputs and produces a

2 or 3-valued logical output that indicates whether the mon-

itored requirement is true, false, or unknown given the

inputs. In Section 5 we will discuss such monitors in detail.

Our BN (see Section 7 for details) takes discrete values as

inputs, called evidence, and produces a posterior probabil-

ity. Model-based prognostics units, which take sensor signals

as inputs and output estimates of remaining useful life for

specific components, can substantially increase the modeling

power and reasoning capabilities of our SHM framework. For

example, a loss in propeller RPM might be diagnosed differ-

ently if it is known that the battery might already be fairly

weak.

Beyond the building blocks shown in Table 2, additional fil-

ters, Fourier transforms, or model-based components can eas-

ily be added to improve the modeling capabilities of our SHM

6

Annual Conference of the Prognostics and Health Management Society 2013

framework. For most of the components, efficient designs for

programmable hardware are available; for our temporal mon-

itors and Bayesian reasoning building blocks, our hardware

implementations will be discussed in the sections below.

The main goal of our SHM framework is to provide a mod-

eling paradigm that allows the modeler to separate tempo-

ral, functional, model-based, and probabilistic reasoning in a

clear way while retaining the expressive power of the various

formalisms. This framework also avoids powerful but com-

plex modeling mechanisms, like dynamic Bayesian networks

(DBNs).

5. MONITORING OF TEMPORAL SENSOR DATA USING
TEMPORAL LOGIC

In order to encapsulate the safety requirements of the Swift

UAS in a precise and unambiguous form that can be analyzed

and monitored automatically, we write them in temporal

logic. Specifically, we use a Linear Temporal Logic (LTL),

which allows the expression of requirements over timelines

and also pairs naturally with the original English expression

of the requirements.10 For requirements that express spe-

cific time bounds, we use a variant of LTL that adds these

time bounds, called Metric Temporal Logic (MTL). We can

automatically generate runtime monitors for requirements

expressed in these logics, enabling real-time analysis of sen-

sor data as well as system health assessment.

Linear temporal formulas consist of:

1. Variables representing system state: We include vari-

ables representing the data streaming from each sensor

aboard the Swift UAS.

2. Propositional logic operators: These include the stan-

dard operators, logical AND (∧), logical OR (∨), negation

(¬), and implication (→).

3. Temporal operators: These operators express temporal

relationships between events including ALWAYS, EVEN-

TUALLY, NEXTTIME, UNTIL, and RELEASE where the

following hold for example system Boolean variables p

and q.

• ALWAYS p (◻p) means that p must be true at all

times along the timeline.

• EVENTUALLY p (◇p) means that p must be true at

some time, either now or in the future.

• NEXTTIME p (Xp) means that p must be true in the

next time step; in this paper a time step is a tick of

the system clock aboard the Swift UAS.

10In the temporal logic formulas of this paper, we follow the standard syn-
tax for evaluating temporal properties where = means assignment and ==
means equality comparison. For example, (a == b) returns true if a and b
are equal and false otherwise. At the same time, we follow the tradition in
probability, where = means equality and not assignment. It should be clear
from the context whether we are dealing with a temporal logic expression
or a probability expression.

• p UNTIL q (pU q) signifies that either q is true now,

at the current time, or else p is true now and p will

remain true consistently until a future time when q
must be true. Note that q must be true sometime; p
cannot simply be true forever.

• p RELEASES q (pR q) signifies that either both p
and q are true now or q is true now and remains

true unless there comes a time in the future when

p is also true. Note that in this case there is no

requirement that p will ever become true; q could

simply be true forever. The RELEASE operator is

often thought of as a “button push” operator: push-

ing button p triggers event ¬q.

For MTL, each of these temporal operators are accompa-

nied by upper and lower time bounds that express the time

period during which the operator must hold. Specifically,

MTL includes the operators ◻[i,j] p, ◇[i,j] p, p U[i,j] q, and

p R[i,j] q where the temporal operator applies in the time

between time i and time j, inclusive. Additionally, we use a

mission bounded variant of LTL where these time bounds are

implied to be the start and end of the mission of the UAS. In

all cases, time steps refer to ticks of the system clock. So, a

time bound of [3,8] would designate the time bound between

3 and 8 ticks of the system clock from now. Note that this

bound is relative to “now” so that continuously monitoring a

formula ◇[3,8] p would produce true at every time step t for

which p holds anytime between 3 and 8 time steps after t, and

false otherwise.

Figures 3 and 4 give pictorial representations of how these

logics (mission-bounded LTL and MTL) enable the precise

specification of temporal safety requirements in terms of

timelines.

Examples of System Requirements in Temporal Logic.
Due to their intuitive nature and a wealth of tools and algo-

rithms for analysis of LTL and MTL formulas, these logics

are frequently used for expressing avionics system require-

ments (Zhao & Rozier, 2012; Gan, Dubrovin, & Heljanko,

2011; Bolton & Bass, 2013; Alur & Henzinger, 1990). Recall

the example system safety requirements from Section 3.2. We

can straightforwardly encode each of value checks, relation-

ship requirements, and flight rules as temporal logic formulas

to enable runtime monitoring:11

Value Checks:

• The maximal safe climb and descent rate Vz of the Swift

UAS is limited by its design and engine characteristics.

◻(−200
ft

min
≤ Vz ≤ 150

ft

min
)

11The numbers given below are for illustration purpose only and do not
reflect the actual properties of the Swift UAS.

7

Annual Conference of the Prognostics and Health Management Society 2013

Symbol Operator Timeline

Xp NEXTTIME
p

◻p ALWAYS
p p p ppp p p p

◇p EVENTUALLY
p

pUq UNTIL
p pp p q

pRq RELEASE
p,qq qq q

Figure 3. Pictorial representation of LTL temporal operators. For a formal definition of LTL, see for example (Rozier, 2011).

Symbol Operator Timeline

◻[2,6]p ALWAYS[2,6] 0 1 2 3 4 5 6 7 8
p p p p p

◇[0,7]p EVENTUALLY[0,7] 0 1 2 3 4 5 6 7 8
p

pU[1,5]q UNTIL[1,5] 0 1 2 3 4 5 6 7 8
p p q

pR[3,8]q RELEASE[3,8]
p,q

0 1 2 3 4 5 6 7 8
qqq

Figure 4. Pictorial representation of MTL temporal operators. For a formal definition of MTL, see for example (Alur & Hen-
zinger, 1990).

• The maximal angle of attack α is limited by design char-

acteristics.

◻(α ≤ 15○)

• The Swift roll (p), pitch (q), and yaw rates (r) are for safe

operation limited to remain below maximum bounds.

◻(p < 0.99
rad

s
∧ q < 4.0

rad

s
∧ r < 2.2

rad

s
)

• The battery voltage Ubatt and the current Ibatt must

remain within certain bounds during the entire flight.

Furthermore, no more than 50A should be drawn from

the battery for more than 30 consecutive seconds in order

to avoid battery overheating.

◻((20V ≤ Ubatt ≤ 26.5V) ∧
(Ibatt ≤ 75A) ∧
((Ibatt > 50A)U[0,29s](Ibatt ≤ 50A)))

Relationships:

• Pitching up (i.e., increasing α) for a sustained period of

time (more than 20 seconds) should result in a positive

change in altitude, measured by a positive vertical speed

Vz . This increase in vertical speed should occur within

two seconds after pitch-up.

◻(◻[0,20s](α > α0) → ◇[0,2s]Vz > 0)

This relationship can be refined to only hold if the engine

has enough power (as measured by the electrical current

to the engine Ieng) to cause the aircraft to actually climb.

◻(◻[0,20s]((α > α0) ∧ Ieng > 30A) → ◇[0,2s]Vz > 0)

Similarly, a rule for the descending can also be defined.

◻(◻[0,20s]((α < α0) ∨ Ieng < 10A) → ◇[0,2s]Vz < 0)

• Whenever the Swift UAS is in the air, its indicated air-

speed (VIAS) must be greater than its stall speed VS . The

UAS is considered to be air-bound when its altitude alt
is larger than that of the runway alt0.

◻((alt > alt0) → (VIAS > VS))

• The sensor readings for the vertical velocity Vz and the

barometric altimeter altb are correlated, because Vz cor-

responds to the changes in the altitude. This means that

whenever the vertical speed is positive, we should mea-

sure a certain increase of altitude Δaltb within 2 seconds.

◻(Vz > 0→◇[0,2s]Δaltb > θ)

• The precision of the position reading PGPS from the

8

Annual Conference of the Prognostics and Health Management Society 2013

GPS subsystem depends on the number of visible GPS

satellites Nsat.
◻(
◻(Nsat == 1) → PGPS ≤ P 1

GPS ∧
◻(Nsat == 2) → PGPS ≤ P 2

GPS ∧
◻(Nsat == 3) → PGPS ≤ P 3

GPS ∧
◻(Nsat ≥ 4) → PGPS ≤ P +GPS)

Flight Rules:

• After receiving a command (cmd) for takeoff, the Swift

UAS must reach an altitude of 600ft within 40 seconds.

◻((cmd == takeoff) → ◇[0,40s](alt ≥ 600 ft))

• After receiving the landing command, touchdown needs

to take place within 40 seconds, unless the link (lnk) is

lost. Otherwise, the aircraft should reach a loitering alti-

tude around 425ft within 20 seconds.

◻((cmd == landing) →
((slnk == ok) → ◇[0,40s](alt < 10 ft)∨
(slnk == lost) → ◇[0,20s](400ft ≤ alt ≤ 450ft)))

• The Swift default mode is to stay on the move; it should

not loiter in one place for more than a minute unless it

receives the loiter command (which may not ever hap-

pen during a mission). Let sector crossing represent a

Boolean variable, which is true if the UAS crosses the

boundary between the small subdivision of the airspace

in which the UAS is currently located, as determined by

the GPS, and another subdivision. After receiving the

loiter command, the UAS should stay in the same sec-

tor, at an altitude between 400 and 450ft until it receives

a landing command. The UAS has 30 seconds to reach

loitering position.

◻([(cmd == loiter)R(◇[0,60s] sector crossing)]∧
[(cmd == loiter) →
(◻[30s,end]((¬sector crossing)∧

(400ft ≤ alt ≤ 450ft))
U (cmd == landing))

])

• All messages sent from the guidance, navigation and

control (GN&C) component to the Swift actuators must

be logged into the on-board file system (FS). Logging

has to occur before the message is removed from the

queue. In contrast to the requirements stated above, this

flight rule specifically concerns properties of the flight

software.

◻((addToQueueGN&C ∧◇removeFromQueueSwift) →
¬removeFromQueueSwift U writeToFS)

Advantages of Temporal Logic Requirements. Encoding

the set of system requirements in temporal logic offers sev-

eral significant advantages. It yields a very precise, unam-

biguous list of the system requirements that aids in project

planning and organization. It enables us to automatically

synthesize runtime monitors to track these requirements on-

board the Swift UAS directly from the temporal logic spec-

ifications. It also enables other types of automatic checks,

such as automatic requirements debugging (i.e., satisfiabil-

ity checking (Rozier & Vardi, 2010)) and design-time V&V

techniques such as model checking (Rozier, 2011).

5.1. Monitoring Approach

From each temporal logic requirement, we automatically gen-

erate two kinds of monitors, which we call synchronous and

asynchronous monitors, working in coordination to provide

real-time system health updates. A synchronous monitor pro-

vides an update on the requirement with every update of the

system clock. This is important because it provides blocks

such as the Bayesian reasoner with better real-time infor-

mation and therefore improves prognostics capabilities by

enabling monitoring input to be considered by the reasoner.

Our synchronous runtime monitors keep up-to-date informa-

tion on how much time is left until a requirement must pass.

An asynchronous monitor provides an update on the final

outcome of the requirement at an a priori known time. Our

asynchronous monitors report if a requirement is satisfied or

fails earlier than expected or yield the final result (pass or

fail) of the requirement when its time bound has elapsed.

For details on the construction of these monitors, and for-

mal proofs that our constructions are correct, see (Reinbacher,

Rozier, & Schumann, 2013).

This dual-monitor construction is a key element of our SHM

framework, because it enables our runtime monitors to be

used as building blocks in combination with the other blocks

described in this paper. Traditional runtime monitoring tech-

niques only operate asynchronously and only report when a

monitored property fails. Our monitors provide much more

useful output. For example, it can be important in comput-

ing prognostics to know that a requirement that must hap-

pen within a specified time bound has not yet been satisfied

and that the time bound is almost up. This allows mitigat-

ing actions to be considered in time. For another example,

if a requirement states that (EVENTUALLY[3,2005] p) and p
occurs at time 5 it is important to utilize this information for

real-time calculations of system health. Traditional monitor-

ing techniques do not yield any output in this case, either at

time 5 or 2005 since no property failure occurred. Finally,

it is key that our runtime monitors can provide this informa-

tion without any modifications to certified flight software or

hardware, operating in isolation aboard an FPGA with a read-

only interface, whereas most runtime monitoring techniques

utilize more obtrusive techniques for gathering system data.

9

Annual Conference of the Prognostics and Health Management Society 2013

6. MODEL-BASED MONITORING OF TEMPORAL SEN-
SOR DATA

Highly accurate and detailed information about system health

could be obtained if the actual system is compared with

a high-fidelity simulation model. Model complexity and

resource limitations make such an approach infeasible in

most cases. However, a comparison of system behavior with

an abstracted dynamical model is an attractive option. HyDE,

for example, performs health management using simplified

and abstracted system models.

For our framework, we provide the capability to use model-

based monitoring components to various degrees of abstrac-

tion. The most common of such components is a Kalman

filter. Here, a linearized model of the (sub-)system dynamics

is used to predict the system state from past sensor readings.

Besides this state prediction, the residual of the Kalman fil-

ter is of importance for our purposes, as it reflects how well

the model represents the actual behavior (Brown & Hwang,

1997). A sudden increase of the filter residual, for example,

can give an indication of a malfunctioning sensor. For imple-

mentation, we use our tool AUTOFILTER (Whittle & Schu-

mann, 2004) to automatically generate customized Kalman

filter algorithms from high-level requirements. As we refine

our configuration to handle more complex SHM capabili-

ties needed for future flight tests of the Swift UAS, we are

planning to extend the AUTOFILTER tool in order to directly

produce corresponding FPGA designs (see, e.g., Pasricha

& Sharma, 2009). In a similar manner, non-linear models

could be handled using Particle Filters (Ristic, Arulampalam,

& Gordon, 2004), though these require more computational

efforts.

A very simple temporal monitoring technique is the use of

FFT in order to obtain an estimate of the frequency spec-

trum of the monitored signals. This information is, for exam-

ple, important to detect oscillations of the aircraft (see Sec-

tion 8.3), or to detect unexpected software behavior, like a

reboot loop.

Though our implementation at this time is limited to stan-

dard filtering monitors, we envision creating more powerful

model-based monitors using prognostics models to produce

statistical distributions for the end-of-life of system compo-

nents based upon sensor readings. For example, a prognos-

tics model to estimate the remaining useful life of the laser

altimeter could be used to effectively encode a dynamical

MTBF into our health management system. Again, both the

mean remaining life as well as information about its probabil-

ity distribution can be directly used for reasoning. Although

such model-based health management components can be

very powerful, a number of issues still need to be addressed,

including model validity, implementation in efficient hard-

ware, and possible model adaptation to better detect and han-

dle certain kinds of failures.

7. BAYESIAN HEALTH MANAGEMENT REASONING

The major reasoning component in our SHM framework is a

Bayesian network (BN) used to perform diagnostic reasoning

and root causes analysis. A BN is a multivariate probability

distribution that enables reasoning and learning under uncer-

tainty (Pearl, 1988; Darwiche, 2009). In a BN, random vari-

ables are represented as nodes in a Directed Acyclic Graph

(DAG), while conditional dependencies and independencies

between variables are induced by graph edges (see Figure 5

for an example). A BN’s graphical structure often represents

a domain’s causal structure, and is typically a compact repre-

sentation of a joint probability table. Each node in the BN’s

graphical structure is associated with a corresponding condi-

tional probability table (CPT) that captures its (causal) rela-

tionship with parent nodes.

S

C

H_S

H_U

U

Figure 5. Simple Bayesian network.

In our framework, the BN inputs are comprised of discrete

or discretized values (e.g., low, high), and reasoning is per-

formed at each tick of the system clock. We are using dis-

crete and static BNs, which do not perform any reasoning

in the temporal domain. All temporal reasoning, as well as

other processing, has been cleanly separated out within our

modeling framework. Although, in general, multiple differ-

ent probabilistic queries can be formulated, our framework

aims to compute marginal posterior probabilities of selected

nodes, which then give an indication (probability) of compo-

nent or system health. Thus our Bayesian reasoning compo-

nents compute a posteriori probabilities as their output. Dif-

ferent BN inference algorithms can be used to compute a pos-

teriori probabilities. These algorithms include junction tree

propagation (Lauritzen & Spiegelhalter, 1988; Jensen et al.,

1990; Shenoy, 1989), conditioning (Darwiche, 2001), vari-

able elimination (Li & D’Ambrosio, 1994; Zhang & Poole,

1996), stochastic local search (Park & Darwiche, 2004;

Mengshoel, Roth, & Wilkins, 2011; Mengshoel, Wilkins, &

Roth, 2011), and arithmetic circuit evaluation (Darwiche,

2003; Chavira & Darwiche, 2007).

7.1. Bayesian Health Models

For the Bayesian models, we follow an approach that “glues

together” Bayesian network fragments (Schumann, Meng-

shoel, & Mbaya, 2011; Schumann et al., 2013). For exam-

ple, consider the Bayesian network in Figure 5. It consists of

four different types of interconnected nodes, namely: com-

10

Annual Conference of the Prognostics and Health Management Society 2013

mand node C, health node H , sensor node S, and status node

U . The health node H has subtypes H S for sensor nodes

and H U for status nodes. Inputs to a BN is provided by

connecting an input signal to the state of a node (“clamp-

ing”). Command nodes C are handled as ground truth and

used to indicate commands, actions, or other known states.

Command nodes do not have incoming edges. Sensor nodes

S are also input nodes, but the input signal is not necessar-

ily correct (e.g., it could result from a failed sensor). This

behavior is modeled by connecting S to a health node H that

reflects the health of the input to S. Note that inputs to the BN

can be outputs of any block in our framework, for example,

a smoothed and discretized sensor reading, the result (binary

or ternary) of a temporal monitor, or the output of another

reasoning block.

Status nodes U , and similar behavior nodes B, are inter-

nal nodes and reflect the (latent) status of the subsystem or

component, or recognize a specific behavior, such as pilot-

induced oscillation. Typically, health nodes H are attached to

status nodes, but not to behavior nodes. Associated with each

node is a Conditional Probability Table (CPT), which defines

the conditional probability of node X , given the states of the

parent nodes of X .

For modeling the edges of the BN, we follow the rule that

an edge from node X to node Y indicates that the state of

X has a (causal) influence on the state of Y . Table 3 gives

an overview of the different kinds of edges in our modeling

framework.

Table 3. Types of edges typically used in BN models for the
SHM reasoning blocks.

edge E E represents how . . .

{H,C} E→ U status U , with health H , is controlled
through unreliable command C

{C} E→ U status U is controlled through unreliable
command C

{H,U} E→ S status U influences sensor S, which may
fail as reflected in health H

{H} E→ S health H directly influences sensor S
without modeling of status

{U} E→ S status U influences sensor S

7.2. Compilation to Arithmetic Circuits

We select arithmetic circuit evaluation as the inference algo-

rithm used in our framework, and therefore compile our

Bayesian network into an arithmetic circuit. In real-time

avionics systems, where there is a strong need to align

the resource consumption of diagnostic computation with

resource bounds (Musliner et al., 1995; Mengshoel, 2007),

algorithms based upon arithmetic circuit evaluation are pow-

erful, as they provide predictable real-time performance

(Chavira & Darwiche, 2005; Mengshoel et al., 2010).

An arithmetic circuit (AC) is a DAG in which leaf nodes λ
represent parameters and indicators while other nodes repre-

sent addition and multiplication operators.

Posterior marginals in a Bayesian network can be computed

from the joint distribution over all variables Xi ∈ X :

p(X1,X2, . . .) = ∏
λx

λx∏
θx∣u

θx∣u

where θx∣u are the parameters of the Bayesian network, i.e.,

the conditional probabilities that a variable X is in state x
given that its parents U are in the joint state u, i.e., p(X =
x ∣ U = u). Further, λx indicate whether or not state x is

consistent with the observations. For efficient calculation, we

rewrite the joint distribution into the corresponding network

polynomial f (Darwiche, 2003):

f = ∑
x
∏
λx

λx∏
θx∣u

θx∣u

An arithmetic circuit is a compact representation of a net-

work polynomial (Darwiche, 2009) which, in its uncompact

form, is exponential in size and thus unrealistic in the gen-

eral case. Hence, answers to probabilistic queries, includ-

ing marginals and MPEs, are computed using algorithms that

operate directly on the arithmetic circuit. The marginal prob-

ability (see Corollary 1 in (Darwiche, 2003)) for x given evi-

dence e is calculated as

Pr(x ∣ e) =
1

Pr(e)
⋅
∂f

∂λx
(e) (1)

where Pr(e) is the probability of the evidence. In a bottom-up

pass over the circuit, the probability of a particular evidence

setting (or clamping of λ parameters) is evaluated. A sub-

sequent top-down pass over the circuit computes the partial

derivatives ∂f
∂λx

. This mechanism can also be used to pro-

vide information about how change in a specific node affects

the whole network (sensitivity analysis), and to perform MPE

computation (Darwiche, 2003, 2009).

7.3. Efficient Hardware Realization

Bayesian reasoning blocks in our framework are provided

with values produced by other blocks, as input to C and S
nodes. In our BN hardware implementation, these evidence

values are used to calculate posterior marginals for the health

nodes H of the Bayesian SHM model. For efficient hard-

ware realization of this kind of BN reasoning, we note that

posterior marginals are evaluated in the arithmetic circuit by

traversing the nodes of the circuit in a bottom-up and a sub-

sequent top-down manner.

We make the following observations regarding the structure

11

Annual Conference of the Prognostics and Health Management Society 2013

Figure 6. Screenshot of our GUI-based BN synthesis tool. There is a textual description of the altimeter health model Bayesian
network (top), a compiled arithmetic circuit of the network (bottom left), and a binary configuration for our μBayes unit (bottom
right).

of arithmetic circuits:

(i) The structure alternates between addition and multiplica-

tion nodes. Nodes labeled with “+” are addition nodes;

those labeled with “×” are multiplication nodes.

(ii) Each multiplication node has a single parent.

(iii) Input nodes (i.e., leaf nodes) are always children of mul-

tiplication nodes.

Hardware Architecture of μBayes. The above observa-

tions, concerning the structure of arithmetic circuits, led us

to a hardware architecture that evolves around parallel units

called computing blocks. A computing block, as shown in

Figure 7, is designed to match the structural properties (i-iii)

of an arithmetic circuit. A single computing block supports

computing
block

mode a)

×/+

×/+ ×/+

i1 i2 i3 i4

mode b)

×/+

×/+

i1 i3 i4

mode c)

×/+

i1 i4
i1 i2 i3 i4

result

mode

Figure 7. A computing block and its three modes of opera-
tion.

three basic modes to process the different shapes found in

subtrees of arithmetic circuits. Re-arrangement of the arith-

metic circuit using commutativity properties of the operators

enables us to tile the entire AC with instances of these three

modes in Figure 7.

These computing blocks are the building blocks of our

12

Annual Conference of the Prognostics and Health Management Society 2013

bus interface

control unit

memory interface / multiplexer

network
parameter (θ)

memory

evidence
indicator (λ)
memory

instruction
memory

scratchpad
memory

ALU

×/+

×/+ ×/+

i1 i2 i3 i4

Figure 8. Internals of a computing block.

Bayesian SHM hardware unit, which we call μBayes.

Figure 8 shows the internals of a computing block. The unit

is loaded with network parameters from the CPT of the health

model at configuration time. At each SHM update cycle,

inputs are provided as evidence indicators and stored in a sep-

arate evidence indicator memory. An offline compiler trans-

lates the structure of the arithmetic circuit into native instruc-

tions for the μBayes unit. Instructions encode the oper-

ation (either addition or multiplication) of each individual

node of the Arithmetic Logic Unit (ALU), control the mul-

tiplexer to load/store operands from/to memory, trigger trans-

fers of results, and coordinate loads of inputs. Instructions

are decoded and forwarded by the control unit. Each comput-

ing block manages a scratchpad memory to save intermediate

local results, computed during the bottom-up traversal, which

can be reused during the top-down traversal. The memory

blocks of the μBayes unit are mapped to block RAMs of the

FPGA.

Figure 9 shows the architecture of our Bayesian health man-

agement hardware unit. It interconnects and controls multiple

computing blocks to process arithmetic circuits in parallel.

The master unit manages bus accesses, stores intermediate

global results, and computes posterior marginals according

to Equation 1. The inverse of the probability of the evi-

dence, 1
Pr(e) , in this equation can be computed within the

master in parallel to the top-down traversal of the arithmetic

circuit once the bottom-up traversal is completed. Posterior

marginals can then be computed efficiently by multiplying

the partial derivatives ∂f
∂λx

obtained by the top-down traversal

with the cached value of 1
Pr(e) .

For our implementation, we designed the μBayes unit in

the hardware description language VHDL and use the logic-

synthesis tool ALTERA QUARTUS II12 to synthesize the

design onto an Altera Cyclone IV EP4CE115 FPGA. In our

implementation, we chose to represent fractional values in a

12Available at http://www.altera.com. We used v11.1 in our experiments.

fixed-point representation. This decision avoids the consider-

able blow-up in hardware requirements that we would incur

if all of the computing blocks had to be equipped with a full-

fledged floating-point unit. Instead, we instantiate fixed-point

multipliers, available on our target FPGA, to realize the arith-

metic operations within the computing blocks. Modern-day

FPGAs provide several hundred of such multiplier units.

Synthesizing an Arithmetic Circuit into a μBayes Pro-
gram. A (GUI-based) application (see Figure 6) on a host

computer compiles an arithmetic circuit into a tuple ⟨Π, C⟩,
where Π is a native program for the μBayes unit and C is a

configuration for the network parameter memory. The syn-

thesis of ⟨Π, C⟩ from an arithmetic circuit involves the fol-

lowing steps:

(1) Parse the circuit into a DAG and use compile-time infor-

mation from the Ace package13 to relate nodes in the

DAG to evidence indicators and network parameters.

Assemble network parameter values according to the

CPTs and add them to C. Perform equivalence transfor-

mations on the DAG to ensure that the available modes

of a computing block are able to cover all parts of the

arithmetic circuit.

(2) Apply a variant of the Bellman-Ford algorithm (Bellman,

1958) to the DAG to determine the distance of each node

to the root node. Based on the distances and the width of

the arithmetic circuit, determine the number of required

computing blocks. Rearrange computing blocks to opti-

mize the number of results that can be reloaded from the

same computing block in the next computation cycle.

(3) For each computing block c: generate an instruction π
for each node in the arithmetic circuit that is computed

by c. Finally, add π to Π.

To configure the μBayes unit, the tuple ⟨Π, C⟩ is transferred

at configuration time, i.e., before deployment, to the master

unit, which then programs the individual computing blocks.

During operation, the entries for the evidence indicator mem-

ory are broadcast by the master unit at each tick of the system

clock when new input values are available.

Hardware Resource Consumption. We synthesized the

hardware design of the μBayes unit for various target FPGAs

using the industrial logic synthesis tool ALTERA QUARTUS

II. To study the hardware resource consumption of our design

we synthesized the design several times with varying num-

bers of computing blocks. For our implementation, we used

a fixed-point number representation with 18 bits to internally

represent probabilities. We have chosen this representation

13http://reasoning.cs.ucla.edu/ace/

13

Annual Conference of the Prognostics and Health Management Society 2013

computing
block 0

computing
block 1

computing
block . . .

computing
block n − 1

computing
block n

master

input bus

output bus

config
⟨Π, C⟩

Figure 9. Architecture of the μBayes unit with parallel computing blocks.

mainly because our target FPGA provides fixed point multi-

pliers that support vectors of up to 18 bits.

For example, an instantiation of the μBayes unit with 7 paral-

lel computing blocks accounts for a total of 25,719 logic ele-

ments (22.5 % of the total logic elements) and 20,160 mem-

ory bits (2.5 kByte, 0.5 % of the total memory bits) and allows

for a maximum operating frequency fmax of 115 MHz (for

the slow timing model at 85 ○C) on an Altera Cyclone IV

EP4CE115 FPGA. We note that the operating frequency can

easily be increased by moving to a more powerful FPGA. Fig-

ure 10 shows the influence of the number of computing blocks

on maximum operating frequency, number of logic elements,

and the number of memory bits.

8. EXPERIMENTS AND RESULTS

In this section, we present results of experiments. In order to

illustrate our three-pronged approach, we first discuss moni-

toring of requirements using examples of temporal logic mon-

itors as presented in Section 5. In all of the examples, actual

sensor and signal values are prefixed by “s ”, e.g., s baroAlt

comprises a stream of sensor readings of the barometric alti-

tude. We next discuss an example of how to determinate the

health of sensors using BNs and show results using actual

flight data, where the laser altimeter failed. The final part of

this section is devoted to an example of how our framework

can be used for reasoning about software.

8.1. Monitoring of Requirements

Recall from Section 3.2 and Figure 1 that our SHM frame-

work operates on a set of requirements, which are interpreted

via paths through a network of building blocks to achieve

our diagnostics and prognostics goals. We create model-

based monitors (Section 6) and Bayesian reasoning compo-

nents (Section 7) to support monitoring these requirements.

We create synchronous and asynchronous runtime monitors

in hardware, aboard FPGAs, from our temporal logic trans-

lations of the requirements (Section 5). In this way, require-

ments form the backbone of our SHM framework.

Here, we exemplify the monitoring process for our temporal

logic-based runtime monitors, including how they take input

from and pass input to other blocks in our SHM framework.

We demonstrate the power of generating monitors from tem-

poral logic requirements.

For example, consider the requirement ◻((s cmd ==
takeoff) → ◇[0,40s](s baroAlt ≥ 600 ft)) from Section 3.2

that states, “After takeoff, the Swift UAS must reach an alti-
tude of 600ft within 40 seconds.” Recall that we encoded this

requirement in MTL in Section 5 and discussed creating a

pair of runtime monitors that yield both a synchronous mon-

itor that updates with each tick of the system clock and an

asynchronous monitor that determines the satisfaction of the

requirement as soon as there is enough information to do so.

takeoff

s_baroAlt

s_cmd

LTL

Discrete

>= 600ft ?

s baroAlt / ft
300

600

900

s cmd

ta
ke
o
ff

la
n
d

s baroAlt ≥ 600ft

s cmd = takeoff

ϕF1 = ◻((s cmd = takeoff) → ◇[0,40s](s baroAlt ≥ 600 ft)) ✓

Figure 11. Top panel: SHM block diagram for monitoring
requirement ◻((s cmd == takeoff) → ◇[0,40s](s baroAlt ≥
600 ft)). Middle two panels: flight data collected from the
Swift UAS. Bottom three panels: output of our runtime mon-
itors for flight rules.

14

Annual Conference of the Prognostics and Health Management Society 2013

1 4 8 12 16 20 24 28 32
60

80

100

120

140

of computing blocks

f m
a
x
a
t
8
5
○
C

1 4 8 12 16 20 24 28 32

104

105

of computing blocks

N
u
m
b
er

o
f
L
E

1 4 8 12 16 20 24 28 32

104

105

of computing blocks

M
em

o
ry

B
it
s

Figure 10. Logic synthesis results of our μBayes unit for an Altera Cyclone IV EP4CE115 FPGA: maximum operating fre-
quency fmax, number of logic elements (LE), and required memory bits versus number of parallel computing blocks

Figure 11 breaks down how we monitor this requirement.

First, the raw data from the barometric altimeter is passed

through one of our smoothing filter blocks, as described in

Section 4, to take out sensor noise that might serve to obscure

the altimeter readings. The data stream from this smoothing

filter and the raw data from the flight command data stream

are the two inputs to our pair of temporal logic monitors for

this requirement. These two inputs are shown in blue in Fig-

ure 11. In the bottom three panels, in red, are the output

data streams from the asynchronous monitor. The top line is

the result of monitoring the subformula (s baroAlt ≥ 600 ft)
and the middle line is the result of monitoring the subfor-

mula (s cmd == takeoff). These two signals are combined

inside our compositional monitor construction to form the

result illustrated in the bottom panel. The panel’s straight

red line shows that the requirement holds at every time point

during the flight. This bottom line is the output from our

asynchronous monitor and can be used as the input to another

block in our SHM framework, such as a Bayesian reasoning

block.

During UAS flight, this output data stream will not be pro-

vided in real time, but will experience delays as there is not

enough data at every time point of flight to determine that this

requirement always holds. Therefore, any blocks in our SHM

framework making real-time decisions could utilize the out-

put from the paired synchronous monitor for this formula. It

would differentiate, in real time, when we know that the flight

rule holds and when we do not have enough information, at

the present time, to know.

For another example, consider the requirement

◻(◻[0,5s](v vel > 0) → ◇[0,2s]Δs baroAlt > θ)

stating that a significant positive vertical velocity needs to be

followed by a climb in altitude. Figure 12 breaks down how

we monitor this requirement.

Again, we take the raw data from the barometric altimeter,

pass it through one of our smoothing filter blocks to reduce

the sensor noise, and feed this stream as an input to our tem-

poral monitor. (Again, the smoothed barometric altimeter

data stream appears in blue.) We also need to reason about

the vertical velocity reading; we show the raw data stream in

red. We feed this sensor data stream through a moving aver-

age filter; the result is shown in blue.

These two filtered data streams are then processed by compo-

nents of our asynchronous runtime monitor; results are shown

in the bottom three panels of Figure 12. The red line at the

top, our vertical velocity monitor, checks for a “significant

positive vertical velocity.” System designers equate this to a

steady positive reading of the filtered vertical velocity reading

for five seconds. The red line in the middle, our barometric

altimeter monitor, flags time points that fall within a two sec-

ond time interval when the change in altitude is above the

threshold θ. These components comprise our runtime moni-

tor, which continuously verifies that “every occurrence of sig-

nificant positive vertical velocity is indeed followed by a cor-

responding positive change in altitude.” This is reflected by

the straight red line in the bottom-most panel of Figure 12.

8.2. Sensor Health Management

The continuous monitoring of the UAS’s flight-critical sen-

sors is very important. Faulty, iced, or clogged pitot tubes for

measuring speed of the aircraft has caused several catastro-

phes. For example, the crash of Birgenair Flight 301, which

claimed 189 lives, was caused by a pitot tube being blocked

by wasp nests14. Similarly, faults in the determination of the

aircraft’s altitude can lead to dangerous situations. In many

cases, however, the health of a sensor cannot be established

independently. Only by taking into account information from

other sources can a reliable result be obtained. However,

these other sources of information are also not independently

reliable, thus creating a non-trivial SHM problem.

In the following example, we use information from a baro-

metric altimeter measuring altitude above sea level, a laser

altimeter measuring altitude above ground level (AGL), and

information about the vertical velocity and the pitch angle

provided by the Inertial Measurement Unit (IMU). Table 4

lists the signals and their intended meanings. Our correspond-

ing SHM framework instantiation is shown in Figure 13. The

input signals are smoothed and the current vertical velocity

is estimated from the laser and barometric altimeters by cal-

culating xt − xt−1 using a single delay block. Then, the val-

14http://en.wikipedia.org/wiki/Birgenair Flight 301

15

Annual Conference of the Prognostics and Health Management Society 2013

s_V_z Smoothing
Filter

s_baroAlt

LTL

> 0ft ?

> 0ft ?

s baroAlt / ft
300

600

900

v vel / ft
min

v vel (filtered)/ ft
min

◻[0,5s](v vel > 0)

◇[0,2s]Δs baroAlt > θ

ϕ ∶= ◻(◻[0,5s](v vel > 0) → ◇[0,2s]Δs baroAlt > θ) ✓

Figure 12. Top panel: SHM block diagram for monitoring
a requirement. Middle three panels: Smoothed barometric
altimeter (blue) and vertical velocity readings, raw (red) and
smoothed (blue), as collected from the Swift UAS. Bottom
three panels: outputs of temporal logic monitors.

ues are discretized into increasing (inc) and decreasing (dec),

before the information is fed into the reasoning component.

Table 4. Signals and their intended meanings.

Signal name Description

s baroAlt altitude reading from barometric altimeter

s laserAlt altitude reading from laser altimeter

s velUp vertical velocity reading from IMU

s pitch Euler pitch reading from IMU

Figure 14 shows the BN model for reasoning about altime-

ter failures. Sensor nodes (inputs) for each of the different

sensor types are at the bottom. The latent state UA, describ-

ing whether the altitude of the UAS is increasing or decreas-

ing, obviously influences the sensor readings, hence there are

edges from UA to SL, SS , and SB . The laser altimeter can

fail. Therefore, the sensor node SL is connected with a node

HL, reflecting the health of the laser altimeter. A similar

structure can be found for the barometric altimeter. Because

the laser altimeter is prone to errors, its probability of being

healthy is only 0.7, compared to the more reliable baromet-

ric altitude with a probability of being healthy of 0.9. For

inc/dec

Smoothing
Filter inc/dec

Smoothing
Filter inc/dec

Disc

Disc
s_laserAlt

s_baroAlt

Bayesian

Network
s_velUp

s_pitch Threshold

Disc

Figure 13. SHM framework instantiation: model for altimeter
health.

simplicity, the health of the IMU is not modeled here.

S BaroAlt

(SB)

H BaroAlt

(HB)

S LaserAlt

(SL)

H LaserAlt

(HL)

S Sensors

(SS)

U Altimeter

(UA) HB ΘHB

healthy 0.9
bad 0.1

HL ΘHL

healthy 0.7
bad 0.3

UA ΘUA

inc 0.5
dec 0.5

UA SS ΘSS

inc

inc 0.7
dec 0.1
maybe 0.2

dec

inc 0.1
dec 0.7
maybe 0.2

UA HB SB ΘSB

inc

healthy
inc 1.0
dec 0.0

bad
inc 0.5
dec 0.5

dec

healthy
inc 0.0
dec 1.0

bad
inc 0.5
dec 0.5

UA HL SL ΘSL

inc

healthy
inc 1.0
dec 0.0

bad
inc 0.5
dec 0.5

dec

healthy
inc 0.0
dec 1.0

bad
inc 0.5
dec 0.5

Figure 14. Bayesian network and CPT tables for reasoning
about altimeter failure.

The CPT tables for the sensors are read as follows: if the

(latent) status UA is increasing and the laser altimeter is

healthy, then the probability that it is reading an increasing

value is 1; no decreasing measurement is reported (p = 0). In

the case of a failing laser altimeter, no result can be obtained;

hence p = 0.5. The same model is used for the barometric

altitude. The IMU sensors are modeled somewhat differently.

If they report an upward velocity, it is likely (p = 0.7) that

this has been caused by an upward movement of the UAS

(UA = inc). Due to high sensor and integration noise, the

results are not unique and UA = maybe indicates a value

within a zero-centered deadband. Figure 15 breaks down how

we evaluate this Bayesian network and how our architecture

automatically detected a temporary outage of the laser altime-

ter.

With our current implementation of the μBayes unit and a

configuration as shown in Figure 13, running at a system

clock frequency of 115 MHz, the unit is able to evaluate the

Altimeter Health Model 660 times per second.

16

Annual Conference of the Prognostics and Health Management Society 2013

s baroAlt / ft

s laserAlt / ft

300

600

900

s pitch / rad

s velUp / m
s

Pr(HL = healthy ∣ output of runtime monitors)

Pr(HB = healthy ∣ output of runtime monitors) ✓

× ×
✓ ✓

Figure 15. Flight data collected from the Swift UAS (top
three panels) and output of our Bayesian SHM model, given
as probabilities (bottom two panels).

8.3. Reasoning about Software

In principle, SHM models for software components are struc-

tured in a similar way to those for sensor monitoring. Signals

are extracted from a communications bus between compo-

nents, from specific memory locations using shared variables,

or from the operating system. No specific instrumentation

of the safety-critical control code is necessary. Compared to

hardware and sensor management, the complexity of software

health models is usually higher, because of the often sub-

stantial functionality of the code including the existence of

modes. Furthermore, substantial reasoning can be required,

because individual failures (due to dormant software bugs

or problematic hardware-software interaction) might pervade

large portions of the software system and can cause seem-

ingly unrelated failures in other components. Such a situation

occurred when a group of six F-22 Raptors was first deployed

to the Kadena Air Base in Okinawa, Japan (Johnson, 2007).

When crossing the international dateline (180○ longitude), a

dormant software bug caused multiple computer crashes. Not

only was the navigation completely lost, but also the seem-

ingly unrelated communications computer crashed. “The

fighters were able to return to Hawaii by following their

tankers in good weather. The error was fixed within 48 hours

and the F-22s continued their journey to Kadena” (Johnson,

2007).

We now consider how such an unfortunate interplay between

software design and poor implementation could cause

adverse effects on the flight hardware. Figure 16 shows a

mock-up of a flawed architecture for a flight-control com-

puter. In this architecture, all components, like GN&C, the

drivers for the aircraft sensors and actuators, as well as pay-

load components including a science camera and the trans-

mitter for the video stream, communicate via a message

queue. The message queue is fast enough to push through all

messages at the required speed. However, for debugging and

logging purposes, all message headers are written (in block-

ing mode) into an on-board file system. A corresponding

requirement appears as an example flight rule in Section 5:

◻((addToQueueGN&C ∧◇removeFromQueueSwift) →
¬removeFromQueueSwift U writeToFS).

Software

Queue

System
File

GN&C

Transmitter
Antenna

Camera
Science

Message

Figure 16. Flawed system architecture for file system-related
scenario.

This architecture works perfectly when the system is started

and the file system is empty or near empty. However, after

some time of operation, as the file system becomes increas-

ingly populated (but writes can still occur), sudden aircraft

oscillations, similar to pilot-induced-oscillations (PIO), take

place. No software error whatsoever (e.g., overfull file sys-

tem or overfull message queue) is reported and the situation

worsens if the science camera, which also uses this message

queue, is in operation.

The underlying root cause is that writes into the file system

take an increasing amount of time as the file system fills up

(due to long searches for free blocks). This situation accounts

for longer delays in the message queue, which cause delays

in the seemingly unrelated control loop, ultimately causing

oscillations of the entire UAS. For a software health model,

therefore, non-trivial reasoning is important, because such

failures can manifest themselves in seemingly unrelated com-

ponents of the aircraft.

Table 5 and Figure 17 show details of our model. All signals

except the barometric altitude are extracted from the operat-

ing system running on the flight computer. In the diagram in

Figure 17, discrete signals are fed directly into the Bayesian

networks; continuous signals like the length of the message

queue or the amount of data in the file system are catego-

rized to enable discretization into threshold blocks, e.g., the

file system is empty, filled to more than 50%, filled to more

than 90%, or full. The barometric altitude is fed through a

Fast Fourier Transform (FFT) in order to obtain the frequency

17

Annual Conference of the Prognostics and Health Management Society 2013

Table 5. Signals and their intended meanings.

Signal name Description

s FS Error error in file system

s W FS writing into file system

s FS “df” of file system

s Queue lng length of message queue

s baroAlt barometric altitude

s delta q dynamic queue behavior (derived)

s osc UAS oscillation (derived)

> 50%

s_FS_Error

s_baroAlt

s_FS

s_Queue_lng

s_W_FS

Threshold

Threshold

Discrete

FFT

Network

Bayesian
empty

> 90%

Figure 17. Structure of the SHM model for the file system
scenario.

spectrum. Again, a threshold block is used to determine if

amplitudes are above a certain threshold indicating oscilla-

tion (low frequency) or strong vibrations (higher frequency).

Figure 18 shows the relevant excerpt from our Bayesian SHM

model for this scenario, including the file system and the

message queue. The software-related sensor nodes for this

model are located on the left-hand side of the network: a

sensor to detect writes to the file system and a sensor pro-

viding information on storage capacity in the file system

(with states: empty, medium, almost- full, and full). Simi-

larly, S Queue length provides information about the length

of the message queue. Finally, S Delta queue senses whether

the length of the message queue is increasing or decreasing.

Nodes for the internal status of components, such as the file

system and the message queue, are connected via sensor and

health nodes. The behavior nodes for system oscillation and

delay build the foundation for reasoning about this and simi-

lar scenarios.

Figure 19 shows the temporal traces of a file system-induced

fault scenario (Schumann, Morris, Mbaya, Mengshoel, &

Darwiche, 2011) in simulation. The flight controller’s pitch-

up and pitch-down commands to the actuators (top panel) are

impacted by faults originating from the file system, causing

the aircraft to oscillate up and down rather than maintaining

the desired altitude. For the purpose of this experiment, we

set the file system to almost full at the start of the simulation

run; no other faults or errors occur. After about 30 seconds,

Error

Delta_queue

Oscillation

File_System

Queue_length

File_System

File_System

Msg_queue

Delay

Oscillation

Msg_queue

Rest of Bayesian SWHM

Network

S_

S_

S_

S_

U_ H_

H_

U_

File_System_

File_System
Write_

S_

Figure 18. Relevant nodes from Bayesian system health
model for oscillation detection.

the delays caused by the message queue have accumulated in

such a way that flight-control induced oscillations of the air-

craft occur, indicated by recurrent climbs and descends (mid-

dle panel). Eventually, these altitude oscillations are detected

and picked up by the Fast Fourier Transform, and a signal is

sent to S Oscillation. The bottom panel of Figure 19 shows

the posteriors for selected health nodes. It indicates that the

actual aircraft sensors and actuators are healthy. However, the

health status of the software (blue) decreases substantially a

little after 100 seconds, indicating a problem in the on-board

software. In this scenario, the health of the file system and

of the message queue, when considered individually, do not

drop significantly. Also, the software itself does not flag any

error.

9. CONCLUSIONS

We presented a three-pronged approach to sensor and soft-

ware health management in real time, on-board a UAS.

Health models are constructed in a modular and scalable man-

ner using a number of different building blocks. Major block

types provide advanced capabilities of temporal logic runtime

monitors, model-based analysis and signal processing, and

powerful probabilistic reasoning using Bayesian networks.

For our overarching design requirements of unobtrusiveness,

responsiveness, and realizability, we automatically transform

the health model into efficient FPGA hardware designs. We

demonstrated the capabilities of this approach on a set of

18

Annual Conference of the Prognostics and Health Management Society 2013

20s 40s 60s 80s 100s 120s 140s
0

1

C_pitch_up C_pitch_dwn

20s 40s 60s 80s 100s 120s 140s

−0.2

0

0.2

0.4

altitude vert_speed

20s 40s 60s 80s 100s 120s 140s

0

0.5

1

H_SW H_pitch H_accel

Figure 19. Traces of simulation experiment with file-system
related failure scenario. Top panel: actuator messages sent
through the message queue. Middle panel: vertical speed and
altitude of the aircraft showing oscillations. Bottom panel:
posterior probabilities of selected health nodes.

requirements and flight rules, both for sensor and software

health management. We presented experimental results for

this approach using actual data from the NASA Swift UAS.

Our approach enables the designer to build complex

models and reasoning modes. For example, tempo-

ral reasoning over the results of probabilistic health out-

puts can be formulated easily: (alt < 1000ft) →
◇[0,10s](P (H laserAlt = healthy) > 0.8) would require a

working laser altimeter at altitudes of less than 1000ft. In

a similar manner, results of prognostics components can be

smoothly integrated into our framework.

However, the results shown here are only the first steps

towards a real-time on-board sensor and software health man-

agement system. For the proof of concept demonstration in

this paper, we analyzed recorded data streams from the Swift

UAS on the ground as if they were happening in real time.

There are two clear options for reading this data on-board the

Swift UAS instead: reading sensor data passed on the com-

mon bus or having sensor data sent to our framework by the

flight computer. In the near future, we plan to define and

build unobtrusive read-only interfaces that will enable us to

get real-time sensor and software data from the common bus

or flight computer while providing the guarantee that under

no circumstances would our framework disturb the bus or any

other UAS component. This is a major requirement for certi-

fication and carrying out actual flight tests on the Swift UAS.

On a broader level, research needs to be performed on how to

automatically generate advanced system health management

models from requirements, designs, and architectural arti-

facts. In particular for monitoring the health of a complex and

large software system, automatic model generation is essen-

tial. We are confident that our approach, which allows us

to combine monitoring of sensors, prognostics, and software

while separating out (model-based) signal processing, tem-

poral, and probabilistic reasoning will substantially facilitate

the development of improved and powerful on-board health

management systems for unmanned aerial systems.

ACKNOWLEDGMENTS

This work was in part supported by NASA NRA grant

NNX08AY50A “ISWHM: Tools and Techniques for Soft-

ware and System Health Management.” The work of Thomas

Reinbacher was supported within the FIT-IT project CEVTES

managed by the Austrian Research Agency FFG under grant

825891.

REFERENCES

Alur, R., & Henzinger, T. A. (1990). Real-time Logics:
Complexity and Expressiveness. In Lics (pp. 390–401).
IEEE Computer Society Press.

Barringer, H., et al. (Eds.). (2010). Runtime verification
- first international conference, rv 2010, proceedings
(Vol. 6418). Springer Verlag.

Basin, D., Klaedtke, F., Müller, S., & Pfitzmann, B. (2008).
Runtime monitoring of metric first-order temporal
properties. In Fsttcs (pp. 49–60).

Basin, D., Klaedtke, F., & Zălinescu, E. (2011). Algorithms
for monitoring real-time properties. In Rv (Vol. 7186,
pp. 260–275). Springer Verlag.

Bauer, A., Leucker, M., & Schallhart, C. (2010). Comparing
LTL semantics for runtime verification. J. Log. and
Comput., 20(3), 651–674.

Bekkerman, R., Bilenko, M., & Langford, J. (Eds.). (2011).
Scaling up machine learning: Parallel and distributed
approaches. Cambridge University Press.

Bellman, R. (1958). On a routing problem. Quarterly of
Applied Mathematics, 16, 87–90.

Bolton, M., & Bass, E. (2013). Evaluating human-
human communication protocols with miscommunica-
tion generation and model checking. In Nasa formal
methods symposium (Vol. TBD). Springer.

Brown, R., & Hwang, P. (1997). Introduction to random
signals and applied kalman filtering (3rd ed.). John
Wiley & Sons.

Chavira, M., & Darwiche, A. (2005). Compiling Bayesian
networks with local structure. In Proceedings of the
19th international joint conference on artificial intelli-
gence (ijcai) (pp. 1306–1312).

Chavira, M., & Darwiche, A. (2007). Compiling Bayesian
networks using variable elimination. In Proc. of the
twentieth international joint conference on artificial
intelligence (ijcai-07) (pp. 2443–2449). Hyderabad,
India.

Darwiche, A. (2001). Recursive conditioning. Artificial Intel-
ligence, 126(1-2), 5-41.

Darwiche, A. (2003). A differential approach to inference in
Bayesian networks. Journal of the ACM, 50(3), 280–
305.

Darwiche, A. (2009). Modeling and reasoning with bayesian

19

Annual Conference of the Prognostics and Health Management Society 2013

networks. Cambridge, UK: Cambridge University
Press.

Dawid, A. P. (1992). Applications of a general propagation
algorithm for probabilistic expert systems. Statistics
and Computing, 2, 25–36.

Divakaran, S., D’Souza, D., & Mohan, M. R. (2010).
Conflict-tolerant real-time specifications in Metric
Temporal Logic. In Time (p. 35-42). IEEE Computer
Society Press.

Federal Aviation Administration. (2013). Federal Aviation
Regulation §91.

Gan, X., Dubrovin, J., & Heljanko, K. (2011). A symbolic
model checking approach to verifying satellite onboard
software. ECEASST , 46.

Geilen, M. (2003). An Improved On-The-Fly Tableau Con-
struction for a Real-Time Temporal Logic. In Cav (Vol.
2725, pp. 394–406). Springer Verlag.

Havelund, K. (2008). Runtime verification of C programs. In
Testcom/fates (pp. 7–22). Springer Verlag.

Huang, C., & Darwiche, A. (1994). Inference in belief net-
works: A procedural guide. International Journal of
Approximate Reasoning, 15(3), 225-263.

Huang, J., Chavira, M., & Darwiche, A. (2006). Solving
MAP exactly by searching on compiled arithmetic cir-
cuits. In Proc. of the twenty-first national conference
on artificial intelligence (p. 143-148). Boston, MA.

Ippolito, C., Espinosa, P., & Weston, A. (2010, April). Swift
UAS: An electric UAS research platform for green avi-
ation at NASA Ames Research Center. In CAFE eas
iv.

Jensen, F. V., Lauritzen, S. L., & Olesen, K. G. (1990).
Bayesian updating in causal probabilistic networks by
local computations. SIAM Journal on Computing, 4,
269–282.

Jeon, H., Xia, Y., & Prasanna, V. K. (2010). Parallel exact
inference on a CPU-GPGPU heterogenous system. In
Proc. of the 39th international conference on parallel
processing (p. 61-70).

Johnson, D. (2007). Raptors Arrive at Kadena. Retrieved
from http://www.af.mil/news/story.asp?storyID=
123041567

Kask, K., Dechter, R., & Gelfand, A. (2010). BEEM: bucket
elimination with external memory. In Proc. of the 26th
annual conference on uncertainty in artificial intelli-
gence (uai-10) (pp. 268–276).

Kozlov, A. V., & Singh, J. P. (1994). A parallel Lauritzen-
Spiegelhalter algorithm for probabilistic inference. In
Proc. of the 1994 acm/ieee conference on supercom-
puting (pp. 320–329).

Kulesza, Z., & Tylman, W. (2006). Implementation of
Bayesian network in FPGA circuit. In Mixdes (p. 711
-715). IEEE Computer Society Press.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local com-
putations with probabilities on graphical structures and
their application to expert systems. Journal of the
Royal Statistical Society, 50(2), 157–224.

Li, Z., & D’Ambrosio, B. (1994). Efficient inference in Bayes
nets as a combinatorial optimization problem. Interna-
tional Journal of Approximate Reasoning, 11(1), 55–
81.

Lichtenstein, O., Pnueli, A., & Zuck, L. (1985). The glory of
the past. In Logics of programs (Vol. 193, p. 196-218).
Springer Verlag.

Lin, M., Lebedev, I., & Wawrzynek, J. (2010). High-
throughput Bayesian computing machine with recon-

figurable hardware. In Fpga (pp. 73–82). ACM Press.
Linderman, M. D., Bruggner, R., Athalye, V., Meng, T. H.,

Asadi, N. B., & Nolan, G. P. (2010). High-throughput
Bayesian network learning using heterogeneous multi-
core computers. In Proc. of the 24th acm international
conference on supercomputing (p. 95-104).

Lindsey, A. E., & Pecheur, C. (2004). Simulation-based
verification of autonomous controllers via livingstone
pathfinder. In K. Jensen & A. Podelski (Eds.), Proceed-
ings tacas 2004 (Vol. 2988, pp. 357–371). Springer.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C.,
& Hellerstein, J. (2010). GraphLab: A new frame-
work for parallel machine learning. In Proc. of the 26th
annual conference on uncertainty in artificial intelli-
gence (uai-10) (p. 340-349).

Maler, O., Nickovic, D., & Pnueli, A. (2005). Real time
temporal logic: Past, present, future. In Formats (Vol.
3829, p. 2-16). Springer Verlag.

Maler, O., Nickovic, D., & Pnueli, A. (2007). On synthesiz-
ing controllers from bounded-response properties. In
Cav (Vol. 4590, p. 95-107). Springer Verlag.

Maler, O., Nickovic, D., & Pnueli, A. (2008). Checking
temporal properties of discrete, timed and continuous
behaviors. In Pillars of comp. science (p. 475-505).
Springer Verlag.

Mengshoel, O. J. (2007). Designing resource-bounded rea-
soners using Bayesian networks: System health moni-
toring and diagnosis. In Proceedings of the 18th inter-
national workshop on principles of diagnosis (dx-07)
(pp. 330–337). Nashville, TN.

Mengshoel, O. J., Chavira, M., Cascio, K., Poll, S., Dar-
wiche, A., & Uckun, S. (2010). Probabilistic model-
based diagnosis: An electrical power system case
study. IEEE Trans. on Systems, Man and Cybernetics,
Part A: Systems and Humans, 40(5), 874–885.

Mengshoel, O. J., Darwiche, A., Cascio, K., Chavira, M.,
Poll, S., & Uckun, S. (2008). Diagnosing faults in
electrical power systems of spacecraft and aircraft. In
Proc. of the twentieth innovative applications of artifi-
cial intelligence conference (iaai-08) (pp. 1699–1705).
Chicago, IL.

Mengshoel, O. J., Roth, D., & Wilkins, D. C. (2011). Port-
folios in stochastic local search: Efficiently comput-
ing most probable explanations in Bayesian networks.
Journal of Automated Reasoning, 46(2), 103–160.

Mengshoel, O. J., Wilkins, D. C., & Roth, D. (2011). Initial-
ization and restart in stochastic local search: Comput-
ing a most probable explanation in Bayesian networks.
IEEE Transactions on Knowledge and Data Engineer-
ing.

Musliner, D., Hendler, J., Agrawala, A. K., Durfee, E., Stros-
nider, J. K., & Paul, C. J. (1995, January). The
challenges of real-time AI. IEEE Computer, 28, 58–
66. Retrieved from citeseer.comp.nus.edu.sg/article/
musliner95challenges.html

Namasivayam, V. K., & Prasanna, V. K. (2006). Scalable
parallel implementation of exact inference in Bayesian
networks. In Proc. of the 12th international conference
on parallel and distributed system (p. 143-150).

Park, J. D., & Darwiche, A. (2004). Complexity results and
approximation strategies for MAP explanations. Jour-
nal of Artificial Intelligence Research (JAIR), 21, 101-
133.

Pasricha, R., & Sharma, S. (2009). An FPGA-based design of
fixed-point Kalman filter. ICGST International Journal

20

Annual Conference of the Prognostics and Health Management Society 2013

on Digital Signal Processing, DSP, 9, 1–9.
Pearl, J. (1988). Probabilistic reasoning in intelligent sys-

tems: Networks of plausible inference. San Mateo, CA:
Morgan Kaufmann.

Pike, L., Niller, S., & Wegmann, N. (2011). Runtime verifi-
cation for ultra-critical systems. In Rv (Vol. 7186, pp.
310–324). Springer Verlag.

Poll, S., Patterson-Hine, A., Camisa, J., Garcia, D., Hall, D.,
Lee, C., . . . Koutsoukos, X. (2007). Advanced diag-
nostics and prognostics testbed. In Proc. of the 18th
international workshop on principles of diagnosis (dx-
07) (pp. 178–185). Nashville, TN.

Reinbacher, T., Rozier, K. Y., & Schumann, J. (2013).
Temporal-logic based runtime observers for system
health mangement of real-time systems.. (under sub-
mission)

Ricks, B. W., & Mengshoel, O. J. (2009a). The diagnos-
tic challenge competition: Probabilistic techniques for
fault diagnosis in electrical power systems. In Proc. of
the 20th international workshop on principles of diag-
nosis (dx-09) (pp. 415–422). Stockholm, Sweden.

Ricks, B. W., & Mengshoel, O. J. (2009b). Methods for
probabilistic fault diagnosis: An electrical power sys-
tem case study. In Proc. of annual conference of the
phm society, 2009 (phm-09). San Diego, CA.

Ricks, B. W., & Mengshoel, O. J. (2010). Diagnosing inter-
mittent and persistent faults using static Bayesian net-
works. In Proc. of the 21st international workshop on
principles of diagnosis (dx-10). Portland, OR.

Ristic, B., Arulampalam, S., & Gordon, N. (2004). Beyond
the Kalman Filter: Particle Filters for Tracking Appli-
cations. Artech House.

Rozier, K. Y. (2011). Linear temporal logic symbolic model
checking. Computer Science Review, 5(2), 163–203.

Rozier, K. Y., & Vardi, M. Y. (2010, March). LTL satis-
fiability checking. International Journal on Software
Tools for Technology Transfer (STTT), 12(2), 123 -
137. Retrieved from http://dx.doi.org/10.1007/s10009
-010-0140-3 doi: DOI10.1007/s10009-010-0140-3

RTCA. (2012). DO-178C/ED-12C: Software considera-
tions in airborne systems and equipment certification.
Retrieved from http://www.rtca.org

Schumann, J., Mbaya, T., Mengshoel, O. J., Pipatsrisawat,
K., Srivastava, A., Choi, A., & Darwiche, A. (2013).
Software health management with Bayesian networks.
Innovations in Systems and Software Engineering,
9(2), 1-22.

Schumann, J., Mengshoel, O. J., & Mbaya, T. (2011).
Integrated software and sensor health management for

small spacecraft. In Proc. of the 2011 ieee fourth inter-
national conference on space mission challenges for
information technology (pp. 77–84).

Schumann, J., Morris, R., Mbaya, T., Mengshoel, O. J., &
Darwiche, A. (2011). Report on Bayesian approach for
dynamic monitoring of software quality and integration
with advanced IVHM engine for ISWHM (Tech. Rep.).
USRA/RIACS.

Shenoy, P. P. (1989). A valuation-based language for expert
systems. International Journal of Approximate Rea-
soning, 3(5), 383 – 411.

Silberstein, M., Schuster, A., Geiger, D., Patney, A., &
Owens, J. D. (2008). Efficient computation of sum-
products on GPUs through software-managed cache.
In Proc. of the 22nd acm international conference on
supercomputing (pp. 309–318).

Thati, P., & Roşu, G. (2005). Monitoring algorithms for
Metric Temporal Logic specifications. ENTCS, 113,
145–162.

Whittle, J., & Schumann, J. (2004, December). Automating
the implementation of Kalman filter algorithms. ACM
Transactions on Mathematical Software, 30(4), 434–
453.

Xia, Y., & Prasanna, V. K. (2007). Node level primitives
for parallel exact inference. In Proc. of the 19th inter-
national symposium on computer architecture and high
performance computing (p. 221-228).

Zhang, N. L., & Poole, D. (1996). Exploiting causal indepen-
dence in Bayesian network inference. Journal of Artifi-
cial Intelligence Research, 5, 301-328. Retrieved from
citeseer.nj.nec.com/article/zhang96exploiting.html

Zhao, Y., & Rozier, K. Y. (2012). Formal specification
and verification of a coordination protocol for an auto-
mated air traffic control system. In Proceedings of the
12th international workshop on automated verification
of critical systems (avocs 2012) (Vol. 53). European
Association of Software Science and Technology.

Zheng, L., & Mengshoel, O. J. (2013, August). Optimiz-
ing parallel belief propagation in junction trees using
regression. In Proc. of 19th ACM SIGKDD confer-
ence on knowledge discovery and data mining (kdd-
13). Chicago, IL.

Zheng, L., Mengshoel, O. J., & Chong, J. (2011). Belief prop-
agation by message passing in junction trees: Comput-
ing each message faster using gpu parallelization. In
Proc. of the 27th conference in uncertainty in artificial
intelligence (uai-11). Barcelona, Spain.

21

