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Airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool to provide auxiliary
data for sample surveys aiming at estimation of above-ground tree biomass (AGB), with potential applications
in REDD forest monitoring. For larger geographical regions such as counties, states or nations, it is not feasible
to collect airborne LiDAR data continuously (“wall-to-wall”) over the entire area of interest. Two-stage cluster
survey designs have therefore been demonstrated by which LiDAR data are collected along selected individual
flight-lines treated as clusters and with ground plots sampled along these LiDAR swaths. Recently, analytical
AGB estimators and associated variance estimators that quantify the sampling variability have been proposed.
Empirical studies employing these estimators have shown a seemingly equal or even larger uncertainty of the
AGB estimates obtained with extensive use of LiDAR data to support the estimation as compared to pure
field-based estimates employing estimators appropriate under simple random sampling (SRS). However, com-
parison of uncertainty estimates under SRS and sophisticated two-stage designs is complicated by large differ-
ences in the designs and assumptions. In this study, probability-based principles to estimation and inference
were followed. We assumed designs of a field sample and a LiDAR-assisted survey of Hedmark County (HC)
(27,390 km2), Norway, considered to be more comparable than those assumed in previous studies. The field
sample consisted of 659 systematically distributed National Forest Inventory (NFI) plots and the airborne scan-
ning LiDAR data were collected along 53 parallel flight-lines flown over the NFI plots. We compared AGB esti-
mates based on the field survey only assuming SRS against corresponding estimates assuming two-phase
(double) sampling with LiDAR and employing model-assisted estimators. We also compared AGB estimates
based on the field survey only assuming two-stage sampling (the NFI plots being grouped in clusters) against
corresponding estimates assuming two-stage sampling with the LiDAR and employing model-assisted estima-
tors. For each of the two comparisons, the standard errors of the AGB estimates were consistently lower for
the LiDAR-assisted designs. The overall reduction of the standard errors in the LiDAR-assisted estimation was
around 40–60% compared to the pure field survey. We conclude that the previously proposed two-stage
model-assisted estimators are inappropriate for surveys with unequal lengths of the LiDAR flight-lines and
new estimators are needed. Some options for design of LiDAR-assisted sample surveys under REDD are also
discussed, which capitalize on the flexibility offered when the field survey is designed as an integrated part of
the overall survey design as opposed to previous LiDAR-assisted sample surveys in the boreal and temperate
zones which have been restricted by the current design of an existing NFI.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

There is an urgent need for efficient methods to estimate biomass
and carbon stocks and changes in such stocks in tropical countries.
The United Nations Collaborative Program on Reduced Emissions
from Deforestation and Forest Degradation in Developing Countries

(UN REDD) (http://www.un-redd.org) was launched with the aim of
contributing to the development of capacity for reducing emissions
from loss of forest carbon in developing countries. It is understood that
REDD mechanisms must be supported by forest assessment programs
that can monitor the carbon stocks. Implementation of so-called REDD
demonstrations at local scales within countries and even covering entire
nations has now startedwith funding fromdonor countries. In for exam-
ple Tanzania, REDD demonstrations involving local assessment of carbon
stocks are ongoing (http://www.reddtz.org) while Guyana as a nation
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has already received payments from Norway (Anonymous, 2011a) for
the first commitment period (1 October 2009–31 September 2010) for
performances on avoided emissions from deforestation and other inter-
imperformance indicators as defined in the bilateral agreementbetween
Guyana and Norway (Anonymous, 2009).

It is expected that remote sensing will play an important role in
future monitoring for REDD. Airborne Light Detection and Ranging
(LiDAR) has emerged as one of the most promising remote sensing
technologies for estimating above-ground tree biomass. Lately, the
potential of airborne LiDAR for local (Næsset et al., 2011) and national
forest inventory (Næsset, 2005) and for REDD (Deforestation and Forest
Degradation inDeveloping Countries)monitoring has been emphasized
(Angelsen, 2008; Gibbs et al., 2007). For monitoring of larger territories
like counties, states, provinces, and nations, samplingwith LiDAR is a vi-
able option. Samplingwith airborne profiling (Nelson et al., 2003, 2004,
2012) and scanning (Andersen et al., 2009; Næsset, 2005; Næsset et al.,
2009) LiDARs as well as spaceborne LiDAR (Boudreau et al., 2008;
Nelson et al., 2009a,b) has been proposed and demonstrated for terri-
tories ranging in size from a few thousand square kilometers (the
state of Delaware, USA; Nelson et al., 2003, 2004) to more than and a
million square kilometers (the province of Quebec, Canada; Boudreau
et al., 2008; Nelson et al., 2009a). LiDAR data has been used as part of
two stage cluster (e.g. Andersen et al., 2009) or even three phase
(e.g. Boudreau et al., 2008) designs.

Asner (2009) recently proposed a REDD monitoring methodology
utilizing airborne scanning LiDAR in combination with field data and
other remote sensing data and he conducted a demonstration over
4.3 million ha of the Peruvian Amazon (Asner et al., 2010). REDD dem-
onstrations utilizing airborne LiDAR have also been carried out in other
countries, e.g., Laos (Gautam et al., 2010) and Nepal (Anonymous,
2011b). Clearly, many of the early LiDAR-supported biomass assess-
ments conducted as REDDdemonstrations do not complywith general-
ly accepted principles in forest inventory, at least not as far as appraisal
of uncertainties in the biomass and carbon stock estimates is concerned.
Further, many studies with LiDAR continue to be conducted in tropical
countries with little or no consideration given to how the acquired
data will be analyzed.

For estimation methods to be relevant for reporting purposes for
tropical countries under a future REDDmechanism and for countries rat-
ifying the Kyoto Protocol to the United Nations Framework Convention
on Climate Change trustworthy estimates of changes in carbon stocks
with associated and generally accepted estimates of uncertainties should
be provided. In cases where estimates and associated uncertainty esti-
mates are based on surveys involving LiDAR, there is evidently an urgent
need to come up with reliable frameworks for estimation and inference.
It is not trivial to derive statistically sound estimators for complicated de-
signs involving two or even three phases or stages of sampling.

Efforts to develop estimators for two-phase (double sampling) and
two-stage (cluster sampling) designs involving LiDAR and ground sam-
ples have been ongoing for several years (Næsset et al., 2009). These de-
signs basically consist of a first phase or stage sample of parallel
flight-lines flown over the target area with LiDAR data collected along
the swaths (scanning LiDAR) or collected as profiles (profiling LiDAR)
along the center line. The flight-lines can be spaced many kilometers
apart and they do not give a full “wall-to-wall” coverage. Second
phase or stage samples of field plots are then collected on the ground
along the flight-lines, often according to a systematic layout. Gregoire
et al. (2011) and Ståhl et al. (2011) recently presented estimators ap-
propriate for a design by which LiDAR data are collected along such a
sample of individualflight-lines over an area of interest andwith a sam-
ple of field plots collected on the ground along the LiDAR flight-lines.
Gregoire et al. (2011) assumed that the LiDAR flight-lines as well as
the field plots are random samples from a finite population and derived
model-assisted estimators of biomass and corresponding variance esti-
mators, which rest on the principles of probability sampling. Ståhl et al.
(2011) derived model-dependent estimators applicable to the same

design, but did not assume that the samples were selected according
to probabilistic principles. The latter approach is thereforemore flexible
because thefield plots need not come from the samearea or they can for
example be selected purposefully, which may be an attractive property
especially in the tropics where inaccessibility and limited infrastructure
may restrict field work in remote areas. However, the work by Ståhl
et al. (2011) assumed that the regression model that relates biomass
observed on the ground to LiDAR measurements is correctly specified
for the area of interest for the estimator to be unbiased while the
model-assisted estimator is approximately design-unbiased.

Gregoire et al. (2011) and Gobakken et al. (2012) presented two
case studies in which a systematic sample of parallel scanning airborne
LiDAR flight-lines was collected over Hedmark County, Norway. The
size of the county is approximately 27,390 km2 and flight-lines were
spaced 6 km apart. The LiDAR swath width was 500 m. Thus, approxi-
mately 8% of the population was sampled with LiDAR. The LiDAR was
flown over the permanent sample of National Forest Inventory (NFI)
field plots. The NFI plots are located on a systematic 3 km×3 km grid.
Results seemingly indicated that estimates of biomass per hectare for
the entire County and for individual cover classes based on the field sur-
vey only, i.e., a so-called direct estimate assuming simple random sam-
pling,was equally precise or evenmore precise (smaller standard error)
than the corresponding estimates based on the model-assisted estima-
tor assuming a two-stage cluster design. This is somewhat surprising
since one would expect a sample of LiDAR data with 8% coverage of
the entire population to improve the precision considerably.

In a simulated sampling study based on an artificial population of
above-ground biomass in Hedmark County, Ene et al. (2012) tested the
analytical standard error estimators derived by Gregoire et al. (2011)
under systematic sampling and compared the analytical estimates
against the empirical estimates obtained by simulations. They also com-
pared the empirical standard error estimates against those obtained for
the pure field-based survey. Themajor findings were that (1) the empir-
ical (“true”) standard error of the LiDAR-assisted cluster design under
systematic sampling was only 21% of that obtained with the analytical
estimator (i.e., a serious overestimation of the uncertainty with the ana-
lytical estimator) and (2) that the empirical standard error of the
LiDAR-assisted design was 41% of that obtained from the field sample
alone. A relative standard error of 41% translates to a relative variance,
also known as relative efficiency, of 5.8, indicating that 5.8 times as
many field samples would be required for the pure field-based survey
to obtain the same precision as with the LiDAR-assisted survey.

Two other model-assisted studies with scanning LiDAR conducted
in two other regions in Norway with complete coverage of LiDAR data
for the entire populations in question indicated standard errors of a
magnitude of 40–45% and 42% of what was obtained by a pure field
survey for above-ground biomass (Næsset et al., 2011) and timber
volume (McRoberts et al., 2013), respectively, which correspond
well with what Ene et al. (2012) found.

There are however, two important properties of the design in the
Hedmark County survey that were taken into consideration in the
simulation study by Ene et al. (2012) using an artificial population
butwhich are difficult to account for and cannot be ignored in operation-
al cases like those described by Gregoire et al. (2011) andGobakken et al.
(2012). First, a simple random sample was assumed in both stages (the
LiDAR flight-lines and the field sample plots) under the LiDAR-assisted
design while the samples were truly systematic in both stages. It is
well known that variance estimators assuming random designs are bi-
ased under systematic designs. The magnitude of this bias is unknown,
although the bias is almost always positive, i.e., the analytical estimates
of variance exceed the actual variance. Ene et al. (2012) provided some
empirical evidence for this bias for the given artificial population they
used. Second, as noted by Gregoire et al. (2011), there are fundamental
differences between the two designs (i.e., LiDAR-assisted cluster design
and pure field sample) and they rest on different assumptions. One of
these differences is that while the sampling variability in simple random
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sampling is attributed to variation between the primary sampling units
(the individual plots), uncertainty in two-stage sampling is quantified
by the variability between sampling units (plots) within clusters as
well as between groups (clusters) of plots. These designs are therefore
difficult to compare.

As there is an urgent need to come up with scientifically based
recommendations for efficient designs to monitor under REDD, it is
important to have realistic and comparable values for expected un-
certainties and associated inventory costs for alternative designs. A
comparison between an estimator assuming simple random sampling
and the one developed by Gregoire et al. (2011) could be achieved
through simulations. That might address the issue of random versus
systematic designs as well as the issue of differences between the es-
timators as such, as demonstrated by Ene et al. (2012). Nonetheless, a
simulationwould have to assume a certainmodel population,which in-
deed would differ from the true but unknown population of Hedmark
County. For studies of uncertainty in sampling, correctly representing
spatial correlation is crucial. The latter task is extremely difficult. First,
the computational complexity and intensity is very demanding for
even relatively small areas. Second, spatial correlation often is not con-
stant and often has directional components. Third, although the task is
difficult for relatively homogeneous, non-fragmented forest, it is even
more difficult for the fragmented forests like in Hedmark County.
Thus, the actual real-world sample data collected in Hedmark offer
some opportunities for analysis where the true spatial structure of the
population is maintained. Therefore, simulation studies and estimation
based on a true sample from a real population are complementary exer-
cises. By assuming more similar designs for the field-based direct esti-
mation and the model-assisted estimation and thus ruling out some of
the unequal assumptions that a comparison of simple random sampling
estimation and two-stage model-assisted estimation necessarily will
suffered from (Andersen et al., 2009; Gobakken et al., 2012; Gregoire
et al., 2011), it should be possible to provide estimates of uncertainty
that aremore comparable and could give an indication of the relative ef-
ficiency of these two basic approaches to estimation.

Two alternative strategies for such a comparative analysis exist,
namely (1) to adopt designs for the field survey which are more similar
to the two-stage cluster design assumed in the model-assisted LiDAR
estimation, and (2) to adopt designs for the LiDAR-assisted survey
which are more similar to the simple random sampling assumed in
the directfield-based estimation. The objective of this studywas to follow
these two strategies in order to shed further light on the relative magni-
tude of uncertainties in above-ground biomass estimates (Mg ha-1) for
pure field-based sample surveys and LiDAR-assisted surveys with special
reference to Hedmark County. The major findings in this study provide a
useful insight of general value that goes beyond previous knowledge and
clear recommendations are given regarding the direction of future re-
search to find appropriate design-based and model-assisted estimators
for surveys involving LiDAR sampling. Finally, some options for design
of LiDAR-assisted sample surveys under REDD are discussed, which cap-
italize on theflexibility offeredwhen thefield survey is designed as an in-
tegrated part of the overall survey design as opposed to previous LiDAR-
assisted sample surveys in the boreal and temperate zones which have
been restricted by the current design of an existing NFI.

2. Material and methods

2.1. Study area

The area of interest (AOI) in this study was Hedmark County (HC).
HC is located in southeastern Norway on the Swedish border (Fig. 1)
and the total area is approximately 27,390 km2 with altitude ranging
from 119 to 2178 m a.s.l. There is a general trend of rising elevations
and thus decreasing productivity from south to north. The dominant
tree species are Norway spruce (Picea abies (L.) Karst.) and Scots pine

(Pinus sylvestris L.) with extensive tracts of Downy birch (Betula
pubescens Ehrh.) close to the mountains.

2.2. Field sample survey

A sub-sample of the permanent field plots of the Norway National
Forest Inventory (NFI) was used in the estimation. The NFI plots are lo-
cated on a 3 km×3 km grid and each year 20% of the plots are re-
measured according to a Latin square design. In the current study, we
used approximately 30% (659 plots) of the NFI plots in HC, namely
those measured in 2005, 2006, and 2007 and located along the scanning
LiDAR flight-lines. We used data from these three years only since that
would correspond fairly well to the time of LiDAR data acquisition. The
LiDAR flight-lines were flown as parallel strips and located 6 km apart
rather than 3 km apart. Had the LiDAR flight-lines been collected every
3 km, then the entire NFI ground sample would have been measured
by the LiDAR. However, this expense could not be covered by the project.
The NFI plots constitute an un-stratified systematic sample. We divided
HC into eight mutually exclusive cover classes, i.e., the four productive
cover classes (1) High, (2) Medium, (3) Low productivity forests, and
(4) Young forest, and the three nonproductive or non-forest cover clas-
ses (5) Nonproductive forest, (6) Mountain areas, (7) Open water, and
(8) Developed areas. Cover class Developed areas was excluded from
this study because the field sample was not selected according to
probability-based principles. The classes were formed on the basis of
existing official land use maps combined with classification of Landsat
TM data. Detailed definitions of the seven non-overlapping cover classes
and the composite cover class map that was produced can be found in
Gobakken et al. (2012).

The NFI plots are circular with size 250 m2. On each sample plot, all
trees with diameter at breast height ≥5 cm were callipered and tree
heights were measured on an average of 10 sample trees per plot.
Total above-ground dry forest biomass (AGB, Mg ha−1) was computed
as the sum of the individual biomass components, i.e., stump, stem,
bark, dead and living branches, and foliage of all individual trees,
using species-specific allometric models (Marklund, 1988) with diame-
ter at breast height and tree height as independent variables following
the procedures described in Gobakken et al. (2012). The plot positions
were determined by differential post-processing of dual-frequency
observations of the American Global Positioning System (GPS) and
the Russian Global Navigation Satellite System, with estimated accu-
racy of the plot coordinates ranging from 0 to 2 m, with an average of
0.05 m (Gobakken et al., 2012; Næsset, 2001).

An overview of the data is presented in Table 1. There seems to be
a geographical trend of increasing AGB values in the NFI sample from
north to south (Fig. 2).

2.3. Additional data from forest management inventories in Hedmark
County

The short-range (b3 km) spatial correlation of AGB was a concern
in some of the analyses. We therefore used data from six LiDAR-
assisted forest management inventories in Hedmark to help with a
simple assessment of a likely range of the spatial correlation in AGB.

The forest in HC is generally actively managed according to standard
silvicultural practices typically seen in boreal forests. Stands are typically
harvested by clear-felling, and planting, tending, and thinning are treat-
ments frequently seen in many of the stands. Thus, the forest landscape
has a pronounced stand structure with homogenous and single-aged
stands, often consisting ofmono-cultures. In general, a strong spatial cor-
relation in AGB can therefore be found within stands while the stand
boundaries often indicate abrupt changes in the distributional patterns
of AGB. The typical stand size in HC can therefore give an indication of
the geographical scale at which AGB can be expected to display a strong
correlation. Examination of stand sizes in the six inventories (Fig. 1) cov-
ering a total area of 1102.4 km2, showed an average stand size ranging
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from 0.87 ha in Area 2 (Sør-Odal Municipality) to 2.07 ha in Area 5
(ÅmotMunicipality (east)) (Table 2). By assuming square-shaped stands,
the maximum range for an average stand would be around 93–144 m. A
crude estimate of range of spatial correlation of AGB taking into account
that stands in reality seldom are geometric units as compact as a square
could therefore be, say, 200 m.

2.4. Airborne scanning LiDAR data

The LiDAR data were acquired in the period between 22 July and 16
September 2006. Fifty-three parallel flight-lines were flown with an
inter-line distance of 6 km (Fig. 1). Fixed-winged aircrafts were used to
carry the Optech ALTM 3100 laser scanning systems (Optech, Canada).
Average flying altitude was approximately 800 m a.g.l. at a flight speed
of 75 ms−1. The pulse repetition frequency was 100 kHz and the scan
frequency was 55 Hz. A maximum half scan-angle of 17° resulted in a
swath width of approximately 500 m. The average footprint diameter
was 21 cm and the average pulse density was 2.8 m−2.

The data were processed by the contractor (Blom Geomatics, Nor-
way). Ground echoes were found and classified using the progressive

Triangular Irregular Network (TIN) densification algorithm (Axelsson,
2000) of the TerraScan software (Anonymous, 2005). Heights above
the created TIN surface were calculated for all echoes by subtracting
the respective TIN heights from the height values of all echoes recorded.
The ALTM 3100 sensor is capable of recording up to four echoes per
pulse. Echoes classified as “single” and “first of many” were pooled
into one dataset denoted as “first” echoes. Similarly, echoes classified
as “single” and “last ofmany”were pooled into another dataset denoted
as “last” echoes. The first and last datasets were stored for subsequent
estimation.

The 500 mwide LiDAR stipswere divided into regular cells with size
250 m2 (Fig. 3) and each cell was assigned to its corresponding cover
class. For each cell, separate canopy height distributions were extracted
for those LiDAR echoes of the first and last echo datasets, respectively,
that exceeded 2 m above the ground surface. The LiDAR data were
also laid atop the NFI field plots and the corresponding canopy height
distributions were extracted for the field plots as well, i.e., for LiDAR
echoes inside the plot circumference. For every grid cell and every
field plot we derived height-related metrics from the height distribu-
tions, such as height deciles. Further, we also derived variables related
to canopy density, such as the relative cumulative densities at various
vertical height levels, see Gobakken et al. (2012) for details. These
LiDAR-derived metrics were used in the subsequent estimation.

2.5. Estimation and inference

In order to more fairly compare uncertainties of ground-based and
LiDAR-assisted above-ground biomass estimates and thus rule out ef-
fects of unequal assumptions, a design for model-assisted estimation
with LiDAR as auxiliary information was sought that mimicked, as
best we could, the design of the field survey. Since simple random
sampling was assumed for the field survey, a two-phase (double sam-
pling) approach was employed for the model-assisted LiDAR estima-
tion. This approach effectively forces us to handle the LiDAR-assisted
survey in a fashion similar to the field survey.

Conversely, we can “force” the field survey to look like a LiDAR-
assisted design. Gregoire et al. (2011) assumed a two-stage (cluster)

1
2

3

4

56

Fig. 1. Map of a part of Fenno-Scandinavia (left) with location of Hedmark County. Hedmark County (middle) with the 53 east–west oriented parallel LiDAR flight-lines.
Gray-shaded background indicates above-ground biomass density (dark is high biomass; light is low biomass). Black areas indicate where the forest management inventories
were conducted. The six areas are marked with numbers (see Table 2 for further details). A detailed close-up from Hedmark County (right) displays five of the LiDAR
flight-lines with their corresponding swaths and National Forest Inventory field plots (dots).

Table 1
Areal distribution on cover classes in Hedmark County, corresponding National Forest
Inventory (NFI) plot numbers, and estimated total above-ground biomass (AGB) on
the plots.

Cover class Area
(%)

No. of NFI plots AGB (Mg ha−1)

Mean Range

Productive forest
High 5 48 123.9 0.0–331.5
Medium 13 105 96.7 4.9–290.9
Low 16 141 49.3 0.0–177.5
Young 17 151 33.2 0.0–207.0

Nonproductive forest and nonforest
Nonproductive forest 11 83 28.0 0.0–151.2
Mountain areas 28 95 12.4 0.0–128.8
Open water 5 36 0.0 0.0–0.0
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design for the model-assisted estimation with LiDAR. A more compa-
rable design for direct estimation based on the field survey than sim-
ple random sampling would be two-stage equal probability cluster
sampling.

Thus, we have identified four different designs:

1. Simple random sampling — direct estimation based on the field
survey only.

2. Two-stage (cluster) sampling — direct estimation based on the
field survey only.

3. Two-phase (double) sampling—model-assisted estimation supported
by LiDAR data as auxiliary information.

4. Two-stage (cluster) sampling—model-assisted estimation supported
by LiDAR data as auxiliary information as per Gregoire et al. (2011).

A common property of the four designs mentioned above and the
corresponding estimators that we employed for each of them (see
below) is that they are so-called design-based estimators. All these
estimators rely on probability sampling, i.e., that there are known
and positive probabilities for selection for each element in the defined
population and that there exist one and only one positive value for
each population element. As illustrated in Fig. 3, a basic property of
two-phase sampling is that a more intense, fine-scale (small sampling
units) sample is selected in the first phase with a less intense subsam-
ple selected in the second phase, as opposed to two-stage sampling
where a less intense, coarse-scale (large sampling units; clusters)

sample is selected initially, and a more intense, finer-scale sample is
selected subsequently within the first-stage sampling units. It is a
common property of all designs though that the selection of sampling
units is random. That even applies to the two-phase and two-stage
designswhere randomselection of sampling units (individual population
elements (plots) in two-phase and individual clusters in two-stage) is as-
sumed in the first phase and stage of sampling with subsequent random
selection of individual population elements (plots) within the first-phase
elements and first-stage clusters, respectively.

In the following, wewant to provide appropriate estimators for AGB
and corresponding error estimators for the four identified designs.

2.5.1. Simple random sampling — direct estimation (SRS)
We find it convenient first to detail the estimation for the cover

classes. Let U be the entire population of elements (grid cells with
size 250 m2) in HC where U={1,…,k,…,N}. The population was di-
vided into non-overlapping cover classes, Uc, with sizes Nc, where
c=1,…,H.

Now, let bk be the total above-ground biomass per hectare of the
kth element in the population. We want to define the parameter
mean biomass per hectare (B) within a particular cover class (c) for
which we later wish to find an appropriate estimator:

Bc ¼
∑k∈Uc

bk
Nc

: ð1Þ

First, we want to estimate the above-ground biomass per hectare
from the field sample alone, i.e., using a so-called direct estimator. Let
sc denote a sample of size nc that after random selection [i.e., simple ran-
dom sampling (SRS)] falls in cover class c. Then sc is the subsample of
the plots in Uc. The mean above-ground biomass per hectare for a par-
ticular cover class was estimated according to (Gregoire & Valentine,
2008):

B̂SRSc ¼
∑k∈sc

bk
nc

: ð2Þ

Fig. 2. Left: Mean above-ground biomass (AGB) across all field plots on each E–Woriented line of plots in the NFI grid at different distances from the southernmost plots (solid line)
and variability in above-ground biomass among the field plots on a given E–W oriented line (±1 stdev, scattered lines). Right: Mean above-ground biomass across all field plots on
each N–S oriented line of plots in the NFI grid at different distances from the westernmost plots (solid line) and variability in above-ground biomass among the field plots on a given
N–S oriented line (±1 stdev, scattered lines).

Table 2
Total area inventoried and mean stand area in six forest management inventories in
Hedmark County.

Areaa Municipality Total area (km2) Mean stand area (ha)

1 Kongsvinger 356.9 1.69
2 Sør-Odal 131.5 0.87
3 Åsnes 227.9 1.86
4 Åmot (west) 159.0 1.69
5 Åmot (east) 89.4 2.07
6 Stor-Elvdal 137.7 1.68

a See map in Fig. 1 for geographical location of each area.

112 E. Næsset et al. / Remote Sensing of Environment 130 (2013) 108–120



This estimator will be slightly biased since it is a ratio estimator
due to the random sample size, nc.

An estimator for the variance of B̂SRSc is

V̂ B̂SRSc

� �
¼

∑k∈sc
bk−B̂SRSc

� �2

nc nc−1ð Þ : ð3Þ

In this estimator we have ignored corrections for finite population
because the sampling fractions are always very small and a correction
would have a negligible influence on the variance estimates.

In situations where a single estimate was sought across several
cover classes, e.g. for cover classes U1 and U2, we applied the estimators
in Eqs. (2) and (3) by collapsing the two classes and let them be repre-
sented by the same subscript c. For estimation of overall above-ground
biomass per hectare in HC, we ignored the cover classes entirely. Thus,
based on the overall sample s of size n biomasswas estimated according
to

B̂SRS ¼
∑k∈sbk

n
ð4Þ

with the variance estimator

V̂ B̂SRS

� �
¼

∑k∈s bk−B̂SRS

� �2

n n−1ð Þ : ð5Þ

2.5.2. Two-stage (cluster) sampling — direct estimation (2ST)
In the following wewill assume that the population U is partitioned

into M clusters denoted U1, …, Ui, …, UM. The clusters are non-
overlapping and each of them is assumed to have the same shape and
size as the swath produce by the scanning LiDAR along an individual
flight-line. The number of population elements (grid cells with size
250 m2) within cluster Ui is denoted Ni. We will now assume that m
among the M clusters will be selected by simple random sampling.
This sample of clusters (sI) constitutes our first-stage sample. For
every first-stage cluster Ui we will then select a second-stage sample si
of size ni among the Ni population elements in Ui according to simple
random sampling.

An appropriate estimator for mean above-ground biomass per hect-
are forHC for the two-stage design (2ST) is (Gregoire & Valentine, 2008,
p. 397)

B̂2ST ¼ M
Nm

∑Ui∈sI

Ni

ni
∑k∈si

bk: ð6Þ

An estimator for the variance of B̂2ST is

V̂ B̂2ST

� �
¼ 1

N2 M2 1
m

− 1
M

� �
S2I þ

M
m

∑Ui∈sI
N2

i
1
ni
− 1

Ni

� �
S2IIi

� �
ð7Þ

where

S2I ¼ 1
m−1

∑Ui∈sI

Ni

ni
∑k∈si

bk−
N
M

B̂2ST

� �2
ð8Þ

and

S2IIi ¼
1

ni−1
∑k∈si

bk−
1
ni
∑k∈si

bk

� �2
: ð9Þ

Eq. (8) quantifies the variation between individual cluster totals of
above-ground biomass and the mean total biomass over all clusters.
Eq. (9) quantifies the variation between above-ground biomass per
hectare for individual plots within a given cluster i and mean biomass
over all plots for that particular cluster.

Further, we wish to estimate above-ground biomass per hectare
for cover class c. The number of population elements within cluster
Ui that falls in class c is denoted Nci. The second-stage sample that
falls in class c is denoted sci and is of size nci. An appropriate estimator
for cover class c is obtained by introducing the subscript c in Eq. (6):

B̂2STc ¼
M

Ncm
∑Ui∈sI

Nci

nci
∑k∈sci

bk ð10Þ

while, similarly, an estimator for the variance of B̂2STc is

V̂ B̂2STc

� �
¼ 1

N2
c

M2 1
m

− 1
M

� �
S2Ic þ

M
m

∑
Ui∈sI

N2
ci

1
nci

− 1
Nci

� �
S2IIci

" #
ð11Þ

Fig. 3. An illustration of a portion of an individual E–W oriented LiDAR flight-line. The swath is divided into regular grid cells considered as population elements. Two National For-
est Inventory field sample plots spaced 3 km apart are seen as black cells in the eastern and western parts of the swath, respectively. Different gray-shadings indicate different cover
classes. The direct estimation of AGB is based on the sample plots only [simple random sampling (SRS) and two-stage sampling (2ST)]. The two-phase model-assisted estimation
(2PHMA) is based on the white cells as population elements selected for the first-phase sample and the black cells (the NFI plots) as second-phase sample. In the two-stage
model-assisted estimation (2STMA), the entire swath (all cells) is treated as a first-stage sampling unit with the black cells (the NFI plots) as second-stage sample.
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where

S2Ic ¼
1

m−1
∑Ui∈sI

Nci

nci
∑k∈sci

bk−
Nc

M
B̂2STc

� �2
ð12Þ

and

S2IIci ¼
1

nci−1
∑k∈sci

bk−
1
nci

∑k∈sci
bk

� �2
: ð13Þ

In situations where a single estimate was sought across several
cover classes, the classes in question were collapsed and represented
by the same subscript c in Eqs. (10)–(13).

2.5.3. Two-phase (double) sampling—model-assisted estimation (2PHMA)
Wewill now assume for analytical purposes that a large sample s1 of

size n1 is selected by simple random sampling among the N population
elements (grid cells with size 250 m2) in U. The sample s1 constitutes
our first-phase sample. For all elements in s1 we have auxiliary data
from the LiDAR at hand. The cluster structure assumed for the LiDAR
data in the two-stage design is therefore irrelevant in this setup. Further,
we wish to select a second and smaller sample by random selection
among the n1 elements in the larger first-phase sample s1. This smaller
second-phase sample is denoted s2 and is of size n2. The second-phase
sample s2 is our field sample. Thus, for s2 we have estimated above-
ground biomass from field observations as well as auxiliary data from
the LiDAR. Note that in the comparison of estimates we will assume
that s2 is identical to the sample s under simple random sampling (see
above).

Based on the second-phase sample s2, we will now fit a regression
model that relates the above-ground biomass per hectare to the
LiDAR-derived metrics. Alternatively, one may also choose to adopt
a biomass-LiDARmodel fitted to another dataset or taken from anoth-
er geographical area. The regression model we chose to adopt will be
used to predict above-ground biomass per hectare for the elements in
s1.

An appropriate model-assisted regression estimator for mean
above-ground biomass per hectare for HC for the two-phase design
(2PHMA) is (Mandallaz, 2008, p. 80; Särndal et al., 1992, p. 364)

B̂2PHMA ¼ ∑k∈s1
b̂k

n1
þ∑k∈s2

êk
n2

ð14Þ

where b̂k is biomass per hectare predicted according to the regression
model for the kth element in the population and êk ¼ bk−b̂k: This esti-
mator is approximately design-unbiased irrespective of themodel choice
when n2 is not too small (Särndal et al., 1992). Firth and Bennett (1998)
established that asymptotic design-unbiasedness holds for nonlinear
model-assisted regression, as well.

An estimator for the variance of B̂2PHMA is (Mandallaz, 2008, p. 81)

V̂ B̂2PHMA

� �
¼ 1−n2

n1

� �∑k∈s2
êk−

∑k∈s2
êk

n2

� �2

n2 n2−1ð Þ þ
∑k∈s2

bk−
∑k∈s2

bk
n2

� �2

n1 n2−1ð Þ :

ð15Þ

Also when assuming a two-phase design we wish to estimate
above-ground biomass per hectare for cover class c. Let s1c denote a
sample of size n1c that after the random selection in the first phase
falls in class c. Further, let s2c denote a sample of size n2c that after
the random selection in the second phase falls in class c. Note that
in the comparison of estimates we will assume that s2c is identical
to the sample sc under simple random sampling (see above). An ap-
propriate estimator for cover class c is obtained by introducing the

subscript c in Eq. (14), which then becomes

B̂2PHMAc ¼
∑k∈s1c

b̂k

n1c
þ∑k∈s2c

êk
n2c

ð16Þ

while, similarly, an estimator for the variance of B̂2PHMA is

V̂ B̂2PHMAc

� �
¼ 1−n2c

n1c

� �∑k∈s2c
êk−

∑k∈s2
êk

n2c

� �2

n2c n2c−1ð Þ þ
∑k∈s2c

bk−
∑k∈s2

bk
n2c

� �2

n1c n2c−1ð Þ :

ð17Þ

As with the estimators for the other designs, estimates across sev-
eral cover classes will be provided by collapsing the classes in ques-
tion and assigning the same subscript c in Eqs. (16) and (17) to the
respective classes.

2.5.4. Two-stage (cluster) sampling —model-assisted estimation (2STMA)
In the two-stage (cluster) design for model-assisted estimation, it

is assumed that the population U is partitioned into M clusters (pri-
mary sampling units) in exactly the same way as for two-stage design
for direct estimation. The clusters are non-overlapping and each of
them is assumed to have the same shape and size as the swath pro-
duce by the scanning LiDAR along an individual flight-line. Further,
it is assumed that m among the M clusters will be selected by simple
random sampling, and the sample ofm clusters is ourfirst-stage sample.
In exactly the sameway aswith the two-stage design treated in the pre-
vious section, a second-stage sample will be selected among the popu-
lation elements within each of the first-stage clusters according to
simple random sampling. However, as opposed to the direct estimation,
the model-assisted estimation will take advantage of the auxiliary
LiDAR data available for all population elements within the first-stage
clusters.

This particular design is treated by Särndal et al. (1992, p. 323).
Gregoire et al. (2011) elaborated further on the estimators provided
by Särndal et al. (1992). We will therefore refer the reader to the es-
timators presented in Gregoire et al. (2011), specifically their Eqs. (5),
(6), (7), (28) and (29). Gobakken et al. (2012) applied these estima-
tors to the particular survey conducted in HC. The estimation will not
be repeated in the current work. In this article, we will therefore refer
to the estimates provided by Gobakken et al. (2012).

2.6. Analysis

2.6.1. Estimation of LiDAR biomass models
Regression models that relate the LiDAR variables to above-ground

biomass per hectare are required for the model-assisted estimation.
Since Gobakken et al. (2012) already had fitted such models for the re-
spective cover classes based on the current sample of NFI plots in HC,
we applied these previously fitted models rather than estimating the
same models once more. Further details reading the regression analysis
can be found in Gobakken et al. (2012). However, these models are
presented also in the current article (Table 3). For the cover class Open
water we did not have a separate model at hand because all NFI plots
in this class had AGB=0.

The models had been fitted as linear regressions in the logarithmic
transformations of the variables, i.e.,

lnY ¼ lnβ0 þ Xβ þ e ð18Þ

where Y=the AGB field values, β is a vector of regression coeffi-
cients, X is a matrix of the explanatory variables at log scale, and e
is a normally distributed error term. In the back-transformation of
the fitted models to arithmetic scale, the parameter estimate of β0

was corrected for bias by a ratio correction (Snowdon, 1991).
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2.6.2. Estimation of mean biomass and variance of the mean biomass
estimates

Assessment of uncertainties associated with comparable designs
with and without utilizing the LiDAR data as auxiliary information
was the primary objective of this study. The main emphasize in the
following is therefore on the estimated standard errors (SE), i.e., the
square roots of the variances.

First, we estimated above-ground biomass per hectare for every
cover class and groups of cover classes (e.g. productive forest) (Eq. 2)
and for entire HC (Eq. 4) based on the field sample only. We also esti-
mated the corresponding standard errors (square roots of the variances
in Eqs. 3 and 5, respectively). Because a systematic design was adopted
for the field survey rather than a random design, an overestimation of
the variance is a likely consequence of ignoring the systematic design
(e.g. Särndal et al., 1992).

Second, above-ground biomass per hectare was estimated for the
same cover classes, groups of cover classes, and entire HC assuming
the two-stage design for direct estimation (Eqs. 10 and 6, respectively).
The first-stage sampling units were assumed to be E–W oriented clus-
ters spaced 6 km apart andwith a width of 500 m. Corresponding stan-
dard errors were estimated according to Eqs. (11) and (7), respectively.
Because there is tendency of a geographical trend in AGB with increas-
ing values as one goes from north to south (Fig. 2), orientation of the
clusters might influence on themagnitude of the sampling uncertainty.
Therefore, we repeated the estimation assuming a two-stage design
with N–S oriented clusters. In this case we assumed parallel clusters
with width equal to 500 m spaced 3 km apart.

Third, we estimated above-ground biomass per hectare for individ-
ual cover classes, groups of cover classes, and entire HC assuming a
two-phase design (Eqs. 16 and 14, respectively). The design assumes in-
dependent and random samples in both phases. However, we truly se-
lected our samples systematically in both phases, i.e., with first-phase
sample units at fixed intervals within the LiDAR swaths (the swaths
were parallel and spaced 6 km apart) and the second-phase sample
units at fixed intervals of 3 km (i.e., the NFI plots) along the swaths. It
was essential to select a minimum geographical distance between spa-
tially adjacent first-phase sample units that would avoid serious spatial
correlation in the AGB values. Based on the assessment of the average
stand sizes in six selected forest management inventories in HC (see
above), we chose a first-phase sampling interval of 200 m. The princi-
ples of the systematic selection of first- and second-phase sample
units along a LiDAR swath is illustrated in Fig. 3. In the model-assisted

estimation, above-ground biomass per hectare was predicted for the
first-phase sample units, i.e., the 250 m2 grid cells, using the cover
class-specific regression models (Table 3). For the cover class Open
water, however, we used themodel fitted for Medium productivity for-
est since we did not have a separate model for Open water at hand,
which is in correspondence with Gobakken et al. (2012). Field plots as
well as population elements with LiDAR observations indicting positive
biomass values sometimes occur in Openwater because of inaccuracies
in themap data used to define the cover classes. Evenwhenwe estimat-
ed above-ground biomass for entire HC and ignored cover classes
(Eq. 14) the specific models were applied to the first-phase sample
units in accordance with their respective cover class assignment. Stan-
dard errors of the above-ground biomass estimates per hectarewere es-
timated according to Eqs. (17) and (15), respectively.

Finally, the estimates from implementation of the two-stage design
with model-assisted estimation were taken from Gobakken et al.
(2012). In this estimation, the E–W oriented and parallel LiDAR
swaths with a width of 500 m and spaced 6 km apart were consid-
ered the first-stage sample units. The second-stage sample was con-
stituted by the NFI plots spaced 3 km apart within the first-stage
units. All population elements (grid cells with size 250 m2) within
the LiDAR swaths were used in the model-assisted estimation. The
two-stage and two-phase model-assisted estimation followed the
same principles as far as usage of the cover class specific regression
models is concerned. The four different designs are illustrated graph-
ically in Fig. 3.

3. Results and discussion

3.1. SRS direct estimation versus two-phase model-assisted estimation
(2PHMA)

Most of the cover class-specific means above-ground biomass esti-
mates obtained assuming the SRS and 2PHMA designs were of a similar
magnitude. The largest absolute differencewas found forHigh productive
forest with an estimated mean biomass of 123.9 and 133.3 Mg ha−1 for
SRS and 2PHMA, respectively (Table 4). For Open water none of the NFI
sample plots carried any biomass, thus the SRS estimate was zero,
while the model-assisted mean estimate was 4.3 Mg ha−1. As noted
above,field plots aswell as population elementswith LiDAR observations
indicating positive biomass values sometimes occur in Open water be-
cause of inaccuracies in the map data used to define the cover classes.
The overall mean above-ground biomass estimates across all cover clas-
ses were 39.6 and 41.4 Mg ha−1 for SRS and 2PHMA, respectively.

The estimated standard errors deviated considerably between the
two designs within individual cover classes. For all classes the stan-
dard error estimates were 1.7 and 0.6 Mg ha−1 for SRS and 2PHMA
(Table 4), respectively, which translates to a relative efficiency of
8.0. This is somewhat higher than the efficiency of 5.8 reported by
Ene et al. (2012) for two-stage model-assisted against SRS and 5–6
reported by Næsset et al. (2011) and McRoberts et al. (2013). It
should be noted though that although the estimation across all
cover classes was unstratified, we allowed class-specific models to
be used in the individual classes (see details above). By inspecting
the relative efficiency within each individual cover class, it can be
seen that the overall efficiency was higher than those within the indi-
vidual classes (5.0–7.9). Nevertheless, 2PHMA consistently produced
lower standard error estimates than SRS for every cover class, regard-
less of the specificities of the individual classes. By allowing for only
one joint model across all cover classes or eventually a stratified esti-
mation for the SRS design as well as for 2PHMA, it is reasonable to ex-
pect a somewhat lower efficiency than 8.0. On the other hand, the
two-phase model-assisted design assumed only one first-phase plot
every 200 m along the LiDAR flight-lines. Thus, 99.75% (399/400) of
the continuously collected LiDAR data were discarded under the
2PHMA design. Although there is a strong spatial correlation of AGB

Table 3
Regression models for total above-ground biomass (AGB) fitted according to Eq. (18).
Source: Gobakken et al. (2012).

Cover class Predictor variablesa nb R2 RMSE RMSEc

(%)

Productive forest
High lnhmeanF, lnd1L, lnAlt 46 0.94 0.17 15.2
Medium lnh90F, lnd1F, lnd1F, lnAlt 105 0.95 0.19 19.7
Low lnh90F, lnd1F, lnd1L, lnAlt 138 0.89 0.36 26.8
Young lnd1F, lnhmeanL, lnh90L, lnd1L 151 0.86 0.50 44.9

Nonproductive forest
and nonforest

Nonproductive forest lnh90F, lnd1F, lnAlt 107 0.80 0.60 45.3
Mountain areas lnh90F, lnd1L 85 0.87 0.46 37.0

a h50F and h90F=percentiles of the first echo LiDAR canopy heights for 50% and 90%
(m); h50L=percentile of the last echo LiDAR canopy heights for 50% (m); hmeanF and
hmeanL=arithmetic mean of first or last echo LiDAR canopy heights, respectively (m);
d1F=canopy density corresponding to the proportion of first echo LiDAR echoes
above fraction #1 to total number of first echoes (see Gobakken et al. (2012)); and
d1L=canopy densities corresponding to the proportions of last echo LiDAR echoes
above fraction # 1 to total number of last echoes; Alt=Altitude (m a.s.l.).

b Numbers of plots differ from those in Table 1 because plots with AGB=0 were
discarded from the regression model fitting.

c RMSE of the back-transformed predicted AGB versus field measured AGB. RMSE is
given in percent of mean AGB.
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over short distances and thus a limited marginal utility of continuous-
ly collected LiDAR data, there is no doubt that LiDAR data collected
continuously along a flight-line and with a swath width of 500 m as
in the current study, will improve precision over the employed
2PHMA design. Thus, the gain in precision obtained in this study by
borrowing support from the auxiliary LiDAR data seems to be fairly
well in line with results of those previous studies that have analyzed
comparable LiDAR-assisted designs against pure field surveys.

In a recent study from New Zealand conducted in conifer forests
where airborne scanning LiDAR was used in a classical double-sampling
setup with regression estimation, a gain in precision of 6% for carbon
stock was reported (Stephens et al., 2012) when the first-phase sample
size was only 1.19 times larger than in the second-phase sample. In our
study, this ratiowas 15. They stated that the gain in precision over simple
random sampling could potentially be up to about 50% by increasing the
first-phase sample size. However, since a scanning LiDAR instrument typ-
ically collects data continuously along a flight-line, exploiting the full po-
tential of the LiDAR data by employing a design that takes into account all
the auxiliary data, like for example a two-stage cluster design, would
most likely give a substantial improvement of the precision over the po-
tential indicated in the study from New Zealand.

3.2. Two-stage direct estimation (2ST) versus two-stage model-assisted
estimation (2STMA)

The mean above-ground biomass estimates for individual cover
classes as well as for all classes obtained with the 2STMA estimator by
Gobakken et al. (2012) corresponded quite well with the two-stage di-
rect estimates assuming N–S orientation of the first-stage samples. The
overall model-assisted estimate was 38.1 Mg ha−1 whereas the corre-
sponding direct estimate under N–S orientation was 39.0 Mg ha−1

(Table 4). When assuming E–W orientation, however, which also was
the orientation of the LiDAR flight-lines (Fig. 1), the 2ST and 2STMA es-
timates deviated considerably. For 2ST, the overall mean above-ground
biomass estimate was 46.1 Mg ha−1. The difference between 2ST with
E-W orientation and 2STMA as well as between the two individual 2ST
estimates can be attributed to a large difference for theMountain cover
class which accounts for 28% of the total area of HC (Table 1). For this
particular cover class the estimates were 5.1 (SE=0.9), 8.2 (SE=1.5),
and 18.5 (SE=5.2)Mg ha−1 for 2STMA, 2STN–S, and 2ST E–W, respec-
tively (Table 4). Note the large uncertainty (SE=5.2 Mg ha−1) in the
estimate that deviated most from the others, namely 2ST E–W.

The standard error of the overall model-assisted mean estimate
and the corresponding standard errors for the direct estimates with
E–W and N–S orientation were 1.9, 3.0, and 3.9 Mg ha−1, respectively,
indicating relative efficiencies of 2.5 and 4.2, respectively. These uncer-
tainty estimates indicate a somewhat smaller gain in precision by
supporting the survey with auxiliary LiDAR data than what has been in-
dicated by the previous studies mentioned above. However, despite the
seemingly smaller gain in precision, all uncertainty estimates consistently
indicate a potential of substantial improvement of precision by extensive
use of LiDAR data. This is in contrast to those previous studies that have
compared analytical uncertainty estimates of purefield surveys assuming
simple random sampling against complex two-stage designs employing
analytical model-assisted estimators (e.g. Andersen et al., 2009;
Gobakken et al., 2012; Gregoire et al., 2011;Nelson et al., 2012). It should
be noted that negative variances were experienced for some of the indi-
vidual cover classes when employing the model-assisted variance esti-
mator (Table 4). These negative variances are due to the fact that
within flight-line variation overwhelms the other variance components
[see Eq. 28 in Gregoire et al. (2011)]. The negative variances are associ-
ated with samples of sizes smaller thanwhat is generally recommended
as a minimum size [n≥5 (Thompson, 2002, p.159); n≥10 (Särndal
et al., 1992, p. 407)].

The results also showed a somewhat larger estimated uncertainty
when we assumed N–S orientation of the first-stage samples (SE=
3.9 Mg ha−1) as compared to E–W orientation (SE=3.0 Mg ha−1). It
was anticipated that the N–S trend of increasing above-ground biomass
with decreasing latitude (Fig. 2) would be better captured within the
first-stage samples when they were N–S oriented and that an N–S ori-
entation of the samples therefore would perform better. Cluster sam-
pling is generally favorable when the variation is captured within the
clusters leaving little variation between the clusters. However, there is
indeed an N–S trend in biomass in HC, but the variability in biomass be-
tween geographically adjacent plots is still huge, as illustrated by the in-
tervals (±1 stdev) around the mean above-ground biomass values
along the N–S and E–W lines of NFI plots (Fig. 2).

Furthermore, varying sizes of the first-stage sample units, i.e., vary-
ing lengths of the flight-lines, will according to the analytical variance
estimator have a large impact on the sampling variability. This is due
to the variance component of the first-stage sampling that quantifies
the variability between first-stage sample totals around the common
mean over all first-stage sample totals, see e.g. Eq. (8). The variance es-
timator for the two-stage model-assisted mean above-ground biomass
estimator has an identical construction to account for first-stage

Table 4
Estimated mean above-ground biomass B̂

� �
and associated standard error estimates (SE) based on the field sample survey only (direct estimation) and by using auxiliary data from

LiDAR (Mg ha−1).

Direct estimation

Simple random
sampling

Two-stage LiDAR-assisted estimation

East–west North–south Two-phase Two-stageb

Cover class B̂SRS SE B̂2ST SE B̂2ST SE B̂2PHMA SE B̂2STMA SE

Productive forest
High 123.9 11.5 98.5 17.6 107.2 18.1 133.3 4.1 120 11.1
Medium 96.7 5.6 90.6 11.8 86.2 11.6 95.8 2.5 90.6 4.8
Low 49.3 3.4 49.0 5.7 43.8 5.5 46.4 1.4 39.8 5.6
Young 33.2 3.4 33.0 4.7 31.9 4.9 42.6 1.4 40.4 NA
All productive forests 63.1 2.8 64.4 5.6 60.8 6.2 65.5 1.0 60.7 4.5

Nonproductive forest and nonforest
Nonproductive forest 24.4 3.0 19.6 3.5 19.5 3.1 27.6 1.2 26.9 NA
Mountain areas 7.4 1.1 18.5 5.2 8.2 1.5 5.3 0.4 5.1 0.9
Open watera 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 2.5 0
All n.prod. and nonforest 11.3 1.2 15.3 2.7 11.5 1.6 11.0 0.4 10.2 NA

All classes 39.6 1.7 46.1 3.0 39.0 3.9 41.4 0.6 38.1 1.9

a For the Open water cover class SE=0 because above-ground biomass was absent on all NFI field plots.
b Results according to Gobakken et al. (2012). NA denotes the occurrence of a negative estimate of SE.
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sampling variability (Gregoire et al., 2011, Eq. 19). We decomposed
the uncertainty estimates obtained for the direct estimates (2ST) and
calculated the portion of the total variance that could be attributed to
the sampling variability of the first and second stages of sampling, re-
spectively. For the individual cover classes, the first-stage sampling var-
iability accounted for as much as 94.5 to 99.8% of the total variance
(Table 5). We did not decompose the estimated variances for 2STMA.
However, Ene et al. (2012) conducted such decomposition and found
the first-stage variability to account for 80% of the total variability for
the artificial population of HC used for simulated sampling, whereas
Andersen et al. (2009) reported the first stage variability to account
for 87% of the total variability in their sample from Kenai Peninsula,
Alaska. As can be seen in Fig. 1, the length among the 53 flight-lines in
HC varies quite much, with the shortest flight-lines in the southern
part and gradually increasing lengthswhenmoving northwards. Conse-
quently, the sizes of the first-stage sample units represented by total
number of population elementswithin individual sample unit vary con-
siderably (Table 5). This variability is somewhat larger for the N–S ori-
entation than the E–W orientation.

Long flight-lines are efficient from an operational point of viewwhen
acquiring LiDAR data with an aircraft. The current results and those
obtained by Ene et al. (2012) have indicated that such a design can pro-
vide more precise estimates than pure field sampling. Ene et al. (in
review) showed by simulations that two-stage sampling with long
flight-lines with uneven lengths was cost-efficient as well. However, as
demonstrated by Ene et al. (2012), analytical variance estimators like
those presented by Gregoire et al. (2011) severely overestimate the
true variance for uneven cluster sizes and when there is a clear trend
in the population. The commonly adopted assumption of simple random
sampling for the employed 2STMA variance estimator is another major
cause of deviation between the analytical variance estimate and the
true variance when the design is truly systematic as in the current
study. However, in the current study the effect of a systematic design
rather than simple random sampling could not be assessed. Neverthe-
less, Gregoire et al. (2011) proposed to use other estimators such as suc-
cessive differences estimators. Ene et al. (in review) tested several such
successive differences estimators and reported that they approximated
the true variances quite well. A similar conclusion was reached by
Nelson et al. (2008) in a simulation study using profiling rather than
scanning LiDAR.

The findings of the current study based on data from a real sample
supported by simulation results by Ene et al. (2012) clearly indicate
that the 2STMA estimator that has been used in LiDAR sample surveys
in Alaska (Andersen et al., 2009) and Norway (Gobakken et al., 2012;

Gregoire et al., 2011; Nelson et al., 2012) are inappropriate when the
flight-lines vary in length. Successive differences estimators will to
some extent compensate for such unequal lengths to the degree
that adjacent flight-lines will tend to be more similar in length than
flight-lines locate far apart. However, successive differences estimators
are primarily designed to handle systematic sampling in a more appro-
priate way than estimators assuming random sampling. The challenge
with unequal cluster sizes is fundamentally a different problem than
what the successive differences estimators are designed to handle. Nev-
ertheless, unequal flight-line lengthswill likely be the norm rather than
the exception in future LiDAR-assisted sample surveys. It is therefore an
urgent need to develop estimators that can handle such designs proper-
ly. One option could be to develop a model-assisted ratio estimator by
taking the individual cluster sizes into account. Such an estimator
would still remain within the design-based and model-assisted ap-
proach. Another option could be to select the primary sampling units
(the LiDAR flight-lines) with probability proportional to size (PPS),
i.e., proportional to flight-line length. That was also proposed by
Wulder et al. (2012). However, assuming PPS sampling would not
resolve the problems in Hedmark since we employed an equal prob-
ability sampling design, but for future surveys PPS sampling may be
an interesting option.

3.3. Some options for design of LiDAR-assisted sample surveys for REDD

The current study capitalized on an accurately measured sample of
ground plots of the established Norwegian NFI. Most NFIs around the
world position the ground plotswith hand-held GPS receivers or simpler
means, which may result in positional errors of a considerable magni-
tude. Positional errors of ground plots may have a detrimental effect on
the estimates for the area of interest (e.g. Gobakken & Næsset, 2009;
McRoberts, 2010). Such errors were avoided in the current study by
using dual-frequency survey-grade receivers (Gobakken et al., 2012)
and the influence of GPS errors on the results could therefore be ignored.
Further, the 659 NFI plots were measured during the ninth inventory
cycle of the NFI, whichwas the third cycle with permanent plots. Experi-
ences indicate that errors such as incorrect tree species classification and
crude errors in the field data recording and other non-measurement er-
rors are continuously removed from a datasets of permanent plots as the
re-measurements proceed over time. Thus, even the conventional tree
measurement recordings most likely had a superior quality com-
pared to recently established field surveys. The data from Hedmark
therefore offered unique opportunities to study the performance of
LiDAR-assisted sample surveys which currently would be difficult

Table 5
Contribution (in percent) to the overall estimated variance in two-stage direct estimation (2ST) of the sampling variability in the first (I) and second (II) stages, respectively, for
designs assuming E–W and N–S orientation of the first-stage clusters, respectively. The table also displays the mean and range of number of population elements (Nci) in the
first-stage clusters.

East–west North–south

Nci Variance
component (%)

Nci Variance
component (%)

Cover class Mean Range I II Mean Range I II

Productive forest
High 9711 23 30,766 99.0 1.0 18,645 6 51,770 99.2 0.8
Medium 23,077 865 67,790 99.1 0.9 45,714 5 91,885 98.3 1.7
Low 28,696 1002 64,072 98.1 1.9 50,246 391 136,225 96.6 3.4
Young 30,679 954 61,010 96.6 3.4 54,854 120 131,618 95.2 4.8
All productive forests 90,880 3007 210,315 97.8 2.2 162,304 1319 376,460 96.8 3.2

Nonproductive forest and nonforest
Nonproductive forest 18,767 95 45,577 98.0 2.0 31,763 14 95,986 94.5 5.5
Mountain areas 47,433 0 192,173 99.8 0.2 84,406 11 183,619 96.8 3.2
Open water 7780 242 27,353 . . 14,884 35 65,137 . .
All n.prod. and nonforest 73,980 337 225,346 96.8 3.2 130,595 464 241,268 91.4 8.6

All classes 164,860 5600 274,586 96.7 3.3 284,917 3522 537,428 96.4 3.6
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in most tropical and REDD-relevant countries where a similar data
quality could not be guaranteed or where required data would not
be available at all. Although one should indeed aim at repeating the
studies reported here under conditions typically found in tropical
countries, the lessons learned in this study regarding the choice of
appropriate estimators for LiDAR-assisted sample surveys and the
potential gains in efficiency that may be achieved should be very
valuable and relevant to tropical countries.

The Norwegian NFI — like most other NFIs around the world (see
e.g. Tomppo et al., 2010a), follows a simple and systematic design.
With permanent sample plots located on a 3 km×3 km grid the NFI
ground survey forced us to adopt a very simple and straightforward
design of the LiDAR survey as well, namely a design with parallel
and systematically distributed flight-lines with a fixed distance be-
tween adjacent lines and thus the same sampling intensity across
the entire AOI. Nevertheless, such a simple design is considered to be
fairly efficient for a LiDAR campaign since long flight-lines are
cost-effective from an operational point of view. Systematic sampling
is also generally an attractive design undermost circumstances. Howev-
er, NFIs are historically not designed with remote sensing in mind and
existing NFI ground sampling designs may therefore not be “optimal”
for applications assuming extensive use of remote sensing data as auxil-
iary information. Further, NFIs servemultiple purposes amongwhich es-
timation of biomass and carbon and changes over time are only a few.
For REDD carbon monitoring assisted by LiDAR it is for example rather
unlikely that it would be efficient with a constant sampling intensity
across all different forest types found in the entire AOI.

Several options for improved efficiencymay be considered. First, it is
likely that pre-stratification can contribute to reduced uncertainties.
McRoberts et al. (2006) demonstrated that post-stratification using
Landsat data could reduce standard errors of volume estimates, al-
though post-stratification is usually expected to have only marginal or
modest impact on the efficiency. Volume and biomass — and thus car-
bon, are highly correlated. Hence, pre-stratification based on classified
satellite remote sensing data from optical satellites like Landsat or syn-
thetic aperture radar into classes assumed to be correlatedwith the tar-
get variables is indeed a viable option. If the objective of the survey is
estimation of current biomass and carbon stocks, crude volume/biomass
classes or forest classes reflecting differences in biomass may be suitable.
Classification of satellite data for stratification purposes will most likely
profit from training with local data (supervised classification). In many
tropical countries local field data are not available, but evenmodels relat-
ing field-observed parameters (like biomass) to remotely sensed observ-
ables and fitted with data from another country or even a different
continent may still be suited to capture the major geographical distribu-
tion and trends of relevance for stratification. One such example is theNFI
for Tanzania where the design involving pre-stratification was based on
experiences gained through simulations with an artificial population of
tree volume of the forest of Tanzania based on Landsat data with individ-
ual Landsat pixels as population elements with volume predicted for the
individual pixels using regression models for volume fitted with Finnish
field data (Tomppo et al., 2010b).

Although pre-stratificationmay be efficient in LiDAR-assisted sample
surveys, it will be challenging to form spatial units of sufficient size to
allow the individual flight-lines to be located entirely within the given
stratum. From an operational point of view, flight-lines shorter than,
say, 100–120 km in length are inefficient as it often takes around
3 min to turn the aircraft and get in position for a new flight-line. It
would not take more than around 20 min to collect LiDAR data along a
100 km long strip. Strips longer than 20–25 min flying time is usually
not recommended. However, it would not be unrealistic to form units
for stratification with a size of, say, 100 km×100 km for vast areas of
for example African savanna.

In areas with abrupt topography and geographically fragmented
vegetation one would have to accept shorter flight-lines and lower ef-
ficiency of the LiDAR data acquisition. In a recent study in Nepal it was

proposed to acquire equal size blocks of LiDAR data (5 km×10 km),
which greatly would facilitate analysis (Anonymous, 2012). The Nepal
study did not apply stratification but rather used classification of forest
type and proportion forest area for each block derived from Landsat
data to select among blocks for subsequent LiDAR sampling and ground
sampling according to inclusion probabilities for the blocks determined
by weights defined according to forest type and proportion forest area.
Each of the selected blocks was coveredwith “wall-to-wall” LiDAR data.
Assuming a swathwidth of 1000 m, 20% side overlap between adjacent
strips to form a block, and 3 min flying time to turn the aircraft, it would
take around 30 min to cover a block with size 50 km2. If the same re-
sources were used to fly two individual flight lines in sampling mode
the area covered would be around 125–130 km2. Thus, the sampling
fraction would be 2.5 times larger by flying long strips rather than
blocks. The block design is therefore most likely inefficient unless the
AOI is very fragmented.

An important means to gain efficiency under (pre-) stratified sam-
pling and reduce uncertainty would be to allocate LiDAR strips with
unequal sampling intensities to the various strata. In the NFI designed
for Tanzania sampling intensities varied by a factor of up to 1:10 for
the different strata (Tomppo et al., 2010b). Although the Tanzanian
NFI assumed field-sampling only this result should give a clear indica-
tion of a potential for improved efficiency by unequal allocation of
LiDAR strips to strata even for LiDAR-assisted sample surveys. If the
parameter of interest is change in carbon rather than current stocks,
the stratification may aim at change over time and may utilize
multi-temporal satellite data for classification rather than data from
a given point in time. It should be mentioned though that strata will
change over time and so will the efficiency. Optimizing for current in-
terests may therefore lead to difficulties later on.

As opposed to (pre-) stratificationwhere the strata are defined in the
design-phase and samples are distributed separately within each stra-
tum and independent between strata, post-stratification is conducted
after the samples have been allocated. However, post-stratification of
LiDAR sample surveys poses a specific problem rarely encountered in
post-stratification of field surveys, namely that post-strata boundaries
will subdivide the individual flight-lines. Since an individual flight-line
(cluster) thus will be composed of several strata, the strata cannot be
considered to be independent. This dependency should be accounted
for in the uncertainty assessment. Similarly, proper means to account
for dependencies among (pre-) strata within individual flight-lines
would even increase the flexibility when designing pre-stratified LiDAR
surveys (see comments above). Since post-stratification, but certainly
pre-stratification, are highly relevant and interesting means to improve
efficiency in operational LiDAR-assisted sample surveys (Ene et al., in
review), estimators that account for dependencies between strata should
be developed, and especially in the context of design-based and model-
assisted ratio estimators that also may account for unequal flight-line
lengths. It should be noted though that estimators that account for
such dependencies already have been developed for model-dependent
applications (Ståhl et al., 2011).

In post-stratification it is important to pay attention to thefield sam-
ple size for each post-stratum, especially if the survey also has been
(pre-) stratified. If a post-stratification is conducted in a previously
pre-stratified survey and the post-strata cut across the pre-strata, then
the number of ground plots for a particular combination may be few
or some combinations of pre- and post-strata that are present in the
population may even suffer from a complete lack of samples (Næsset
et al., 2013).

If the analyst is not restricted by an already existing field survey,
even the subsequent ground sampling carried out along the LiDAR
strips to acquire the secondary sample may be conducted more effi-
ciently when the objective of the survey is estimation of current bio-
mass or carbon stocks or even changes in such stocks. For example,
the LiDAR data may be used to predict biomass as a continuous vari-
able for every population element within the LiDAR flight-lines based
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on previously fitted models and these predictions may be used to se-
lect ground plots proportional to the predicted probabilities. If multi-
temporal LiDAR data exist, one may even predict the probability of
change or change in biomass and carbon from the LiDAR data using
existing models and use these predictions to allocate the field sam-
ples proportionally to the predicted probability of change or
predicted change in biomass. It has been shown that multi-temporal
LiDAR data can be used to predict change in biomass (Bollandsås et
al., 2012; Næsset et al., 2013) and even can be used to distinguish be-
tween different types of changes (e.g. degradation versus untouched;
Næsset et al., 2013). It should be noted that because many types of
human activities causing changes in carbon stocks are rare and
LiDAR data have a better geographical coverage than field data and
yet multi-temporal LiDAR data are highly correlated with changes ob-
served on the ground, using LiDAR data as auxiliary to field data can
most likely improve efficiently of change estimation relatively more
than it can improve the estimation of current stocks. In the study by
Næsset et al. (2013) it was found that in model-assisted estimation
of change in biomass using LiDAR data as auxiliary information the
relative variance compared to a pure field-based estimate was 1:15
to 1:38 for degraded forest. Degradation was a rare event in the AOI
that was analyzed. For untouched forest the gain in precision was
more moderate with a relative variance around 1:2 to 1:6. This as-
sumes of course that multi-temporal LiDAR are available, i.e., that
the same flight-lines are flown repeatedly over time. An important
consideration when designing LiDAR-assisted sample surveys is there-
fore whether the same flight-lines should be flown in subsequent
surveys.

Finally, it should be mentioned that “optimal” characteristics of
the individual field plots may differ somewhat between a convention-
al field survey and a field sample collected as part of an overall design
involving auxiliary data from LiDAR. Of particular importance is the
size and shape of the individual plots. Experience with different plot
sizes in LiDAR-assisted forest inventory is limited, although increas-
ing plot size will tend to improve accuracy (Frazer et al., 2011;
Gobakken & Næsset, 2008). An interesting observation was made by
Næsset et al. (2011, p. 3611) though. They compared uncertainties
of biomass estimates obtained using LiDAR data as auxiliary to field
data in a model-assisted estimation with the uncertainty of a pure
field-based estimate and noted that when the plot size increased
the precision improved relatively more for the model-assisted esti-
mate. This relative improvement of precision was attributed to small-
er relative impact of edge effects and GPS positioning errors with
larger plots. Edge effects are caused by mismatch between the trees
that are defined to be inside the plot on the ground and thus mea-
sured in the field survey and the tree crowns that are measured
from the air. Trees on the ground close to the edge of the plot may
partly have the crowns outside the plot while trees with the stems lo-
cated outside the plot may partly have the crowns inside the plot. An
interesting illustration of this phenomenon is given in Næsset et al.
(2013). Thus, there is a potential for improved precision with increas-
ing plot size and appropriate plot sizes should be determined with
due attention to how they are going to be used since “optimal” sizes
will most likely not be the same for a pure field survey and a survey
where LiDAR data is an essential part of the design and estimation. Due
to edge effects circular plots will be favorable to rectangular plots which
have been used frequently in tropical countries. Circular plots also need
only one position to be determined with GPS for co-registration with
the remotely sensed data. However, for very large plot sizes field work
can be challenging with circular plots. There is clearly a knowledge gap
as far as appropriate plot sizes for sample surveys using auxiliary LiDAR
data is concerned and priority should be given to explore the influence
of plot size on the precision of model-assisted estimates of biomass and
change in biomass.

Many factors associated with the design of a sample survey affect
the overall precision of the estimates. Large-scale studies like the one

presented in the current work are extremely expensive to conduct.
Sampling simulations like those demonstrated by Ene et al. (2012,
in review) are useful to gain experience with different designs and es-
timators. As shown by Tomppo et al. (2010b), simulations can even
be used with great success to design an operational survey for an en-
tire nation. Development of sampling simulators mimicking the forest
structure found in different types of tropical forests will therefore be
essential to gain experience and actually design future sample sur-
veys for REDD supported by LiDAR and other remotely sensed data.

4. Conclusions

To conclude, this study has shown that LiDAR-assisted sample sur-
veys can improve precision substantially compared to pure field-
based surveys. The empirical results for the particular population
under study suggest a potential reduction in standard error of around
40–60% compared to that obtained in a pure field survey. Unequal
flight-line lengths are often practical from an operational perspective
but recently proposed variance estimators do not account for such
unequal line lengths and will thus tend to overestimate the true but
unknown sampling variability and cannot be recommended for use
in LiDAR-assisted surveys if the line lengths deviate much. We pro-
pose to develop new estimators accounting for unequal lengths. The
current LiDAR survey was restricted by the simple and systematic de-
sign of the existing Norwegian NFI. Experience from design of field-
based surveys and previous research with optical satellite remote
sensing indicate a potential for substantial gain in precision also for
LiDAR-assisted surveys by (pre-) stratified designs and even post-
stratified estimation which would be of great value for surveys in
tropical and REDD-relevant countries where LiDAR surveys to a less
extent would be restricted by existing field surveys. New design-
based and model-assisted two-stage estimators that account for de-
pendencies between pre- as well as post-strata when an individual
flight-line is composed of several strata should be developed. That
will allow for greater flexibility in design and estimation in future
LiDAR-assisted surveys in tropical countries. Appropriate field plot
sizes for LiDAR-assisted surveys will tend to be somewhat larger
than in pure field surveys, and use of circular plots whenever feasi-
ble will simplify GPS positioning and co-registration with remotely
sensed data and reduce the impact of edge effects compared to rect-
angular plots.
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