Chandra Contaminant Migration Model

Goals:
(1) Determine if the observed change in Optical Blocking Filet (OBF) accumulation rate and spatial distribution can be explained by the known change in thermal environment caused by the ACIS housing (AH) heater being turned off in 2008 April.
(2) Constrain the material properties of the contaminant(s).

Methods:
(1) Simulate migration (vaporization/deposition) of potential organic contaminant(s) through evaporation (or sublimation) within thermal & geometric model constraints.
(2) Compare time evolution of material mass column density to observations at select locations on OBF filters to identify best candidate contaminant(s).

Study is extension of bake-out studies (2004, see O’Dell et al. SPIE 5898,313 (2005)). Details of new work, O’Dell et al. SPIE 8859,0 (2013); especially, improved geometric/thermal model by Neil Tice.
Chandra Contaminant Migration Model

Observational Constraints:

(1) OBF center accumulation history as determined by Alexey Vikhlinin (AV) from ECS and A1795 observations, expressed in terms of optical depth τ at Mn-L (\sim640 eV); [AV memo Dec. 2012]

(2) OBF edge-to-center evolution, edge at \simrow 64 center at row 512 [op.cit.]

(3) OBF near-edge (row 167) accumulation history as determined by Herman Marshall (HM) from grating observations, expressed in terms of optical depths at C and O absorption edges. Plus a few measurements nearer and farther from row 167.

Contamination Migration Model reports contaminant mass column density. Optical depth unity at Mn-L is *roughly* equivalent to a 100 μg/cm2 column.
Chandra Contaminant Migration Model

The basic algorithm:

- Temperature dependence of vaporization rate follows Clausius-Clapeyron relation
 \[\rho(T) = \rho(T_0) \exp\left(-\frac{\Delta H(T_0-T)}{RT_0}\right) \]
 where \(\rho(T) \) is the mass vaporization rate at temperature \(T \), \(\Delta H \) is the vaporization enthalpy, and \(R \) the universal gas constant

- Solves for the evolution/migration of the mass column of contaminant on all surfaces using an explicit (forward) difference scheme to solve the initial value problem:
 \[\frac{d\mu_i}{dt} = -\rho(T_i) + \sum_j \rho(T_j) \left(\frac{A_j}{A_i}\right) S_{ji} \]
 where the \(A_i \) are areas of surfaces and the view factors \(S_{ji} \) are the fraction of the opening angle of surface \(j \) subtended by surface \(i \).
Chandra Contaminant Migration Model

All simulations assume:

- A source rate of the form $S(t) = A + B \exp(-t/3.7)$ for all times, t, where time-dependence adjusted to follow AV’s center τ evolution and normalization to match HM’s corresponding mass surface density estimates for $t<9$ yr.
- Time-averaged surface temperatures with AH heaters ON until ~2008.5 ($t=9$ yr) then AH heaters OFF as determined by Neil Tice (NT) from flight data & his geometric/thermal model
- An organic material w/ mass vaporization rate $\sim10^{-7} \mu g/cm^2/s$ at temperatures ~-50 °C
- Emissivity $\varepsilon = 0.05$ to 0.40; determines OBF temperatures (other surfaces are conductively coupled and insensitive to ε)
- A fixed fraction, $f_v = A_{\text{vent}}/(A_{\text{vent}} + A_{\text{TC}})$, of contaminant striking the telescope closeout (TC) at the top of the geometric model vents to space, where $A = \text{area}$
only OBF centers are sensitive to ε

$\sim 8^\circ$C difference AH on/off
Summary of vaporization or sublimation

<table>
<thead>
<tr>
<th>Name</th>
<th>Tetra-decane</th>
<th>Penta-decane</th>
<th>Hexa-decane</th>
<th>Hepta-decane</th>
<th>Octa-decane</th>
<th>Nona-decane</th>
<th>Ei-cothane</th>
<th>Heni-cothane</th>
<th>Dode-cosane</th>
<th>Tria-cosane</th>
<th>Tetra-cosane</th>
<th>Penta-cosane</th>
<th>Tetra-cosane DOP Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol Wt</td>
<td>C₁₄H₃₀</td>
<td>C₁₅H₃₂</td>
<td>C₁₆H₃₄</td>
<td>C₁₇H₃₆</td>
<td>C₁₈H₃₈</td>
<td>C₁₉H₄₀</td>
<td>C₂₀H₄₂</td>
<td>C₂₁H₴₄</td>
<td>C₂₂H₴₆</td>
<td>C₂₃H₴₈</td>
<td>C₂₄H₵₀</td>
<td>C₂₅H₵₂</td>
<td>C₂₆H₵₄</td>
</tr>
<tr>
<td>l-gH</td>
<td>72</td>
<td>77</td>
<td>82</td>
<td>86</td>
<td>91</td>
<td>96</td>
<td>102</td>
<td>107</td>
<td>112</td>
<td>117</td>
<td>122</td>
<td>127</td>
<td>132</td>
</tr>
<tr>
<td>s-gH</td>
<td>118</td>
<td>109</td>
<td>135</td>
<td>126</td>
<td>153</td>
<td>143</td>
<td>170</td>
<td>170</td>
<td>189</td>
<td>192</td>
<td>208</td>
<td>211</td>
<td>224</td>
</tr>
<tr>
<td>s-lH</td>
<td>46</td>
<td>36</td>
<td>53</td>
<td>40</td>
<td>62</td>
<td>47</td>
<td>68</td>
<td>63</td>
<td>77</td>
<td>77</td>
<td>75</td>
<td>86</td>
<td>84</td>
</tr>
<tr>
<td>ln(Pv(Tr)) l-g</td>
<td>0.46</td>
<td>-0.54</td>
<td>-1.66</td>
<td>-2.77</td>
<td>-3.91</td>
<td>-5.04</td>
<td>-6.17</td>
<td>-7.31</td>
<td>-8.45</td>
<td>-9.55</td>
<td>-10.65</td>
<td>-11.72</td>
<td>-12.78</td>
</tr>
<tr>
<td>l-h</td>
<td>1.6E+00</td>
<td>5.8E-01</td>
<td>1.9E-01</td>
<td>6.3E-02</td>
<td>2.0E-02</td>
<td>6.6E-03</td>
<td>2.1E-03</td>
<td>6.7E-04</td>
<td>2.1E-04</td>
<td>7.1E-05</td>
<td>2.4E-05</td>
<td>8.1E-06</td>
<td>2.8E-06</td>
</tr>
<tr>
<td>T₁</td>
<td>298</td>
<td>293</td>
</tr>
<tr>
<td>T₉</td>
<td>527</td>
<td>544</td>
<td>560</td>
<td>575</td>
<td>589</td>
<td>603</td>
<td>617</td>
<td>630</td>
<td>642</td>
<td>653</td>
<td>664</td>
<td>675</td>
<td>664</td>
</tr>
<tr>
<td>Tₘ</td>
<td>279</td>
<td>283</td>
<td>291</td>
<td>295</td>
<td>301</td>
<td>304</td>
<td>309</td>
<td>314</td>
<td>316</td>
<td>321</td>
<td>324</td>
<td>327</td>
<td>330</td>
</tr>
</tbody>
</table>

Vaporization or sublimation at +20°C relative to that at -60°C

Dₜμ (293K)	3.5E+02	1.3E+02	4.2E+01	1.2E+01	2.2E+00	7.0E+01	1.0E+01	2.5E-02	4.5E-03	1.0E-03	1.6E-04	4.5E-05	8.0E-06	5.1E-03
Dₜμ (213K)	1.3E-05	1.2E-05	5.2E-08	5.3E-08	1.5E-10	2.2E-10	5.1E-13	1.2E-13	1.2E-15	1.6E-16	3.9E-19	9.5E-21	9.4E-11	
Dₜμ ratio	2.6E+07	1.1E+07	8.0E+07	2.3E+08	1.5E+10	3.2E+09	2.1E+11	2.1E+11	3.9E+12	6.1E+12	7.2E+13	1.1E+14	4.5E+14	5.4E+07
Pᵥ (293K)	9.6E-01	3.4E-01	1.1E-01	3.1E-02	5.4E-03	1.7E-03	2.4E-04	5.7E-05	9.9E-06	2.2E-06	3.5E-07	9.4E-08	1.6E-08	1.0E-06
Pᵥ (213K)	3.1E-08	2.7E-08	1.1E-10	1.1E-10	3.1E-13	4.4E-13	1.0E-15	2.4E-16	2.2E-18	3.0E-19	4.1E-21	7.0E-22	1.7E-23	1.6E-13
Pᵥ ratio	3.1E+07	1.2E+07	9.4E+08	2.7E+08	1.8E+10	3.8E+09	2.4E+11	2.4E+11	4.5E+10	7.2E+12	8.5E+13	3.1E+14	1.0E+15	6.4E+07
ln(Pᵥ) delta	17.24	16.34	20.66	19.43	23.59	22.05	26.21	26.21	29.14	29.60	32.07	32.53	34.53	17.97
DₑH eff.	112	106	134	126	153	143	170	170	189	192	208	211	224	117

Simulations assume the known temperature dependence of one of several organic materials; \(\rho(T₀) \) (normalization) is a free parameter

Tuesday, May 6, 2014
From Neil Tice/LMC
Thermal Desktop:
RADCAD to calculate geometric view factors
SINDA FLUINT to calculate temperatures
738 nodes, 121 OBF-I, 203 OBF-S
T~ -62 °C

AH heaters ON (t<9 yrs)

T~ -69 °C

AH heaters OFF (t>9 yrs)

Tuesday, May 6, 2014
Thermal Model

AH heaters ON

AH heaters OFF

- $\varepsilon = 0.40$

- $\varepsilon = 0.05$

$-40 ^\circ C$

$-50 ^\circ C$

$-60 ^\circ C$

$-70 ^\circ C$

$-80 ^\circ C$

Tuesday, May 6, 2014
Chandra Contaminant Migration Model

Results

Mass Column of Octadecane (C\textsubscript{18}H\textsubscript{38}) at t=9 years

low volatility (0.10)
“view-factor” dominated: central regions have highest accumulation because center views more nearby cold surfaces, pattern is asymmetric

high volatility (2.50)
“thermal” dominated: warm central regions begin to clean, pattern follows local temperature distribution with more material near cold edges

Tuesday, May 6, 2014
Chandra Contaminant Migration Model

Results

Mass Column of Octadecane (C\textsubscript{18}H\textsubscript{38}) at t=9 years

As volatility (mass vaporization rate) increases, center begins to clean. At very high rates, even accumulation at edges is low.

Observed edge/center differences reproduced only for a small range of volatilities (here, 1 to 3 times C\textsubscript{18}H\textsubscript{38})
Chandra Contaminant Migration Model

Results

Source rate and material properties chosen to reproduce AV’s center accumulation up to AH heaters OFF (t<9yr)

Model fails to reproduce observed edge (and hence \(\Delta \)) particularly after heaters turned off

Need a second contaminant
- higher volatility
- accumulates mainly during colder heaters-off times
A second contaminant can be found that accumulates mainly on the edges. However, time evolution does not follow observations well and post AH-heaters-OFF still problematic.

* low ε at early times?
* different source rate time dependence for 2nd material?
Chandra Contaminant Migration Model

SUMMARY

◆ High volatility cleans OBFs and low volatility produces a high build-up at OBF centers; only a narrow (factor of 2 or less) volatility range produces the observed spatial pattern
◆ Simulations predict less accumulation above outer S-array CCDs; this may explain, in part, gratings/imaging C/MnL discrepancies
◆ Simulations produce a change in center accumulation due solely to DH heater ON/OFF temperature change; but a 2nd contaminant and perhaps a change in source rate is also required
◆ Emissivity ε may depend on thickness; another model parameter
◆ Additional physics, e.g., surface migration, is not warranted at this time
◆ At $t \sim 14$ yrs, model produced 0.22 grams of contaminant, 0.085 grams remaining within ACIS cavity; 7\% (6mg) on OBFs.