NASA Applications of Structural Health Monitoring Technology

W. Lance Richards¹, Eric Madaras², William H. Prosser³, and George Studor⁴

NASA Dryden Flight Research Center, Edwards, California¹
NASA Langley Research Center, Hampton, Virginia²
NASA Engineering and Safety Center, Hampton, Virginia³
NASA Johnson Space Center, Houston, Texas⁴

9th International Workshop on Structural Health Monitoring
Stanford University
September 10, 2013
**NASA Focused Structural Health Monitoring**

**Key Drivers**
- Vehicle-focused
- Real-time, decision-making
- Online processing
- Onboard systems
- Lightweight, Small size, Low power, System solutions

**Enabling Technologies**
- Advanced Sensing
  - Multi-parameter
  - Sensor arrays
- Advanced Systems and Processing
  - Solid state
  - Rugged
  - High Speed
- Ultra-Efficient Algorithms
Topics

• Structural Health Monitoring
  – Definition
  – SHM vs NDE

• Agency Overview of SHM Activities
  – **Accel & Acoustic-based SHM on STS (Prosser, NESC)**
  – Wireless-based SHM on ISS / STS (Studor, JSC)
  – Piezo-based SHM on ISS (Madaras, LaRC)
  – Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
    • Uninhabited Aerial Vehicles
    • Composite Crew Module
    • Reentry Vehicles
    • Space Vehicles
    • Vehicle Pressure Systems
    • Expendable Launch Vehicles
Space Shuttle Orbiter
Wing Leading Edge Impact Detection System (WLEIDS)
Columbia Accident Investigation
Catastrophic Impact Damage Test on RCC Panel 8

July 7, 2003

Acoustic Emission Sensor Data

Impact on Panel #8: Broken Panel
**WLEIDS Operations**

- Installed on all Shuttles
- Successfully flown on all flights since *Columbia*
- Detected small impacts during ascent  
  - Small amplitude, nondamaging  
  - Likely popcorn foam
- Detected several small MMOD impacts
Topics

• Structural Health Monitoring
  – Definition
  – SHM vs NDE

• Agency Overview of SHM Activities
  – Accel & Acoustic-based SHM on STS (Prosser, NESC)
  – **Wireless-based SHM on ISS / STS (Studor, JSC)**
  – Piezo-based SHM on ISS (Madaras, LaRC)
  – Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
    • Sensor Development
    • Strain-based Parameter Development
      – Shape, Loads, Liquid Level, Magnetic Field
    • Sensor Attachment / Characterization
    • System Development
    • Ground / Flight Applications
# Space Shuttle / ISS

## Evolution of Micro-WIS Systems

<table>
<thead>
<tr>
<th>System</th>
<th>Date Certified</th>
<th>Purpose</th>
<th>Dimensions</th>
<th>Sample Rate</th>
<th>Data Storage</th>
<th>Battery Life</th>
<th>Sensor Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>System MicroWIS (SBIR)</td>
<td>1997</td>
<td>IVHM</td>
<td>1.7” dia. x 0.5”</td>
<td>Up to 1Hz</td>
<td>None</td>
<td>9 months</td>
<td>Temperature (Flight Cert) and Resistive sensors: Strain, Accelerometer, Pressure</td>
</tr>
<tr>
<td>Extended Life MicroWIS</td>
<td>2001</td>
<td>Thermal Models</td>
<td>2.7”x2.2”x1.2”</td>
<td>Up to 1Hz</td>
<td>2Mbytes</td>
<td>10+ years</td>
<td>Temperature (Flight Cert) and Resistive sensors: Strain, Accelerometer, Pressure</td>
</tr>
<tr>
<td>MicroSGU / MicroTAU</td>
<td>2000/2001</td>
<td>Cargo Loads Cert Life Extension</td>
<td>2.7”x 2.2” x 1.2”</td>
<td>Up to 500Hz</td>
<td>1Mbyte</td>
<td>2-3 missions</td>
<td>Acceleration &amp; Strain (Flight Cert) or Resistive sensors. Includes Pressure as Trigger Channel.</td>
</tr>
<tr>
<td>Wideband MicroTAU</td>
<td>2002</td>
<td>MPS Feedline Dynamics</td>
<td>3.0”x 2.5” x 1.5”</td>
<td>Up to 20KHz</td>
<td>256Mbytes</td>
<td>1 mission</td>
<td>Accelerometer &amp; Temperature (Flight Cert) or Piezoelectric and Resistive Sensors</td>
</tr>
<tr>
<td>Enhanced WB MicroTAU</td>
<td>2005</td>
<td>Wing Leading Edge Impacts</td>
<td>3.25”x2.75”x1.5”</td>
<td>Up to 20KHz</td>
<td>256Mbytes</td>
<td>1 mission</td>
<td>Accelerometer &amp; Temperature (Flight Cert) or Piezoelectric and Resistive Sensors</td>
</tr>
<tr>
<td>Ultra-sonic WIS (new Ph2 SBIR)</td>
<td>2007</td>
<td>ISS Impact/Leak Monitoring</td>
<td>3.4” x2.5”x 1.1”</td>
<td>Up to 100KHz</td>
<td>1Gbyte</td>
<td>3 years</td>
<td>Ultrasonic Microphone and Acoustic Emission</td>
</tr>
</tbody>
</table>

## Columbia

- Cargo Loads
- Cert Life Extension
- MPS Feedline Dynamics
- Wing Leading Edge Impacts
- ISS Impact/Leak Monitoring

## Shuttle fleet

- Ultrasonic Microphone and Acoustic Emission
Wireless Instrumentation Systems
Unique Solutions To Real Shuttle Problems

• **Temperature Monitoring**
  - Validation of thermal models for design modifications and operations
  - Micro-WIS (first flown in non-RF configuration)

• **Structural Loads and Dynamics**
  - SSME support strain data needed for certification life predictions
  - Cargo to orbiter trunion dynamics and loads
  - Micro Strain Gauge Unit (Micro-SGU) and Micro Tri-Axial Accelerometer Units (Micro-TAU)

• **SSME Feed-Line Crack Investigation**
  - Main propulsion system flow-liner dynamics
  - Wide-Band Micro-TAU

• **Wing Leading Edge Impact Detection**
  - Sense impact of ascent debris and MMOD on-orbit
  - Enhanced Wide-Band Micro-TAU (EWBMTAU)

• **SRMS On-Orbit Loads**
  - Increases needed to support contingency crew EVA repairs at end of boom
  - Wireless Strain Gauge Instrumentation System (WSGIS) and EWBMTAU
  - Also used for monitoring Shuttle Forward Nose dynamics during roll-out
Current accelerometer count on ISS is 81 (SDMS: 33  EWIS: 30  IWIS: 18).
Topics

• Structural Health Monitoring
  – Definition
  – SHM vs NDE

• Agency Overview of SHM Activities
  – Wireless-based SHM on ISS / STS (Studor, JSC)
  – Accel & Acoustic-based SHM on STS (Prosser, NESC)
  – Piezo-based SHM on ISS (Madaras, LaRC)
  – Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
    • Sensor Development
    • Strain-based Parameter Development
      – Shape, Loads, Liquid Level, Magnetic Field
    • Sensor Attachment / Characterization
    • System Development
    • Ground / Flight Applications
Distributed Impact Detection System Concept

- Original DIDS concept is to detect and locate impacts via a wireless sensors system.

DIDS System Concept

Module is asleep until event signal threshold is crossed. Sensor module can record four signals at 1MHz rate. Sensors can record and transmit ~6000 events. Batteries can last up to 5 years. Laptop computer can control multiple units.

- Current DIDS system concept is to detect leak locations on space vehicles.
**ISS Ultrasonic Background Noise Test (UBNT)**

**System Overview**

- In order to detect leaks, the amplitude of the ultrasonic background noise levels is required.

### ISS Module Configuration

**JSL File Server**

**OCA/Ground**

**Principal Investigator (LaRC)**

**SSC**

- DIDS Receiver connected to SSC via USB

- Antenna/Data Cable
  - Length: 2 Meters
  - SMA connector
  - Teflon jacket
  - Kynar heat shrink

**DIDS Power Supply**
- WLE L91 Battery Pack
- 2 – Energizer L91 AA batteries
- 3.0 VDC output (nominal)

**Power supply and DIDS sensor units attached to ISS Module pressure wall using velcro.**

**AE sensors attached using pre-certified adhesives.**

**NOTE:** Diagram illustrates system configuration by ISS Module. No more than 7 DIDS sensor units will used in any ISS Module.
Crew laptop on ISS
Server
DIDS Wireless
Sensor Units
tethered to crew laptop
DIDS Wireless Wireless Receiver
Note: All Sensor hardware is Internal
Photo of Forward Hatch with UBNT Sensors Installed

Data recorded on Dec. 12, 2012. Twenty-four hour data take.
Installed during Feb, 2013 by Chris Hadfield (shown)
Topics

• Structural Health Monitoring
  – Definition
  – SHM vs NDE
• Agency Overview of SHM Activities
  – Accel & Acoustic-based SHM on STS (Prosser, NESC)
  – Wireless-based SHM on ISS / STS (Studor, JSC)
  – Piezo-based SHM on ISS (Madaras, LaRC)
  – Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
    • Uninhabited Aerial Vehicles
    • Composite Crew Module
    • Reentry Vehicles
    • Space Vehicles
    • Vehicle Pressure Systems
    • Expendable Launch Vehicles
Fiber Bragg Grating (FBG)
Optical Frequency Domain Reflectometry (OFDR)

FBG-OFDR can dramatically improve structural and system efficiency for space vehicle applications by improving both affordability and capability by …

• Providing >100x the number measurements at 1/100 the total sensor weight

• Providing validated structural design data that enables future launch systems to be lighter and more structurally efficient

• Reducing data system integration time and cost by utilizing a single small system for space / launch vehicles

• Increasing capability of measuring multiple parameters in real time (strain, temperature, liquid level, shape, applied loads, stress, mode shapes, natural frequencies, buckling modes, etc.

• Providing an unprecedented understanding about system/structural performance throughout space craft and mission life cycle
Fiber Optic Sensing System (FOSS)

Operation Overview

Fiber Optic Sensing with Fiber Bragg Gratings

- Multiplex 1000s of sensors onto one “hair-like” optical fiber
- All gratings are written at the same wavelength
- Uses a narrowband wavelength swept laser source to interrogate sensors
- In addition to measuring strain and temperature, these sensors can be used to determine a variety of other engineering parameters

\[ I_R = \sum_i R_i \cos(k2nL_i) \quad k = \frac{2\pi}{\lambda} \quad \frac{\Delta \lambda}{\lambda} \rightarrow \mu\varepsilon \]

- \( R_i \) – spectrum of \( i^{th} \) grating
- \( n \) – effective index
- \( L \) – path difference
- \( k \) – wavenumber

Laser tuning

Grating region

Tuning direction

start \( \lambda \) stop

Laser light

Reflective

\( \Lambda \)

\( \Lambda \)

\( \Lambda \)

L1

L2

L3

Reflected light (\( I_R \))

Loss light
Dryden’s FOSS
Current Capabilities

Current system specifications
- Fiber count 8
- Max sensing length / fiber 80 ft
- Max sensors / fiber 4000
- Total sensors / system 32,000
- Max sample rate (flight) 100 sps
- Max sample rate (ground) 100 sps
- Power (flight) 28VDC @ 4.5 Amps
- Power (ground) 110 VAC
- User Interface Ethernet
- Weight (flight, non-optimized) 27 lbs
- Weight (ground, non-optimized) 20 lbs
- Size (flight, non-optimized) 7.5 x 13 x 13 in
- Size (ground, non-optimized) 7 x 12 x 11 in

Environmental qualification specifications for flight system
- Shock 8g
- Vibration 1.1 g-peak sinusoidal curve
- Altitude 60kft at -56C for 60 min
- Temperature -56 < T < 40C
SHM Aerospace Vehicle Applications

NASA Structural Health Monitoring Technology

Launch Vehicles
Vehicle Pressure Systems
Reentry Vehicles
Space Shuttle Orbiter
International Space Station
Composite Crew Module
Uninhabited Aerial Vehicles
Space Vehicles
Uninhabited Aerial Vehicles
Global Observer UAS - Aerovironment

- Proof-load testing of components and large-scale structures

Global Observer Wing Loads Test

Wing Span: 175 ft

Whiffletree Loading System
Uninhabited Aerial Vehicles

Global Observer UAS - Aerovironment

- Validate strain predictions along the wingspan
- Measured strain distribution along the centerline top and bottom as well as along the trailing edge top and bottom.
- FO Strain distribution measurements are being used to interpret shape using Dryden’s 2D shape algorithm
- A 24-fiber system was designed of which 18, 40ft fibers (~17,200 gratings) were used to instrument both left and right wings
Over the entire wing span, the predicted displacements of fiber 3 closely match the actual for every load condition.
UAVs - Global Observer UAS (AV)
Flight Testing of Strain and 2D Shape Sensing

- Validate strain predictions along the left wing in flight using 8, 40ft fibers (~8000 strain sensors)
- An aft fuselage surface fiber was installed to monitor fuselage and tail movement
- Strain distribution were measured along the left wing centerline top and bottom as well as along the trailing edge top and bottom.
- 8 of the 9 total fibers are attached to the system at any give time
- The system performed well and rendered good results
**Predator-B UAS - Flight Testing**

**Strain and 2D Shape Sensing**

- 18 flights tests conducted; 36 flight-hours logged
- Conducted first flight validation testing April 28, 2008
- Believed to be the first flight validation test of FBG strain and wing shape sensing
- Multiple flight maneuvers performed
- Total of 6 fibers (~3000 strain sensors) installed on left and right wings
- Fiber optic and conventional strain gages show excellent agreement
- FBG system performed well throughout entire flight program

![Video clip of flight data superimposed on Ikhana photograph](image)
Full-Scale Composite Wings
Strain, Applied Loads, and 2D Shape - Mississippi State

ENGINEERING PROPERTIES OF COMPOSITE MATERIALS.

<table>
<thead>
<tr>
<th>Material</th>
<th>Woven fabric Toray-T700G</th>
<th>Unidirectional fabric Toray-T700S</th>
<th>Foam core DIAB Divinycell HT 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{11}, GPa</td>
<td>5.54 x 10^1</td>
<td>1.19 x 10^2</td>
<td>8.50 x 10^{-2}</td>
</tr>
<tr>
<td>E_{22}, GPa</td>
<td>5.54 x 10^1</td>
<td>9.31 x 10^0</td>
<td>--</td>
</tr>
<tr>
<td>G_{12}, GPa</td>
<td>4.21 x 10^0</td>
<td>4.21 x 10^0</td>
<td>--</td>
</tr>
<tr>
<td>ν_{12}</td>
<td>3.00 x 10^{-2}</td>
<td>3.10 x 10^{-1}</td>
<td>3.20 x 10^{-1}</td>
</tr>
<tr>
<td>ρ, kg/m^3</td>
<td>1.49 x 10^3</td>
<td>1.52 x 10^3</td>
<td>4.95 x 10^{-1}</td>
</tr>
</tbody>
</table>
MEASURED AND CALCULATED WING TIP DEFLECTIONS

<table>
<thead>
<tr>
<th>F, N</th>
<th>Measured δ₁, m</th>
<th>Calculated δ₁, m</th>
<th>Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1373</td>
<td>-0.184</td>
<td>-0.178</td>
<td>3.02</td>
</tr>
<tr>
<td>1592</td>
<td>-0.209</td>
<td>-0.205</td>
<td>2.29</td>
</tr>
<tr>
<td>1837</td>
<td>-0.241</td>
<td>-0.231</td>
<td>4.08</td>
</tr>
<tr>
<td>2036</td>
<td>-0.265</td>
<td>-0.257</td>
<td>3.23</td>
</tr>
<tr>
<td>2269</td>
<td>-0.295</td>
<td>-0.284</td>
<td>3.75</td>
</tr>
</tbody>
</table>

OUT-OF-PLANE APPLIED LOAD

<table>
<thead>
<tr>
<th>Applied Load, N</th>
<th>Calculated Load, N</th>
<th>Error, %</th>
<th>Difference, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>-185.5</td>
<td>-178.8</td>
<td>3.60</td>
<td>6.7</td>
</tr>
<tr>
<td>-194.4</td>
<td>-210.0</td>
<td>7.98</td>
<td>15.5</td>
</tr>
<tr>
<td>-241.5</td>
<td>-252.0</td>
<td>4.35</td>
<td>10.5</td>
</tr>
<tr>
<td>-288.5</td>
<td>-291.5</td>
<td>1.05</td>
<td>3.0</td>
</tr>
<tr>
<td>-333.3</td>
<td>-332.9</td>
<td>0.12</td>
<td>0.4</td>
</tr>
<tr>
<td>-378.1</td>
<td>-381.1</td>
<td>0.80</td>
<td>3.0</td>
</tr>
<tr>
<td>-422.9</td>
<td>-435.9</td>
<td>3.07</td>
<td>13.0</td>
</tr>
<tr>
<td>-472.2</td>
<td>-486.4</td>
<td>3.01</td>
<td>14.2</td>
</tr>
</tbody>
</table>

Average EI=98728.2-N*m²

Test Procedure for displacement
- Collect FBG strain data
- Use displacement Eq. and Strain data to calculate deflection

Test procedure for out-of-plane loads
- Determine EI for the wing
- Determine moment acting on wing
- Determine Load applied
Monitoring of MMOD Impact Damage to TPS
NASA Dryden / CSIRO Australia collaboration

Objective
• Detect & evaluate Micrometeoroid and Orbital Debris (MMOD) impact damage to Thermal Protection Systems (TPS) using embedded acoustic and thermal sensor networks

Principles
• Detect and locate impacts using acoustic emission sensor networks
• Evaluate severity of damage with optical fiber thermal sensor network
• Utilize centralised or self-organising operation with local network architecture on modular tiled structure

Novel aspects
• Development of switched optical fiber sensor network to enhance robustness
• Capable of central control or autonomous self-organising operation.
• Functional damage evaluation – monitor effect on thermal properties.
SHM Aerospace Vehicle Applications

NASA Structural Health Monitoring Technology

- Space Shuttle Orbiter
- International Space Station
- Composite Crew Module
- Uninhabited Aerial Vehicles
- Space Vehicles
- Reentry Vehicles
- Vehicle Pressure Systems
- Launch Vehicles
Vehicle Pressure Systems
Embedded Strain - The Multidisciplinary Challenge

- Fiber Optic Sensors embedded within Composite Overwrapped Pressure Vessels
- Goal is to understand embedded FBG sensor response
  - Requires comprehensive, multi-disciplinary approach
Vehicle Pressure Systems
Composite Overwrapped Pressure Vessels (COPVs)

Objectives
• Perform real-time in-situ structural monitoring of COPVs with embedded fiber Bragg grating sensor arrays
• Develop analytical and experimental methods to reliably interpret embedded strain sensor measurements
• Develop a robust “early-warning” indicator of COPV catastrophic failure
• Provide finite-element-like experimental strains in real time for:
  – Health Monitoring on International Space Station
  – Model validation to improve future designs

Approach
• Develop and evaluate surface-attachment techniques
• Install surface fiber optic sensors
• Conduct test to 80% of burst pressure
• Overwrap surface FBGs with composite layers
• Install new surface FBGs over “embedded” FBGs
• Conduct burst test
• Develop data analysis and visualization techniques to reliably predict COPV failure
Composite Overwrapped Pressure Vessels
Installation Methods

Installation methods developed

• Transfer pattern to bottle surface

• Mask and fill basecoat paths

• Sand down close to surface layer

• Route and attach FBGs
Embedded Fiber to 5000 psi
Hoop Direction

[Graphs showing strain vs. time for different fiber embed positions, labeled H_5 and H_7, with strain in με and time in sec.]

0°, 90°, 180°, 270°
SHM Aerospace Vehicle Applications

NASA Structural Health Monitoring Technology

- Space Shuttle Orbiter
- International Space Station
- Composite Crew Module
- Uninhabited Aerial Vehicles
- Space Vehicles
- Reentry Vehicles
- Vehicle Pressure Systems
- Launch Vehicles
**FOSS Current and Future Work**

*Flight Demonstration on a Launch Vehicle (KSC-Launch Services)*

- TPS Health Monitoring
- Embedded Strain
- Magnetic Field
- Applied Loads
- Strain
- Temperature and Cryogenic Liquid Level
- 2D Shape
- 3D Shape
Cryogenic Liquid Level-Sensing

The Challenge

- The transitional phase between liquid and gas of cryogenics is difficult to discriminate while making liquid level measurements.
- Using discrete cryogenic temperature diodes spaced along a rake yields course spatial resolution of liquid level along with high wire count.

FOSS Approach

- While using a uniquely developed fiber optic structure (CryoFOSS), the transitional phase can be mapped more accurately.
- Using a single continuous grating fiber, a high degree of spatial resolution can be achieved, as low as 1/16”.
LH₂ Testing of CryoFOSS at MSFC

Objective
- Experimentally validate CryoFOSS using Dryden’s FOSS technology

Test Details
- Dewar dimensions: 13-in ID x 37.25-in
- Fill levels of 20%, 43%, and 60% were performed
- Instrumentation systems
  - Video boroscope with a ruler (validating standard)
  - Cyrotracker (ribbon of 1-in spaced silicon diodes)
  - MSFC Silicon diode rake
  - Fiber optic LH₂ liquid level sensor (CryoFOSS)

Results
- CryoFOSS sensor discerned LH₂ level to ¼” in every case
- Excellent agreement achieved between CryoFOSS, boroscope, and silicon diode Cryotrackers

Bottom line
- Validated concept for a lightweight, accurate, spatially precise, and practical solution to a very challenging problem for ground and in-flight cryogenic fluid management systems
LH$_2$ Liquid Level Results

**Combined Results**

- CryoTracker
- Diode Rake
- CryoFOSS
- Boroscope

**CryoFOSS compared to Boroscope**
Solving the Challenge of Flexible Dynamics

- Improved flight performance
- Stretching tanks?
- Improved launch availability
- The ability to validate structural dynamics?
- Want to drop those expensive body bending sensors?
- FBG sensor technology:
  - Large number of sensors
  - Very small weight penalty
  - Insensitive to EM noise
  - High update rate (1 KHz non-multiplexed)

Opportunities for real time estimation and control created by novel FBG interrogation technology

Courtesy of KSC LSP and Florida Institute of Technology
FOSS Current and Future Work

Flight Demonstration on a Launch Vehicle (KSC-Launch Services)

- TPS Health Monitoring
- Embedded Strain
- Magnetic Field
- Applied Loads
- Strain
- Temperature and Cryogenic Liquid Level
- 2D Shape
- 3D Shape
Anticipated Impact of Fiber Optic based SHM

- Potential to revolutionize aerospace design and performance throughout the vehicle life-cycle
  - Design and development
  - Fabrication
  - Test and Evaluation
  - In-flight operation
  - Off-nominal flight
  - End of life-cycle decisions
Future work: Small UAS Flight System

Current system specifications

- Fiber count: 4
- Max sensing length / fiber: 40 ft
- Max sensors / fiber: 1000
- Total sensors / system: 4000
- Max sample rate (flight): 100 sps
- Power (flight): 28VDC @ 2 Amps
- User Interface: Ethernet
- Weight: 5 lbs
- Size: 3 x 5 x 11 in
Questions?