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[1] In this study, we utilize near-simultaneous observations from two sets of multiple
satellite sensors to segregate Tropospheric Emission Spectrometer (TES) and
Measurements of Pollution in the Troposphere (MOPITT) CO observations over active fire
sources from those made over clear background. Hence, we obtain direct estimates of
biomass burning CO emissions without invoking inverse modeling as in traditional
top-down methods. We find considerable differences between Global Fire Emissions
Database (GFED) versions 2.1 and 3.1 and satellite-based emission estimates in many
regions. Both inventories appear to greatly underestimate South and Southeast Asia
emissions, for example. On global scales, however, CO emissions in both inventories and in
the MOPITT-based analysis agree reasonably well, with the largest bias (30%) found in the
Northern Hemisphere spring. In the Southern Hemisphere, there is a one-month shift
between the GFED and MOPITT-based fire emissions peak. Afternoon tropical fire
emissions retrieved from TES are about two times higher than the morning MOPITT
retrievals. This appears to be both a real difference due to the diurnal fire activity variations,
and a bias due to the scarcity of TES data.
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1. Introduction

[2] Scientists today enjoy an abundance of satellite, ground,
and airborne observations providing plentiful information on
the Earth’s system, including its atmosphere and biosphere.
Nevertheless, inferring comprehensive information on some
processes remains a complicated task. One example is biomass
burning emissions, which are of great importance in many
research areas ranging from air quality to climate modeling.
[3] The most accurate and controlled way to measure fire

emissions is in the laboratory, providing, however, only point
information. Field measurements supply wider-scale data but
still yield only local information and are mostly limited to
prescribed fires. Towers offer the advantage of continuous
observations but are too expensive and vulnerable to allow
setting up a large-scale network. Aircraft provide regional-
scale data, but observations are mostly limited to large plumes.
Satellites gather consistent worldwide observations of atmo-
spheric concentrations of species such as CO for which
biomass burning is one of the largest emission sources.
These observations still do not provide continuous global

coverage but are rather a collection of snapshots that together
make up a pseudoglobal data set.
[4] CO concentrations observed with satellites are a

combination of local and nonlocal sources with variable
relative influence. Traditional techniques for "top-down"
emission estimates from satellite data aim to disentangle
those influences by relying on interpretation using chemistry
transport models (CTMs) and inverse modeling [e.g., Jones
et al., 2003; Müller and Stavrakou, 2005; Kopacz et al.,
2010; Gonzi et al., 2011; Hooghiemstra et al., 2012]. This
technique generally requires the assumption that model
biases are mostly due to differences in biomass burning
inventories. However, inaccuracies in the models, particu-
larly the representation of convective transport, can lead to
significant uncertainties in CO emission estimates on global,
and especially on regional, scales [Tost et al., 2010; Jiang
et al., 2011, 2013]. The OH distribution in the model can also
significantly influence the inversion results [Kopacz et al.,
2010; Hooghiemstra et al., 2011; Jiang et al., 2011]. Jiang
et al. [2011] note that even using the same satellite observa-
tions for the same period, estimates of south Asian emissions
of Stavrakou and Müller [2006] and Arellano et al. [2004]
differed by 75%. Discrepancies of the same order were found
by Heald et al. [2004] when comparing previous emission
estimates for this region. Using the same version 3 of
MOPITT data, Jones et al. [2009] and Arellano and Hess
[2006] obtained significantly different CO estimates for the
Southern Hemisphere, likely due to differences in the vertical
transport in the models used in the inversions [Jiang et al.,
2013]. Kopacz et al. [2009] found that model resolution
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can also significantly affect emission estimates, leading to
~60% difference between results obtained with high- and
low-resolution inversions for Japan and Korean peninsula.
[5] "Bottom-up" methods use satellite active fire observa-

tions to derive quantitative estimates of trace species emissions
from biomass burning. The widely used "bottom-up" invento-
ries Global Fire Emissions Database (GFED) version 2.1
(hereafter GFED2) [van der Werf et al., 2006] and GFED
version 3.1 (hereafter GFED3) [van der Werf et al., 2010]
are based on (1) burned areas derived either from Moderate
Resolution Imaging Spectroradiometer (MODIS) fire pixel
counts for GFED2 [Giglio et al., 2006] or coupling these with
MODIS surface reflectance imagery for GFED3 [Giglio et al.,
2009; Giglio et al., 2010], (2) fuel loads and combustion
completeness factors from the satellite-constrained Carnegie-
Ames-Stanford approach (CASA) biogeochemical model,
and (3) a compilation of field and laboratory-based emission
factors per dry matter burnt [Andreae and Merlet, 2001]. The
GFED database is extensively used by the scientific com-
munity as prescribed or a priori fire emissions in global climate
models (GCMs) and CTMs, as emission factors (per MODIS
fire count or burned area) in fire models, and as a reference
for evaluating modeling results [e.g., Pechony and Shindell,
2009; Kopacz et al., 2010; Li et al., 2012]. However, there
are substantial uncertainties in the burned area estimates, fuel
loads, and combustion completeness used in GFED [van der
Werf et al., 2006]. Considerable differences are often found
between the "bottom-up" and the "top-down" emission
estimate [e.g., Arellano et al., 2004; Bian et al., 2007;
Kopacz et al., 2010; Bond et al., 2013]. The Arellano et al.
[2004] top-down inversion results for East Asia were about a
factor of 2 higher than the bottom-up estimates. Bian et al.
[2007] compared four bottom-up and two top-down inven-
tories, finding agreement in global annual emissions within
30% but large regional discrepancies of up to a factor of 5.
Top-down estimates in Kopacz et al. [2010] were 60% higher
than bottom-up inventories, with especially large differences
in comparison with tropical biomass burning in the
GFED2 inventory.
[6] Considering the significant impact of model biases on

the top-down estimates obtained using inversion analysis
[Tost et al., 2010; Hooghiemstra et al., 2011; Jiang et al.,
2011, 2013], we suggest here an approach different from the

traditional top-down methods, avoiding inversion modeling.
Utilizing the advantage of near-simultaneous observations
from multiple satellite sensors, we discriminate between clear
background and fire-related satellite CO retrievals, eliminating
the need for inverse modeling to determine what portion of
observed amounts originated in fires. We obtain vertically
resolved observations of fire-related CO from the Tropospheric
Emission Spectrometer (TES) and Measurements of Pollution
in the Troposphere (MOPITT) satellite sensors and compare
them with CO simulated within the NASA Goddard Institute
for Space Studies (GISS) GCM Model-E2 using fire emissions
prescribed from the GFED2 and GFED3 databases. We also
derive CO emissions rates per MODIS fire count, which can
be directly compared to GFED2 and GFED3 emission rates.

2. Method and Instruments

[7] Satellites of the A-train constellation, passing the equa-
tor in the local afternoon, observe various atmospheric and
land parameters. With the closing Aura spacecraft lagging
the lead Aqua satellite by 15min, we can regard these
observations as near simultaneous. We segregate vertically
resolved CO observations collected with the TES instrument
onboard Aura (level 2 version F05 nadir product) into two
major categories. The “fire” category is assigned whenever
the MODIS sensor onboard the Aqua satellite records active
fire pixels in the 0.2° × 0.2° “acceptance” area surrounding
TES field of view (FOV, ~5.3 × 8.3 km2). The “background”
category is assigned when there are no fire pixels recorded by
MODIS and no biomass burning smoke aerosols are detected
by the Ozone Monitoring Instrument (OMI) sensor (also on
the Aura satellite) in the larger 1° × 1° exclusion zone (see
schematic illustration in Figure 1). Sensitivity testing showed
that decreasing the size of the "acceptance" area reduces the
amount of available TES data beyond usability. Increasing
this region leads to a significant drop in fire-related CO
concentrations, indicating a large number of CO retrievals
not related to fire activity being misidentified as "fire".
[8] Sensors of the second ensemble used here are all

onboard the Terra satellite, passing the equator in the local
morning: MOPITT provides vertically resolved CO observa-
tions (individual FOV ~22 × 22 km2, accumulating to over
600 km wide swath FOV) and MODIS supplies information

Figure 1. Illustration (not to scale) of the working scheme for the A-train sensors.
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on aerosols and fire counts. The treatment of these data
follows the same scheme described above for the A-train
sensors. Here we use the MOPITT level 2 V4 CO product,
which is currently the latest validated product version. We
note that the new MOPITT V5 multispectral product, when
adequately validated, promises to have greater sensitivity in
the lower troposphere over land [Worden et al., 2010;
Deeter et al., 2011].
[9] We assume that the difference between the “fire” CO

records, retrieved above simultaneously detected active fire
sources, and the long-term monthly mean “background”
CO concentrations in a corresponding grid cell can be attrib-
uted to biomass burning. This is somewhat akin to aircraft
sampled anomalies in fire plumes being evaluated against
average background CO concentrations in that region [e.g.,
Guyon et al., 2005]. This assumption imposes uncertainty
on CO estimates, as part of the observed anomalies could
be related to other local and nonlocal sources, which will
result in an overestimation of the biomass burning contribu-
tion. Likewise, if the true background CO concentration at
the time of measurement was lower than average, this
method will lead to an underestimate of fire-emitted CO.
The associated uncertainty can be characterized by analyzing
the variation of “background” CO around the average
concentrations. At the lower pressure levels, this results in
~20% uncertainty on a global scale, with highest uncertainty
(30–35%) in Africa and South and Southeastern Asia
(Table 1), which exhibit the highest variability in “clear”
background CO concentrations. The largest uncertainties
(~60%) are found at the 200 hPa pressure level in the
Boreal regions. Emissions per fire count (EPFC) rates are
obtained by dividing the total column difference between
“fire” and “background” CO by the corresponding MODIS
fire counts recorded at this grid cell.

3. Climate Model

[10] We use simulations performed with the newer version
of Model-E [Schmidt et al., 2006], the model of atmospheric
composition and climate developed at the NASA Goddard
Institute for Space Studies (GISS). The new version, called
Model-E2, is similar to the previous model but has numerous
improvements to the physics, including the ability to

represent multiple downdrafts and updrafts in convective
systems. This improved representation of vertical airflow
enhances the model’s ability to represent vertical transport
of biomass burning CO emissions and is especially important
in the tropics. Detailed description of composition simulated
in GISS Model-E2 as well as evaluations against available
observations can be found in Shindell et al. [2013]. Model
runs analyzed here were performed at 2° × 2.5° horizontal
resolution, with 40 vertical layers extending to 0.1 hPa.
Biomass burning emissions were prescribed on a monthly
basis from GFED2 and GFED3 emission databases.

4. CO Profile Retrieval

[11] TES uses Fourier transform spectroscopy to convert
measured infrared (IR) radiance from the Earth’s surface and at-
mospheric constituents into emission spectra. MOPITT
measures IR radiances in CO and methane absorption bands
using gas-filter correlation radiometry. The emission/absorption
wavelengths depend on atmospheric concentrations and vary
with temperature and pressure, which are altitude dependent.
Hence, with preciselymeasured spectra, the altitude of chemical
species can be retrieved using the optimal estimation method
[Rodgers, 2000]. This method, followed in both the TES
[Bowman et al., 2002; Worden et al., 2004] and MOPITT
[Deeter et al., 2003] retrieval processes, requires a priori
assumptions for the atmospheric profiles to constrain retrieval
results and obtain a unique solution. The retrieved profile xret
may be expressed as a linear combination of the (unknown) true
atmospheric profile x weighted by the averaging kernel matrix
A, the a priori profile xa, and the retrieval error ε (equation (1)).

xret ¼ Axþ I � Að Þxa þ ε (1)

[12] The averaging kernels are determined by sensitivities
of spectral measurements to species concentrations at
different pressure levels, signal-to-noise ratios, and retrieval
a priori constraints. In the ideal case of A= I (unity matrix),
the retrieved profile would equal the true profile x plus noise
ε. However, the averaging kernels of both TES and MOPITT
are far from unity, and hence, the a priori assumptions xa
have nonnegligible influence on xret, dominating low-
sensitivity retrievals.

Table 1. Estimated Average Annual Uncertainty in Determining Fire-Caused Enhancements in CO Concentration Due to Variability in
Background CO Levels in the 14 GFED Regions, Defined as in van der Werf et al. [2006] (See Also Figure 10)

Region

Uncertainty Estimate (%)

800 hPa 700hPa 500 hPa 200 hPa Column

Boreal North America (R1) 20.0 17.5 14.4 58.0 17.7
Temperate North America (R2) 20.5 19.3 14.2 21.7 12.6
Central America (R3) 25.5 20.5 15.8 22.0 14.6
North Hemisphere South America (R4) 20.3 16.5 15.0 20.3 8.4
South Hemisphere South America (R5) 20.4 17.1 18.3 33.0 11.3
Europe (R6) 16.2 13.0 12.8 32.9 10.4
Middle East (R7) 23.5 16.1 12.5 25.7 11.6
North Hemisphere Africa (R8) 33.3 21.3 16.0 20.4 8.9
South Hemisphere Africa (R9) 35.7 32.5 25.0 21.9 18.2
Boreal Asia (R10) 15.3 14.0 12.7 60.4 20.6
Central and East Asia (R11) 18.7 14.2 12.5 34.9 11.8
South and Southeast Asia (R12) 31.0 21.7 15.1 22.4 23.9
Equatorial Asia (R13) 20.1 22.0 23.0 21.3 13.6
Australia (R14) 21.3 20.4 16.2 17.4 14.1
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5. Sensitivity Filtering

[13] To avoid a situation where a significant volume of
analyzed data reflects a priori assumptions rather than actual
measurements, we filter retrievals that are dominated by the a
priori. A common filtering parameter is the diagonal term of
the averaging kernel matrix [Zhang et al., 2008], which
indicates how sensitive the retrieval at a specific pressure
level was to the true atmospheric state at that pressure level.
However, even if the retrieval at the level of interest has a
low diagonal term value, measurements at other pressure
levels might have been sufficient to retrieve meaningful
concentrations at the level of interest. This can be accounted
for by instead using the averaging kernel area (ka) as a
filtering parameter [Lopez et al., 2008]. The ka is a measure
of the information obtained from measurements at all levels
when solving for a retrieval at a certain level. Here we adopt
this latter method, and since TES sensitivities are generally
lower than those of MOPITT [Luo et al., 2007], we will more
closely examine TES data to establish our filtering conditions.
[14] Figure 2a shows TES 2005–2008 annual mean

zonally averaged CO retrievals with no sensitivity filtering
applied. Figure 2b shows the same data after "mild filtering"
requiring ka ≥ 0.4, which corresponds approximately to
demanding that at least 40% of retrieval information come
from measured data rather than a priori. This has filtered
out virtually all data above ~30 hPa and much of the near-
surface retrievals, which were largely reflecting a priori
assumptions rather that actually measured atmospheric condi-
tions. Applying yet stronger filtering of ka≥ 0.7 (Figure 2c)
removes virtually all data above ~100 hPa, leaving only the
more reliable retrievals in the troposphere. Note that other than
"wiping out" levels of less reliable data, filtering causes little
change in the atmospheric concentrations at most of the
remaining pressure levels, as TES average sensitivities are
generally systematically higher at these altitudes (Figure 3).
[15] At the lower levels, however, the differences are

prominent. This is clearly seen in the plots of Figure 4 show-
ing 2005–2008 annual mean TES CO retrievals at about
800 hPa with "mild" and "strong" filtering compared to CO
simulated with GISS Model-E2 smoothed with TES averag-
ing kernels and relaxed toward TES a priori (equation (1)).
Such processing of modeled CO mimics the TES retrieval
procedure, showing what TES would have retrieved if the
true atmosphere was identical to the modeled one. When
mild filtering is applied to the data, the model and TES show
very good agreement in the spatial distribution of CO

concentrations (Figure 4a). However, when stronger filtering
is applied (Figure 4b), the two become notably different, and
the agreement between TES and the model is preserved only
where retrievals on average have higher sensitivity
(Figure 5a). The reason for such large differences when
comparing TES andmodeled retrievals of different sensitivities
is twofold. When comparing TES and the TES-processed
model, we basically compare TESmeasured content plus some
TES a priori content withmodeled content plus the same TES a
priori. By mildly filtering data, we allow a considerable
amount of a priori content in the comparisons, which is the
same for both TES and modeled data and inevitably yields
better correlations between the two. Note, for instance, how
TES-retrieved and modeled CO concentrations in North
America, which are very different in the higher sensitivity
retrievals (Figure 4b), become very similar in the lower sensi-
tivity retrievals (Figure 4a), which are more influenced by the a
priori assumptions (Figure 5b). On the other hand, when apply-
ing stronger filtering, we end up with too little "good" data in
areas where sensitivities are generally lower, and comparisons
may become unreliable. These aspects should be kept in mind
when analyzing satellite-retrieved information, and in particu-
lar, they imply much greater reliability in the tropics
(Figure 5a). In our further analysis, we apply "strong" filtering
to all data to minimize the influence of a priori assumptions.

Figure 2. TES 2005–2008 annual mean zonally averaged CO retrievals (a) without filtering low-sensitiv-
ity data and (b) with mild and (c) strong filtering applied.
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kernel area (ka) of CO retrievals.
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6. “Fire” Versus “Background” CO:
Observations and Modeling

[16] Separated “fire” and “background” TES CO records
(Figure 6a) show concentrations associated with tropical
afternoon fire activity that are much larger than the
“background” values at the lower pressure levels (800 and
700 hPa). Modeled CO simulated with GFED prescribed fire
emissions was sampled with each satellite’s overpass times
and locations, using corresponding averaging kernels and a
priori assumptions (equation (1)). These TES-processed
modeled tropical concentrations are significantly lower than

“fire” CO concentrations retrieved by TES at 800 and
700 hPa (Figure 6a). “Background” concentrations, however,
are relatively well depicted. With height, both “fire” and
“background” modeled CO concentrations become high-
biased comparing to TES. This supports the suggestion
raised in a different study [Shindell et al., 2013] that increas-
ing TES model biases with height likely result from too large
a ratio of CO production from hydrocarbon oxidation relative
to CO’s own oxidation rather than being related to convec-
tion within the model transporting CO too rapidly from
surface sources to the upper troposphere.
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Figure 4. 2005–2008 annual mean TES CO retrievals at about 800 hPa with (a) mild and (b) strong filtering
compared to CO simulated with GISS Model-E2 and processed with TES averaging kernels and a priori.
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[17] Tropical “fire” CO concentrations observed with
MOPITT are much lower than TES at 800 hPa (Figure 6b).
This is despite TES CO retrievals being generally biased
low compared to MOPITT [Ho et al., 2009]. To facilitate
comparison between TES and MOPITT results, these
MOPITT retrievals were adjusted to TES a priori [Luo
et al., 2007]. Hence, the differences between TES and
MOPITT “fire” CO records presented here do not result from
different a priori assumptions. (This adjustment, however,
did not have a large influence on our results since filtered data
are less influenced by a priori assumptions.) One of the prob-
able reasons for different TES and MOPITT tropical “fire”
CO concentrations is their overpass time. MOPITT passes

the equator in the local morning while TES flies within the
afternoon constellation, recording the tropical fire activity at
its strongest [Giglio, 2006].
[18] MOPITT-processed model concentrations are gener-

ally close to MOPITT observations (Figure 6b), although
MOPITT concentrations are notably higher in the northern
extratropics. It is generally accepted that high latitude
MOPITT CO retrievals should be used with caution
[Arellano et al., 2004]. At mid latitudes, low-biased CO is
found in many models [Shindell et al., 2006]. Seasonal
underestimate in biomass burning emissions in the invento-
ries was suggested as the most probable candidate for these
biases [Shindell et al., 2006; Kopacz et al., 2009]. Note,

Figure 6. 2005–2008 annual mean zonally averaged “Fire” and “Background” CO retrieved with TES
and MOPITT and simulated with GISS Model-E2 using GFED v.2.1 and GFED3 fire emissions.
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however, that modeled “background” concentrations are
low-biased at these latitudes, comparing to both MOPITT
and TES, suggesting that there are additional reasons for
the observed disagreements. The “fire”-“background” CO
concentration differences retrieved with MOPITT are quite
robust across the years in the lower and middle troposphere.
In the upper troposphere, however, results are robust equator-
ward of about 40°, where convective activity more
effectively communicates surface concentrations to the
troposphere, while variability is very large at high latitudes
(Figure 7 and Table 1).
[19] To further characterize the ability of our methodology

to capture the true impact of fires on CO, we compared
analysis of the model’s CO based on the “fire”-“background”
segregation method with the total influence of biomass burn-
ing CO in the model determined by running a separate simula-
tion with biomass burning emissions turned off. The modeled
“background” concentrations are on average 7–15% higher
than concentrations in the simulation without biomass
burning, due to fire emissions diluted from distant sources.
This leads to a low bias of ~9–24% in regions with sizable
CO from fires (at least 10% above background) using our
“fire” minus “background” methodology. This characterizes
the low bias such dilution may impose on segregated fire CO
concentrations and indicates that the biomass burning emis-
sion estimates reported here are likely slightly conservative.

7. Emissions per Fire Count Factors: TES,MOPITT
and GFED Inventory

[20] Exploiting the advantage of near-simultaneous MODIS
active fire records, we can look at TES andMOPITTCO emis-
sions rates per MODIS fire count (EPFC). Examining EPFCs
rather than emissions diminishes the influence of diurnal fire
activity variations in comparisons. We compare TES and
MOPITT EPFCs directly to EPFCs in GFED inventories
[van der Werf et al., 2006], which are also based on MODIS

active fires; hence, there is no atmospheric modeling in the
following analysis.
[21] Since MOPITT observes CO up to 100 hPa, TES

column values used to compute EPFCs were also taken up
to 100 hPa. However, calculating TES EPFCs from total
column yields virtually indistinguishable results, since “fire”
CO concentrations drop quite rapidly with height (Figure 6)
and have little contribution at high pressure levels.

Figure 7. Annual mean zonally averaged “Fire”-“Background” CO concentration differences retrieved
with MOPITT for years 2005–2008.
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[22] We calculate EPFCs as a difference between fire-
related and background CO integrated over the vertical
column and divided by the number of MODIS fire counts at
that grid cell. This procedure imposes low bias on the
estimates, as not all emitted CO is located within the grid cell
due to horizontal transport. Analysis of MOPITT CO
concentrations retrieved for nearly a hundred isolated
MODIS fire events in the year 2007 shows that at the lower
levels, CO enhancement above the background decreases
rapidly with distance from the fire source (Figure 8). TES
retrievals at 800 hPa for the same year show quite similar
behavior (Figure 8). (Due to its very small FOV, retrieving
TES CO at increasing distances from a specific fire is impos-
sible; hence, instead, we determined distance to closest active
fire for each CO retrieval.) MOPITT retrievals show CO
enhancement above fires decreasing with altitude, and above
500 hPa, it is already not much different from the remote
values. As the fire-induced enhancement decreases, its sepa-
ration from background becomes less certain. Hence, this
analysis cannot strongly constrain the dilution of emissions
into the neighboring cells at the upper levels but helps quan-
tify the amount of potential transport after emission in the
lower troposphere, where the impact from fire activity is
strongest. These lower troposphere levels contribute most
to the enhancement of integrated column CO, which outside
the gridbox (2° × 2.5°) reduces to values too low to allow
reliable separation of the near-fire areas from the back-
ground, quickly falling well within the uncertainty limits
(Table 1). Hence, sampling directly over the gridbox, we ac-
count for the major and the most reliably determined portion
of CO enhancement over fires, although missing some dilu-
tion (about 20%) due to horizontal transport, which gives a
systematic low bias in the following calculations.
[23] To facilitate easier comparison, we grouped the obtained

EPFCs into three basic vegetation types (Figure 9) dominating
each grid cell in the 14 regions (Figure 10) that were used in
deriving the GFED database [van der Werf et al., 2006]. The
annual-mean EPFCs averaged over these vegetation types and
regions are shown in Figure 11. Estimated uncertainty in deter-
mining fire-related enhancements in CO concentration for these
regions is given in Table 1 (typically 10–30%). In many
regions, TES has too few records to provide any reliable

estimates. In further discussion, we will largely disregard esti-
mates derived based on fewer than 100 records. In Figure 11,
bars showing such estimates are shaded out with a white diago-
nal pattern (the number of available TES records appears on the
bars). The deviations of GFED EPFCs from MOPITT values
for each region and vegetation type are shown in Figure 12,
along with an indication of statistical significance for the
GFED3 versus MOPITT differences with respect to uncer-
tainties in this method (due to background variability and hori-
zontal transport) and uncertainties in GFED3 estimates [van der
Werf et al., 2010].
[24] In many regions, GFED3 emission rate estimates from

extratropical forests agree much better with MOPITT than the
older GFED2 database (Figures 11 and 12). Europe (R6) and
Southern Hemisphere (S. Hem.) South America (R5) are the
most notable examples. Tropical forests emission rates are also
much closer to MOPITT in the GFED3 database, whereas in
GFED2, they were generally overestimated. In most regions,
adjusting MOPITT records to TES a priori has a minute effect
(Figure 11); however, in Southeastern and Equatorial Asia
(R12 and R13), this process reduces the values and brings
them considerably closer to GFED levels. Using only higher-
sensitivity records diminishes but does not completely remove
a priori influence, and it is unclear whether TES or MOPITT a
priori assumptions (both are temporally and spatially variable)
yield more realistic estimates here. In the tropical forests of S.
Hem. South America (R5), one of the few regions where TES
records are relatively abundant, all data sets agree well
(Figure 11). Although differences in emission rate estimates
for tropical forests are often large between the two GFED
databases, they have little effect on the actual CO emissions,
as this vegetation is less fire prone.
[25] In most regions, the grass/shrubs vegetation class

shows relatively little difference between the two GFED da-
tabases, and both are generally underestimated compared to
MOPITT (Figures 11 and 12). In some regions, the older
GFED2 estimates for grass/shrubs emission rates are closer
to MOPITT (e.g., tundra (R1 and R10) and Europe (R6)),
while in others, the newer GFED3 estimates agree better with
the satellite (e.g., Equatorial Asia (R13)). Although differ-
ences between GFED3 and MOPITT are quite large in the
Northern Hemisphere high latitudes (boreal regions R1 and
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Figure 11. 2005–2008 annual mean CO emissions per MODIS fire count derived from TES andMOPITT
and from GFED2 and GFED3 databases for the 14 GFED regions (Figure 10) and the three basic vegetation
types (Figure 9). Numbers on the TES bars indicate the number of retrievals this record comprises. The bars
are shaded out with white diagonal pattern whenever the number of records is less than 100.
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R10), they are statistically insignificant given the large uncer-
tainties in GFED3 [van der Werf et al., 2010] and this method
for those regions (Figure 12). In African grass and shrubs (R8
and, especially, R9), where fire activity is highest and TES
information is quite plentiful, EPFCs in all data sets corre-
spond reasonably (Figure 11). MOPITT emission rates in
South and Southeast Asia (R12) are significantly higher than
in both GFED databases, fortifying the growing evidence
that CO emissions in Asia are significantly underestimated
in current inventories [Petron et al., 2002; Arellano et al.,
2004]. Biomass burning black carbon (BC) emissions were
also found to be greatly underestimated in South Asia
[Bond et al., 2013]. In the Middle East (R7), the differences
between GFED and MOPITT and between MOPITT and
TES are an order of magnitude (Figure 11). Disagreement
between GFED and satellites may result from potentially
inappropriate identification of vegetation type. While grass
and shrubs dominate this region, they may not be the dominant
burning vegetation type, as they are largely croplands and
rarely burn due to close human control. Thus, emission factors
derived from satellite observations here may actually relate to
different vegetation type. The number of available fire-related

TES observations in this region is too low to provide a trust-
worthy emission rate estimate, but the order-of-magnitude
difference with MOPITT warrants a closer examination.
[26] Figure 13a shows the occurrence frequency of different

EPFC values in the grass/shrubs vegetation type in the Middle
East for MOPITT and TES. It turns out that values derived
from TES do not exceed the range of MOPITT retrievals.
However, while the occurrence frequency of larger values is
comparable for both sensors, the lower values are much more
frequently encountered with MOPITT. Such a large range of
emission rates observed by the same sensor in the same region
most probably arises from recording fires occurring in differ-
ent ambient conditions, e.g., fuel moisture, horizontal winds
changing emissions dispersion, vegetation density, and/or
different vegetation types (GFED vegetation type is the
dominant one, but not the sole type in the region). It would
be reasonable to assume that, in general, lower emission
amounts are produced by weaker, smaller, shorter-lived fires.
Such fires are much more likely to be missed by TES with
its very small FOV than the larger and more persistent fires.
MOPITT has a much larger FOV and hence a much higher
chance to encounter smaller fires. It therefore appears that

Figure 12. GFED2 and GFED3 versus MOPITT 2005–2008 annual mean CO emissions per MODIS fire
count for the 14 GFED regions and the three basic vegetation types. GFED3 vs MOPITT differences are
statistically significant within 5% (p=0.05), except for those indicated with (*) = low significance (10%)
and (!) = statistically insignificant.

a) R7: Middle East; grass/shrubs b) R9: S. H. Africa; grass/shrubs
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while the range of observed values is similar for both sensors,
TES tends to see the larger fires, so TES emission estimates
tend to be higher, especially when the number of available
retrievals is low. This may be an additional factor accounting
for the generally higher emissions observed with TES
compared to MOPITT (Figure 6). As the number of TES
records increases, e.g., in a tropical area such as Southern
Hemisphere Africa, so do its chances to encounter a wider
variety of events, and occurrence frequencies approach those
of MOPITT (Figure 13b). Inevitably, the large differences in
FOV and capacity to observe fires of different sizes make com-
parison between TES and MOPITT (Figures 6 and 11)

difficult where TES data are scarce (specifically outside the
tropical region).
[27] On average, emission rates in the newer GFED3

inventory show a far better correspondence to MOPITT than
the older database (Figure 14). However, for grasses and
shrubs, the most globally prevailing and most fire-prone
vegetation type, there was little change, and the GFED emis-
sion rates remain underestimated compared to MOPITT.

8. Seasonal CO Variations

[28] MOPITT provides a sufficiently large number of fire-re-
lated CO records to infer meaningful monthly variations in the
four major latitude belts, and we compare them to data modeled
with prescribed GFED3 and GFED2 fire emissions (Figure 15).
[29] Overall, MOPITT and modeled seasonal variations

agree quite reasonably. In the northern extratropics
(Figure 15a), the model underestimates CO concentrations
compared to MOPITT throughout the whole year. MOPITT
tends to be 5–11% high-biased, especially in the Northern
Hemisphere [Emmons et al., 2004, 2007, 2009; Jacob et al.,
2003], which can account a portion for these year-round differ-
ences. However, there is also a seasonal component
(Figure 15a). Increased spring biases in the “fire” CO concen-
trations strengthen the suggestions that emission inventories
have considerable seasonal underestimates in the northern
extratropics, causing systematical seasonal underestimate of
CO concentrations in composition and climate models
[Shindell et al., 2006; Kopacz et al., 2010]. However, seasonal
winter-spring increase in the “background” biases provides
supporting evidence for the hypothesis that modeling biases
in northern extratropics should not be attributed solely to
biomass burning inventories and may result from other unac-
counted sources, like vehicle cold starts and residential heating
[Kopacz et al., 2010].
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Figure 15. 2005–2008 seasonal variations of CO concentrations retrieved from MOPITT and modeled
with GISS Model-E2 with GFED2 and GFED3 prescribed biomass burning emissions in (a) northern mid-
latitudes (30N–60N), (b) Northern Hemisphere tropics (0–30N), (c) Southern Hemisphere tropics (0–30°
S), and (d) southern midlatitudes (30°S–60°S).
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[30] In the tropics (Figures 15b and 15c), MOPITT and
modeled CO concentrations agree well. In the Southern
Hemisphere tropics, however, the model using GFED
produces a fire season shifted approximately one month early
(Figure 15c). This agrees with seasonality mismatch found
between GFED and other top-down (inverse) CO estimates
in Southern Hemisphere Africa [van der Werf et al., 2006].
In the southern extratropics, the GFED-based model shows
the same shift in the fire season compared to MOPITT
(Figure 15d). This is while “background” seasonal variations
are well depicted, though somewhat low-biased, providing a
strong indication that the biomass burning emissions are
underestimated. The differences between the two GFED
databases are most apparent here, with the GFED3 inventory
providing closer correspondence to MOPITT.

9. Discussion

[31] Analysis of emission rates derived from fire-related
satellite CO retrievals and fire counts against GFED bottom-
up emission rate estimates shows that, on the regional scale,
there are often substantial difference between GFED3-,
GFED2-, and MOPITT-based emission rates. In general,
GFED3 shows a far better agreement withMOPITT in tropical
and extratropical forests but only slightly better agreement in
grasses and shrubs. GFED3 extratropical forest emission rates
are ~20% overestimated compared to MOPITT-based
estimates, although this may in part reflect the low bias in
our methodology. Emissions from tropical forests and grass/
shrubs are generally ~30% underestimated despite MOPITT-
based values being systematically biased low due to both
sampling directly over fire gridbox and missing some dilution
(~20%) due to horizontal transport and the weak impact of
diluted remote emissions on the background. In South and
Southeast Asia, MOPITT-based emission rates are signifi-
cantly higher than in both GFED databases, despite their low
bias, strengthening evidence that current inventories underesti-
mate Asian CO emissions. A drastic, order-of-magnitude
difference is found betweenGFED- andMOPITT-based emis-
sion rates in the Middle East, possibly due to improper identi-
fication of the main burning vegetation type: a large portion of
the grass/shrubs dominating this region are croplands that
rarely burn; hence, satellite-derived emissions may actually
relate to a different vegetation type.
[32] “Fire” CO concentrations modeled with both invento-

ries and retrieved from MOPITT agree reasonably well on
global scales, although substantial underestimates (30%) in
the models are found in the Northern Hemisphere spring.
This suggests an underestimate of biomass burning CO
emissions in the Northern Hemisphere spring, which would
partially account for the seasonal low biases seen in many
models at these latitudes. However, there are also seasonal
underestimates in the “background” CO concentrations, indi-
cating that these biases may have additional sources (i.e.,
residential heating). In the Southern Hemisphere, the model
using GFED produces a fire season one month shorter than
that observed by MOPITT, while “background” seasonality
is well depicted, providing a strong indication that Southern
Hemisphere September-October-November biomass burning
emissions are underestimated in the GFED inventory.
[33] TES retrievals indicate tropical fire CO emissions about

twice as high as either GFED or MOPITT. It appears that due

to its small FOV and scarcity of fire-related retrievals, TES
records predominantly larger fires.Moreover, TES passes over
the tropics in the afternoon, when fire activity is strongest,
while MOPITT has a morning overpass time. Outside the
tropical region, where the number of available fire-related
TES retrievals is generally low, differences in FOV and capac-
ity to observe fires from different sizes make the comparison
between TES and MOPITT uncertain. Similar to earlier stud-
ies, model runs analyzed here prescribed the GFED inventory
on a monthly basis and hence do not depict the magnitude of
the afternoon peak.
[34] Emission estimates obtained with inversion top-down

methods are significantly influenced by modeling biases, often
producing substantially different results depending on the
model used [e.g., Jiang et al., 2011, 2013]. Those top-down
estimates tend to differ considerably from bottom-up invento-
ries, some showing as much as 60% disagreement in biomass
burning CO emissions [Kopacz et al., 2010]. This study is a
step toward bringing the two methods closer to a common
ground. Separating CO observations over active fire sources
from the background allowed us to more directly study satel-
lite-retrieved biomass burning emissions without invoking
inverse modeling as in traditional top-down approaches.
Attributing CO anomalies at active fire locations explicitly to
biomass burning is estimated to introduce on average ~20–
30% uncertainty. However, this method may be unsuitable
for case studies, as for each and every measurement, the
associated error may be considerably larger due to higher than
average influence of other CO sources (i.e., upwind anthropo-
genic sources). Moreover, at high latitudes, where CO
concentrations are less effectively transferred from the source
to the troposphere, uncertainties increase significantly aloft.
Although we still find considerable regional differences
between satellite-retrieved and bottom-up biomass burning
emission estimates, on global scales, they appear to be in better
agreement than previously thought. Specifically, the newer
GFED3 inventory is found to be globally in quite reasonable
agreement with MOPITT estimates (with average differences
of ~30%). Despite the huge volumes of data provided by the
satellites, just a fraction proved to satisfy high-sensitivity
requirements, and in many regions, the number of retrievals
associated with fire activity was very low. Thus, it was not
always possible to meaningfully compare between TES and
MOPITT retrievals or perform more spatially and temporary
resolved analysis. There is a need for further research incorpo-
rating additional satellite sensors and model simulations with
subdaily prescribed emissions, and there is also a need for
improved satellite CO data.
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