Autonomous Mission Operations Roadmap

Dr. Jeremy Frank
NASA Ames Research Center
Intelligent Systems Division
Executive Summary

• *Autonomous Mission Operations* is the capability of flight controllers and crews to manage a crewed mission with minimal reliance on Earth-based Mission Control.
 – Autonomy is accomplished by automating vehicle functions, and by transitioning responsibilities from Mission Control to crew.

• This capability is *enabling* for missions to NEAs and Mars.

• Near-term capability demonstrations onboard ISS and using ground-based analogs are funded. Gaps have been identified; filling them requires further funding.
Defining Autonomous Mission Operations
Mission Operations Capabilities

- **Monitoring Displays**: displays are groups of commands and telemetry/data used by flight controllers and crew to monitor and command a subset of spacecraft systems in conjunction with a specific activity.

- **Manage Faults**: Failures are the unacceptable performance of an intended function. Failures are caused by faults.
 - Fault management includes detection, isolation and recovery from faults.
 - Managing faults is often done using pre-defined fault management procedures.
Mission Operations Capabilities

• The **Plan** (or Timeline) is the list of all activities occurring during the mission including those performed by the crew, occurring on the spacecraft (e.g. maneuvers, docking/undocking), or impact the mission (e.g. communications coverage changes).
 – Activities last from 5 minutes to tens of minutes.
 – Activities refer to procedures or procedure steps.

• **Perform Procedures**: procedures are step-by-step instructions to perform a specific task.
 – Crew and flight controllers perform procedures during the mission.
 – Procedure steps take seconds to minutes.
Mission Operations
Performance Parameters

Telemetry is shown on **Displays**.
Failures are shown on **Displays**.
Commands are issued from **Displays**.
Commands are organized into **Procedures**.
Failures trigger **Procedures**.
Procedures are organized into **Plans**.
Operational Guidelines constrain **Plans**.
Operational Guidelines constrain **Procedures**.
Failures disrupt **Plans**.
Capability Discriminators

- Low time delay
 - <10 seconds 1-way light-time
 - Based on 2012 AMO experiment; flight controllers dispensed with 10 second test case because it was deemed identical to ISS operations
 - Covers LEO and Lunar DRMs
- NEA without EVA
 - < 8 minutes 1-way light-time
 - DRMs assume NEA operations correspond to 1 Astronomical Unit (AU) distance from Earth, which incurs 8 minute 1-way delay
- NEA with EVA
 - EVA increases complexity of missions compared to non-EVA
- Mars without EVA
 - <22 minutes 1-way light-time
- Mars with EVA
Gap Fillers

Analysis
International Space Station

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command (distinct types)</td>
<td>70,000</td>
</tr>
<tr>
<td>Telemetry (distinct types)</td>
<td>177,000</td>
</tr>
<tr>
<td>Procedures (distinct)</td>
<td>4,000</td>
</tr>
<tr>
<td>Operational Guidelines / Constraints</td>
<td>1,000 (Flight rules and crew planning constraints)</td>
</tr>
<tr>
<td>Failure messages (distinct types)</td>
<td>18,000 (estimated from emergency books)</td>
</tr>
<tr>
<td>Displays (ground)</td>
<td>1,500</td>
</tr>
<tr>
<td>Displays (onboard)</td>
<td>3,000</td>
</tr>
<tr>
<td>Plan size (activities / day)</td>
<td>200 (estimated from crew, power and attitude plans)</td>
</tr>
</tbody>
</table>

These parameter values are for USOS only.
Approach to Capability Growth Assessment

- Capability thresholds for each class of DRMs were derived by scaling ISS capability.
- Scaling was derived from:
 - Crew size reduction (4 for Exploration, 6 for ISS)
 - Increased autonomy for NEA and Mars DRMs
 - Reduced capability required if EVA not part of DRMs
Scaling relative to ISS for Autonomous Ground Operations

<table>
<thead>
<tr>
<th>Time Delay/Capability</th>
<th>Low <10 sec</th>
<th>NEA w/o EVA < 8 min</th>
<th>NEA w EVA < 8 min</th>
<th>Mars w/o EVA < 22 min</th>
<th>Mars w EVA < 22 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired</td>
<td>ISS</td>
<td>ISS</td>
<td>ISS</td>
<td>ISS</td>
<td>ISS</td>
</tr>
<tr>
<td>Threshold</td>
<td>2/3 ISS</td>
<td>1/2 ISS</td>
<td>2/3 ISS</td>
<td>2/3 ISS</td>
<td>ISS</td>
</tr>
<tr>
<td>State of the Art</td>
<td>ISS</td>
<td>1/2 ISS</td>
<td>1/2 ISS</td>
<td>1/2 ISS</td>
<td>1/2 ISS</td>
</tr>
</tbody>
</table>
Scaling relative to ISS for Autonomous Crew Operations

• NEA and Mars DRMs assume increased autonomy.
 – Crew cognizance of Operations Constraints and Guidelines increases due to time delay.
 – More vehicle automation reduces required crew cognizance of Commands and Telemetry.
 – This manifests as reductions in effort to Monitor Displays and Perform Procedures.
Scaling relative to ISS for Autonomous Crew Operations

<table>
<thead>
<tr>
<th>Time Delay/Capability</th>
<th>Low <10 sec</th>
<th>NEA w/o EVA < 8 min</th>
<th>NEA w EVA < 8 min</th>
<th>Mars w/o EVA < 22 min</th>
<th>Mars w EVA < 22 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired</td>
<td>ISS</td>
<td>ISS</td>
<td>ISS</td>
<td>ISS</td>
<td>ISS</td>
</tr>
<tr>
<td>Threshold</td>
<td>2/3 ISS</td>
<td>1/2 ISS</td>
<td>2/3 ISS</td>
<td>2/3 ISS</td>
<td>ISS</td>
</tr>
<tr>
<td>State of the Art</td>
<td>ISS</td>
<td>1/2 ISS</td>
<td>1/2 ISS</td>
<td>1/2 ISS</td>
<td>½ ISS</td>
</tr>
</tbody>
</table>
Scaling relative to ISS for Autonomous Crew Operations

<table>
<thead>
<tr>
<th>Time Delay/ Capability</th>
<th>Low <10 sec</th>
<th>NEA w/o EVA < 8 min</th>
<th>NEA w EVA < 8 min</th>
<th>Mars w/o EVA < 22 min</th>
<th>Mars w EVA < 22 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired</td>
<td>ISS</td>
<td>ISS</td>
<td>ISS</td>
<td>ISS</td>
<td>ISS</td>
</tr>
<tr>
<td>Threshold</td>
<td>2/3 ISS</td>
<td>1/2 ISS</td>
<td>2/3 ISS</td>
<td>2/3 ISS</td>
<td>ISS</td>
</tr>
<tr>
<td>State of the Art</td>
<td>ISS</td>
<td>1/2 ISS</td>
<td>1/2 ISS</td>
<td>1/2 ISS</td>
<td>½ ISS</td>
</tr>
<tr>
<td>% ops guidelines</td>
<td>0</td>
<td>20%</td>
<td>20%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>% commands, telemetry</td>
<td>100%</td>
<td>80%</td>
<td>80%</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>
Scaling relative to ISS for Autonomous Crew Operations

![Scaling relative to ISS for Autonomous Crew Operations](image-url)
Gap Fillers

Activity
Activities on Capability Roadmap

• Extending autonomy capability requires:
 – Transitioning responsibility from ground to crew (e.g. autonomous procedure execution)
 – Automating functions done by people (e.g. procedure automation)
 – Expanding autonomy from simple to complex tasks (e.g. from single procedures to managing entire system)
 – Scaling autonomy from smaller to larger systems (e.g. one power bus to four)
 – Expanding autonomy to more types of systems (e.g. power, ECLSS and Thermal)
Capability Progression / Dependency
– Autonomous Mission Operations

Initial Exploration Missions
Extending Reach Beyond LEO
Into The Solar System

Legend:
Gold Text - Current
Orange Text – Near-Term
Blue Text – Long-Term
Activity (Current: ISS)

- Comm Delay Characterization
 - Observe impact of time delay on team interaction
- Autonomous Procedures
 - Revise existing procedures for ISS crew execution without ground assistance
- ISS Texting
 - Develop texting protocols; demonstrate texting to and from ISS
- Crew Self Scheduling
 - Compare multiple crew self-scheduling technologies
Activity
(Near-Term: ISS)

• AMO TOCA-SSC
 – Demonstrate crew autonomous management of TOCA and monitoring of SSCs

• AMO-EXPRESS
 – Demonstrate ground initiated powerup and configuration of EXPRESS rack
 – Set stage for crew initiated experiment using novel operations technology
Activity
(Long-Term: ISS)

• Autonomous Systems and Operations (ASO)
 • Demonstrate crew autonomous management of complex ISS system (TBD)

• Autonomous Logistics Management (ALM)
 • Demonstrate crew use of static and mobile RFID readers onboard ISS to track logistics

• Autonomous Remote System Management (ARSM)
 • Demonstrate crew ability to teleoperate systems without ground assistance
Activity
(Long-Term: ISS)

• Autonomous Extra Vehicular Activity (EVA)
 – Demonstrate tools to assist ISS crew in autonomously conducting EVA (in order to demonstrate capability to do so at high time delay)

• Autonomous Flight Dynamics (AFD)
 – Demonstrate tools to assist crew in performing vehicle maneuvers at high time delay
Activity
(Current: Ground)

• **EFT-1 Advanced Caution and Warning (ACAWS)**
 – Demonstrate advanced caution and warning tools during EFT-1

• **EM-1 ACAWS**
 – Demonstrate advanced caution and warning tools during EM-1
Activity
(Long Term: Ground)

- VSM (Power)
 - Demonstrate autonomous power systems management of an Earth-Moon L2 vehicle

- VSM (Life Support)
 - Demonstrate autonomous life support management of an Earth-Moon L2 vehicle
Gap Filler Activities and Capabilities

Autonomous Crew Operations

<table>
<thead>
<tr>
<th>Parameters Activities</th>
<th>Telemetry</th>
<th>Commands</th>
<th>Displays</th>
<th>Procedures</th>
<th>Plan Steps</th>
<th>Operational Constraints</th>
<th>Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMO TOCA-SSC (Monitor Displays, Perform Procedures, Manage Faults)</td>
<td><100</td>
<td><10</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
</tr>
<tr>
<td>AMO EXPRESS (Perform Procedures, Manage Faults)</td>
<td><100</td>
<td><100</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Auto Procedures (Perform Procedures, Manage Faults)</td>
<td><1000</td>
<td><100</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><1000</td>
<td><1000</td>
</tr>
<tr>
<td>Crew Self Scheduling (Execute Timeline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Autonomous Ground Operations

<table>
<thead>
<tr>
<th>Parameters Activities</th>
<th>Telemetry</th>
<th>Commands</th>
<th>Displays</th>
<th>Procedures</th>
<th>Plan Steps</th>
<th>Operational Constraints</th>
<th>Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFT-1 ACAWS (Manage Faults)</td>
<td><1000</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td><10000</td>
</tr>
</tbody>
</table>
Gap Fillers

Costs
Main Costs to Fill the Gaps

• Autonomous Crew Operations
 – Technology development duration
 – Technology development costs
 – Testing onboard ISS

• Autonomous Ground Operations
 – Testing with ISS
Main Costs to Fill the Gaps

• The pacing items for demonstrating autonomy technology in the presence of time delays of less than 8 minutes are:
 – ISS on-orbit time
 – Availability of a sophisticated human spaceflight simulation on the ground
 – Availability of trained flight controllers and crew to perform experiments.
Inter-SMT Relationships

• Direct relationships
 – EVA demonstrations
 – Human Systems demonstrations
 – Robotic Systems

• Indirect relationships
 – Activities that eliminate tasks (e.g. reduced maintenance of ECLSS hardware)
 – Activities that eliminate operational constraints (e.g. cameras that can operate in low light)
 – Activities that produce automated systems (e.g. automate power distribution)
STMD and I-SMT

• STMD Discussions have commenced
 – TA04,7,11

• Several ISS / International Exploration Working Group (Team 6) concepts have international participation
 – Crew Self Scheduling
 – Autonomous Procedures
 – Advanced Autonomy Software

• One International-SMT proposal suggestion
 – Autonomous Inspection (CSA proposal, joint with Robotics)
In-Space Inspection

A few thoughts
Autonomous In-Space Inspection

• Manage Timeline
 – Can activity be performed when planned?
 – Can Crew decide when to start activity without assistance from ground?

• Perform Procedures
 – Can Crew perform procedures without assistance?
Autonomous In-Space Inspection

• Monitor Displays
 – Can combination of In-Space Inspection system and Crew perform preliminary analysis of images without assistance from ground?
 – Can downlink management be automated without Crew intervention?

• Manage Faults
 – What faults can system help Crew address without assistance from ground?
 – Can faults in In-Space Inspection system be addressed by Crew without ground?
Future Plans

• Former ISS Expert Working Group (Team 6) and AMO SMT will join forces
 – Engagement with international partners will be extended to ESA, Russia
• Interaction with STMD Roadmaps will continue
• Commence engagement with HAT and Evolvable Mars
• Publish this roadmap!
Team

- J. Frank (ARC TI) (Lead)
- M. Lowry (ARC TI)
- D. Alfano (ARC TI)
- M. Schwabacher (ARC TI)
- B. Beuter (ARC TH)
- R. McCann (ARC TH)
- W. Spetch (JSC OM)
- A. Haddock (MSFC EO)
- M Macalyea (MSFC EO)
- D. Korth (JSC DA)
- S. Love (JSC CB)
- L. Morin (JSC CB)
- A. Stroupe (JPL 317)
BACKUP
Definitions of Parameters

- **Commands** – directive to spacecraft or spacecraft subsystem
- **Telemetry** – single data item produced by spacecraft
 - Strictly speaking telemetry is what gets sent to ground
- **Display** – group of commands and telemetry used by flight controller in single tool or part of tool to run mission
- **Procedures** – step by step instructions to perform task
- **Plan** (Timeline) – distinct types of planning are required to create an operations plan (e.g. power, attitude, crew plan, etc.)
- **Operational Constraints and Guidelines**: – Generally includes any constraint, e.g. Crew Scheduling Constraints and Ground Rules and Constraints. Plans and procedures must respect / satisfy these constraints.
- **Failures** – loss of function of (part of) a system element
Capabilities and Parameters

<table>
<thead>
<tr>
<th>Parameters Capabilities</th>
<th>Telemetry</th>
<th>Commands</th>
<th>Displays</th>
<th>Procedures</th>
<th>Plan Steps</th>
<th>Operational Constraints</th>
<th>Faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Displays</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Perform Procedures</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Execute Timeline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Manage Faults</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

These capabilities must be advanced both onboard (Autonomous Crew Operations) and ground (Autonomous Ground Operations). Transitioning authority, re-scoping ground control roles, increasing onboard automation and increasing ground automation are all needed to grow autonomous operations capability.
(Simple) Relationships between Parameters

- Telemetry
- Commands
- Procedures
- Plans
- Operational Guidelines/Constraints
- Displays
- Triggers
- Failures

Part-of relationships:
- Telemetry part-of Commands
- Commands part-of Procedures
- Procedures part-of Plans
- Plans part-of Operational Guidelines/Constraints

Disrupts:
- Failures disrupts Displays

Constrains:
- Triggers constrains Displays
- Operational Guidelines/Constraints constrains Plans
What params and capabilities are missing?

• Knowledge
 – Console handbooks, systems briefs, crib sheets, on-board training, and other forms of knowledge
 – Access to this information will be key to future human spaceflight missions

• Analysis (Models and Simulations)
 – Flight dynamics (attitude and trajectory), consumables estimation, power and thermal models, communications interference
 – Migration of this functionality onboard will be likely to enable future human exploration missions
What params and capabilities are missing?

• Better explanation of how automation reduces required capability
 – Crew: better model for how reduction in telemetry and commands reduces effort to monitor displays, run procedures
 – Crew: automation should reduce effort in managing faults, means we need reduction in faults too
 – Ground: automation / autonomy should reduce effort for ground functions too
Definitions of Parameters

- **Commands** – directive to spacecraft or spacecraft subsystem
- **Telemetry** – single data item produced by spacecraft
 - Strictly speaking telemetry is what gets sent to ground; may need better terminology to distinguish data produced by spacecraft vs telemetry received by ground
 - Computations transform telemetry into other quantities for use in MCC. So there are really 3 ‘classes’ of data item: onboard, telemetry, comps.
- **Display** – group of commands and telemetry used by flight controller in single tool or part of tool to run mission
- **Procedures** – step by step instructions to perform task
 - JSC parlance: ‘Procedures’ are written to be executed by crew
 - JSC parlance: ‘Task-based displays’ used by flight controllers to run procedures.
 - Procedures could be automated or run by hand
- **Timeline (Plan)** – distinct types of planning are required to create an operations plan (e.g. power, attitude, crew plan, etc.)
- **Operational Constraints and Guidelines:** – Generally includes any constraint, e.g. Crew Scheduling Constraints and Ground Rules and Constraints. Plans and procedures must respect / satisfy these constraints.
 - Flight Rules - real time operations guidelines and situation response guidance
 - Groundrules and Constraints - Constraints and boundaries used in plan development and replanning
 - For launch vehicles there are also Launch Commit Criteria (LCCs).
- **Failures** – loss of function of (part of) a system element
(Simple) Relationships Between Parameters

• Telemetry is grouped into displays.

• Commands and telemetry are referenced in Procedures.

• Procedure steps are grouped into single Timeline (Plan) steps.

• Timelines and Procedures must satisfy Operational Guidelines and Constraints.

• Failures disrupt Timelines and Procedures.

• Failures are managed using displays and procedures.