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Polyhedral Interpolation for Optimal
Reaction Control System Jet Selection

Leon P. Gefert and Theodore W. Wright
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

An efficient algorithm is described for interpolating optimal values for spacecraft Reaction
Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the
optimal solution to reduce the number of calculations and data storage requirements to a level
that enables implementation on the small real time flight control systems used in spacecraft. The
process minimizes acceleration direction errors, maximizes control authority, and minimizes
fuel consumption.
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1 Introduction

Rotations and small translations of space vehicles such as NASA's Orion Crew Exploration Vehicle
(CEV) are performed by firing Reaction Control System (RCS) jets. These jets have a fixed thrust,
so their duty cycle is varied between 0 and 100 percent to effect control. The jets have fixed loca-
tions and orientations on the spacecraft body, requiring combinations of jets firing with particular
duty cycles to perform rotation about a particular axis or translation in a particular direction.

The orientations of the RCS jets are typically not aligned with spacecraft axes, making finding the
correct combinations of jets to fire for particular maneuvers non-intuitive. The jet firing solutions
are also dependent on the spacecraft's mass, center of mass, inertia, and the currently enabled set
of redundant thrusters. Because of these factors, an optimizing algorithm is needed to determine
efficient duty cycles. The optimal set of duty cycles for a particular rotation or translation maneuver
is the set that maximizes control authority (acceleration) while minimizing fuel consumption and
axis direction error.

However, it is not practical to run the RCS jet selection optimizer on the spacecraft's embedded
control computers. Ideally, the embedded control computers should just perform a table look up of
a pre-calculated set of optimal RCS jet duty cycles for a desired rotation or translation axis. The
dependence of the optimal solution on the spacecraft's current mass properties and enabled thruster
set prohibits the creation of tables large enough to accurately incorporate all these inputs.

This paper describes a new approach to looking up optimal RCS jet duty cycles that does not require
huge data tables for accuracy, and also has a computational complexity (measured by the number
of run time arithmetic operations) that is comparable with simple table lookups and interpolation.
Unlike a typical table lookup, the solutions provided by the new approach are an exact match for
the optimizer's results for pure rotation maneuvers. Results for pure translation are also good,
but have less than perfect fuel efficiency. In addition, the translation algorithm also demonstrates a
technique for combining a commanded pure rotation and pure translation into one set of duty cycles
that performs the compound maneuver.

2 Optimal Solutions for Pure Rotation

The commanded input for performing a pure rotation with the RCS jets is a vector in 3 dimensions
specifying the desired axis of rotation. The right hand rule is used to determine the rotation orien-
tation about the axis. The output of the optimization is a set of eight duty cycles, one for each of
the enabled RCS jets. The optimized values also depend on the spacecraft's mass, center of mass
and inertia, which are mostly functions of the mission timeline (for example, the mass and inertia
at the scheduled time of the trans-lunar insertion burn for a Moon mission will be very different
than the mass and inertia at Earth re-entry on the way back from the Moon).

For a given axis input, the optimizer finds the best combination of RCS duty cycles that satisfies
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Figure 1: Optimized rotational acceleration magnitude as a function of rotation axis [deg/s?]

three goals, in order of priority:

1. Accuracy - The direction of the resulting rotational acceleration must be purely around the
commanded axis, with zero translation acceleration.

2. Control Authority - The magnitude of the resulting acceleration is maximized. If two duty
cycle sets both cause rotation about the correct axis, the one with the greater acceleration is
preferred.

3. Fuel Efficiency - The amount of fuel consumed (which is directly proportional to the sum
of all duty cycles) is minimized. If two duty cycle sets both cause rotation about the correct
axis with equal acceleration, the one with the smallest sum of duty cycles is preferred.

In spherical coordinates, the 3 dimensional rotation axis vector actually has only two degrees of
freedom: inclination and azimuth angle (magnitude is not significant). Varying inclination and
azimuth over all possible values (a 47 steradian sphere) will determine every possible input axis
for the optimizer. The MATLAB LINPROG linear optimizer was used to generate optimal results
for the Orion CEV 606d mass properties.

Figure 1 shows the result of plotting the magnitude of the acceleration due to the optimized rotation
RCS duty cycles as a function of the input axis. This shape defines the overall rotational control
authority (the maximum rotational acceleration that is possible about every axis).
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Figure 2 shows the plot of all eight duty cycle values as a function of the input axis, with the values
superimposed on the shape of the rotational acceleration magnitude.

Figure 3 shows the plot of just one of these RCS jet duty cycles as a function of the input axis,
enlarged for clarity.

These optimal duty cycle values (as a function of the desired rotation axis) are the numbers that the
flight control system needs to quickly determine for real time control.

3 Geometric Properties of the Optimal Rotation Solutions

A close examination of the geometry of the optimal rotation plots shows that the surface being
plotted describes a shape called a Rhombic Dodecahedron: a symmetric shape with 12 sides, each
of which consists of a kite shaped face. There are 14 vertices where 3 or 4 sides come together.
Each of the kite shaped faces can be split into two coplanar triangular surfaces to allow for easy
triangular interpolation on that surface.

The orientation and "stretching" of the rhombic dodecahedron varies based on the mass properties
and enabled thruster set (thrusters come in pairs; only one thruster in each pair is enabled), but the
basic symmetry and topology remains the same.

The duty cycle values of a particular thruster varies linearly across the faces of the rhombic dodec-
ahedron. For a given thruster, typically three faces will be completely 0% (thruster never fires) at
all locations, three faces will be 100% (thruster always on) at all locations, and six faces will have
a linear variations between 0% and 100%.

The symmetric shape and linear variation across faces is the key to efficiently interpolating duty
cycle values for any rotation axis from values given only at the 14 vertices.

The duty cycle values at the vertices are all either 0% or 100%, making it possible to calculate
the vertex positions analytically. By visually inspecting the optimized results, an on/off thruster
to vertex map is created. Multiplying this thruster map by the fixed thruster induced angular ac-
celeration matrix determines the vertex locations. Once the vertex locations (which are the same
for all eight thrusters) and vertex values (different for different thrusters) are known, values at the
direction specified by any axis can be interpolated.

4 Rotational Rhombic Dodecahedron Interpolation

The algorithm for interpolating duty cycle values from data on the surface of a rhombic dodecahe-
dron can be split into two parts to reduce calculation complexity:

1. Initialization - The initialization code is run whenever there are significant changes to the
mass properties or enabled thruster set (e.g., before each major phase of flight). Initialization

NASA/TM—2014-218317 3
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Figure 2: Pure rotation optimized duty cycle values as a function of the input axis [percent]

NASA/TM—2014-218317 4



Duty Cycle for S4F-B

0.9

0.4

0.8

=

0.3

0.2

0.1

Figure 3: One pure rotation optimized RCS jet duty cycle as a function of the input axis [percent]
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code calculates vertex positions, and computes plane fitting and barycentric interpolation
coefficients for each triangular surface subdivision.

2. Control cycle - The control cycle code takes a rotation axis vector as input, finds the triangle
on the polyhedron surface that intersects the rotation direction, and interpolates the duty cy-
cles on that surface. Triangle selection and barycentric coordinate computation are common
to all eight thrusters. Only the final interpolation calculation is unique for each thruster.

4.1 Initialization algorithm

The initialization portion of the rhombic dodecahedron interpolation algorithm collects all of the
calculations that do not need to be repeated when only the direction axis input changes.

4.1.1 Rotational accelerations of current thruster set
The location vector L; and force vector F} of the 8 currently enabled thrusters are loaded. The loca-
tion and force vector of each thruster are constant, but the set of enabled thrusters may change.

The mass m, center of mass L.,,, and inertia I of the vehicle are loaded. These are relatively
constant during a particular phase of flight.

The translational acceleration a; due to each thruster ¢ if it were firing at 100% duty cycle is found
using equation 1.

a; = F;/m (D

The total rotational acceleration matrix a is the 3 X 8 matrix containing all the a; vectors.

The torque 7; due to each thruster is found using equation 2.

T = (Lz - Ecm) x F; ()

The rotational acceleration w; due to each thruster is found using equation 3. Note that this requires
inverting the inertia matrix.

w, =117 3)

The total rotational acceleration matrix w is the 3 x 8 matrix containing all the w; vectors.
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4.1.2 Map accelerations to vertex positions

At each of the 14 vertices of the rhombic dodecahedron, a particular thruster always has a 0% or
100% contribution to the optimized results. The vertices are numbered, and each thruster's contri-
bution at each vertex is found (by visual inspection) to be the constant array DC'sO fVerticiesR,
shown in equation 4.

11001100

11101101

10100101

10000100

10010110

11011110

o 01011010
DCsO fVerticiesR = 01001000 4)

01101001

00110011

001 0O0O0O01

10110111

00010O0T1O0

|01 11101 1]
The location of each vertex V; is found with equation 5.

Vi = DCsOfVerticiesR - &' (5)

The vertices of the thombic dodecahedron are connected to divide the surface into 24 triangles.
These are described by their 3 vertex indices, which are found (by visual inspection) to be the
constant array trianglesR, shown in equation 6 (this is one 24 x 3 matrix, split into two columns
for easier reading).

The vertex vectors of a particular triangle ¢ are found by extracting the ith row from trianglesR
to get the vertex indices for that triangle, and then using those indices to extract the corresponding
vectors from the vertex matrix V.
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2 3 47 [14 7 137
2 4 1 14 13 10
4 5 6 11 9 14
4 6 1 11 14 10
6 7 8 12 5 4
. 6 8 1 12 4 3
trianglesR = 8 9 21113 7 ¢ (6)
8 2 1 13 6 5
12 3 11 14 9 8
12 11 10 14 8 7
13 5 12 11 3 2
| 13 12 10 [ 11 2 9 |

4.1.3 Calculate plane coefficients for each triangle
To reduce repetitive calculations, it is helpful to find plane coefficients for each triangle in the

initialization algorithm. For each triangle, the three vertices identified by vertex vectors V1, V2, V3
determine a plane described by plane coefficients a, b, ¢, d where

ar +by+cz+d=0 (7

The plane coefficients are calculated from the vertices using equations 8 and 9.

[abc] = (V2-V1)x (V3—-V1) ®)
d = V1-labc] )

4.14 Calculate barycentric coefficients for each triangle
Barycentric coefficients for each triangle can also be pre-calculated to reduce repetitive calcula-
tions. For each triangle, the three vertex vectors V1, V2, V'3 are used to compute the 9 barycentric

coefficients cl,, cly, cl,, c2,,c2,,c2,, c3,, c3,, c3, using equation 10.

-1

cl, cl, cl; Vi V1, V1,
2y 2y 2, | = | V2, V2, V2, (10)
3, €3y €3, V3, V3, V3.
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4.2 Control cycle algorithm

The control cycle portion of the rhombic dodecahedron interpolation algorithm contains only the
calculations that are performed for new values of the direction axis input. All other inputs are
assumed constant (until the next phase of flight, where new mass properties or enabled thruster sets
trigger the run of the initialization routine).

4.2.1 Triangle selection using determinants

A rhombic dodecahedron can be split into triangles by the combination of six different planes that
pass through the origin and five (carefully chosen, but constant) vertex pairs V'1, V2, as shown in
figure 4.

Given a direction vector P (or [P, P, P.]) starting at the origin and a pair of vertices that define one
of the splitting planes [V'1, V1, V1,] and [V2, V2, V2,], the sign of a determinant will indicate
which side of the plane includes the direction vector.

Equation 11 shows a determinant test for one of the planes. This expression will be true for all of
the axis directions on one side of the plane, and false for all other axis directions.

Vi, V2, P,
Vi, V2, B, <0 (11)
V1, V2. P.

If this determinant test is performed with each of the six planes, the result is a vector of six Boolean
values that are the same for every axis direction that passes through a particular triangle. For
example, a result of [True, False, False, True, False, True] might mean the given direction vector
passes through triangle 23.

A map of Boolean result vectors to triangle numbers can be created by calculating the Boolean
results for the midpoint of each triangle. This map is constant, and can be implemented as a table
lookup (by treating the Boolean array as a binary number, and using that number as a table index
to return the corresponding triangle number).

The vertex pairs used in the tests are also constant during this calculation, so the only changing
input is axis direction. Computing a single determinant requires 8 multiplications and 5 additions,
and six determinants are required, so selecting the correct triangle given an axis direction requires
a total of 54 multiplies and 30 additions.

4.2.2 Vector plane intersection

Once the correct triangle is found, the point of intersection between the direction vector and the
triangular surface is computed. This is the target interpolation point ), or [, @, @] as shown in

NASA/TM—2014-218317 9
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Figure 4: Six planes through the origin split a rhombic dodecahedron into triangles

figure 5.

The plane coefficients a, b, ¢, d for each triangle were found during the initialization algorithm.
The plane coefficients are used to compute a scale factor ¢ that determines () from P, as shown in
equation 12 and equation 13.

—d
t = 12
aP,+bP,+cP, (12)

Q = tP (13)

Implementing equation 12 requires 3 multiplications, 2 additions and a division (The d coefficient
is not used anywhere else and can be stored in its negated form). Equation 13 requires 3 multipli-
cations. Finding the target interpolation point requires a total of 6 multiplications, 2 additions and
1 division operation.

4.2.3 Common barycentric coordinate calculation

Barycentric coordinates are the linear contribution of each vertex value to the interpolated value at
the target interpolation point.

NASA/TM—2014-218317 10
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Figure 5: The target interpolation point is the intersection of the direction vector and the triangle

The barycentric coefficients cl,,cl,,cl., c2,,c2,,c2;,c3,, c3,, c3. for each triangle were found
during the initialization algorithm. The barycentric coefficients are used to compute the barycentric
coordinates b1, b2, b3 as shown in equations 14 through 16.

bl = [Q. Qy Q.- [cl, 2, 3, (14)
b2 = [Q. Qy Q.- [cly, 2, c3,] (15)

Each of these dot products requires 3 multiplications and 2 additions, so finding the barycentric
coordinates requires a total of 9 multiplications and 6 additions.

424 Thruster unique triangular interpolation

The interpolated duty cycle value for one thruster is the dot product of the duty cycle values at the
triangle vertices and the barycentric coordinates, as shown in equation 17.

interpolatedpc = [V1pe V2pe V3pe] - [b1 b2 b3] 17

This calculation is performed for each of the eight RCS jets (the barycentric coordinates are the
same, but the duty cycle values at the triangle vertices vary). Each dot products requires 3 multi-
plications and 2 additions, so finding the interpolated duty cycles for all eight RCS jets requires a
total of 24 multiplications and 16 additions.

NASA/TM—2014-218317 11



5 Rotation Interpolation Accuracy

When the results from the rhombic dodecahedron interpolation are compared to the ideal results
from the optimizer for all axis direction inputs, the worst case difference is less than 107'2%. This
is essentially a perfect match.

For pure rotations, rhombic dodecahedron interpolation is a non-iterative algorithm yielding opti-
mized duty cycles without requiring an optimizer. The results have zero acceleration mis-alignment,
maximum control authority, and minimum fuel consumption.

6 Rotation Interpolation Complexity

The total instruction counts for initializing the pure rotation rhombic dodecahedron interpolation
algorithm are summarized in table 1.

Operation Repetitions Multiply Add Divide
Find rotational acceleration for current jets 1 195 110 9

Map rotational acceleration to vertices 1 336 294 0

Find plane coefficients for triangles 24 12 20 0

Find barycentric coefficients for triangles 24 27 14 9
Total 1467 1220 225

Table 1: Rotation instruction counts for initialization

The total instruction counts for one control cycle computation of the eight RCS jet optimal duty
cycles for pure rotation are summarized in table 2.

Operation Repetitions Multiply Add Divide
Identify triangle (6 dets) 1 54 30 O
Point in plane 1 6 3 1
Barycentric coordinates 1 9 6 0
Interpolate 8 3 2 0
Total 93 55 1

Table 2: Rotation instruction counts for one control cycle

By pre-computing as many values as possible in the initialization code, the recurring control cycle
part of the algorithm can be reduced to a relatively small number of instructions.

NASA/TM—2014-218317 12
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Figure 6: Optimized pure translation acceleration magnitude as a function of rotation axis [ f#/s?]
7 Optimal Solutions for Pure Translation

The commanded input for performing a pure translation with the RCS jets is a vector in 3 dimen-
sions specifying the desired translation direction. Like the rotation case, only the inclination and
azimuth of the vector are significant. The optimization criteria for pure translation require that the
resulting acceleration is purely in the commanded direction, with zero rotational component. Then
the magnitude of the resulting acceleration is maximized, and finally the amount of fuel consumed
is minimized.

Figure 6 shows the optimized pure translation control authority (maximum linear acceleration as a
function of commanded direction).
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Figure 7: Optimized "impure" (with unintended rotation) translation control authority [ f#/s*]

Unfortunately, the shape of the pure translation control authority is too asymmetric to lend itself
to decomposition by determinant tests, so it is not possible to use the same algorithm as the pure
rotation case.

8 Approximating Pure Translation by Correcting Unintended
Rotation

If the "zero rotational component" translation optimization criterion is relaxed, the shape of the op-
timal results allows a solution similar to the pure rotation algorithm (although further steps must be
taken to compensate for the unwanted rotation). Figure 7 shows the optimized "impure" translation
control authority (when unintended rotational accelerations are allowed).

Figure 8 shows the plot of all eight impure translation duty cycle values as a function of the input
axis, with the values superimposed on the shape of the rotational acceleration magnitude. Figure 9
shows the plot of just one of these impure translation RCS jet duty cycles as a function of the input
axis, enlarged for clarity.

The impure translation duty cycle shape is a compound polyhedron that combines the rhombic
dodecahedron with a cuboctahedron. It has 96 sides and 50 vertices, but it shows the same geometric
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Figure 9: One "impure" translation optimized duty cycle as a function of the input axis [percent]

characteristics that make the efficient rotation algorithm possible:
e The shape is symmetric and can be decomposed with determinants
* Duty cycle values at the vertices are either 0% or 100%
* Duty cycle values vary linearly across the flat faces of the polyhedron

After the optimum impure duty cycle values are found, they can be used to quantify the unintended
rotational acceleration. Duty cycle values for an offsetting rotational acceleration can then be gen-
erated using the rotation interpolation algorithm, and the impure translation and offseting rotation
duty cycles can be combined into a single set of duty cycles that approximates pure translation
(with some loss of optimality).

9 Translation Polyhedron Interpolation

Interpolating optimum duty cycle values on the surface of the impure translation polyhedron fol-
lows mostly the same steps as the rotation interpolation, so only the differences will be described.

NASA/TM—2014-218317 16



9.1 Initialization algorithm

At each of the 50 vertices of the translation polyhedron, a particular thruster always has a 0% or
100% contribution to the optimized results. The vertices are numbered, and each thruster's contri-
bution at each vertex is found (by visual inspection) to be the constant array DC'sO fVerticiesT,

shown in equation 18 (this is one 50 x 8 matrix, split into four columns for easier reading).

DC'sO fVerticiesT =

10101010 |
00101110
00111100
10111000
11110000
11100010
11000011
10001011
00001111
01010101
00011101
01110100
11010001

01000111
01010100
00010100
00010101
00000101
01000101
01000001
01010001
00101010
00101000
10101000
10100000
10100010

The location of each vertex V; is found with equation 19.

10000010 ]
10001010
00001010
00001100
00110000
11000000
00000011
01010000
10110000
01110000
11010000
11100000

00001110 |

V; = DCsO fVerticiesT - @

00001011
00000111
00001101
00111000
00101100
00011100
00110100
10000011
11000010
11000001
01000011

(18)

(19)

The vertices of the translation polyhedron are connected to divide the surface into 96 triangles.
These are described by their 3 vertex indices, which are found (by visual inspection) to be the
constant array trianglesT', shown in equation 20 (this is one 96 x 3 matrix, split into four columns

for easier reading).

NASA/TM—2014-218317
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[ 12223
12324
12425
125 26
126 27
12728
128 29
129 22
10 15 16
1016 17
101718
1018 19
1019 20
10 20 21
10 21 34
10 34 15
939 29
929 40
940 33
93341
94118
018 42
9 42 30

| 93039

trianglesT =

9.2 Control cycle algorithm

53634
534 37
53732
23238
23825
22535
53531
531 36
34323
32344
344 30
33045
345 16
316 46
346 31
33143
74727
72748
748 32
73249
749 20
72050
750 33

73347

111716
11 16 45
11 45 30
11 30 42
114218
111817
12 46 16
1216 15
1215 34
12 34 36
12 36 31
12 31 46
443 31
43135
43525
42524
42423
42343
24423
22322
22229
22939
23930
23044

840 29
829 28
828 27
82747
847 33
8 33 40
6 26 25
6 25 38
6 38 32
6 32 48
6 48 27
6 27 26
1349 32
13 32 37
13 37 34
13 34 21
132120
13 20 49
14 50 20
1420 19
141918
14 18 41
14 41 33
14 33 50

(20)

The translation polyhedron can be split into triangle pairs by the combination of nine different
planes that pass through the origin and eight (carefully chosen, but constant) vertex pairs V1, V2,
as shown in figure 10. One final determinant using the common vertices of the triangle pair is
sufficient to select between the two remaining triangles (to distinguish between the red and orange
triangles in figure 10). In total, 10 determinants are required to select the triangular face on the

surface of the polyhedron for a given translation direction.

9.3 Compute duty cycles to cancel unintended rotation

Once the duty cycles for impure translation DCj; are found, the unintended rotation it generates w,,

can be found with equation 21.

NASA/TM—2014-218317
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Figure 10: Nine planes through the origin split a translation polyhedron into triangle pairs

wy = DCyy - & (21)

Negating the unintended rotation w,, yields the compensating rotation direction P, needed for can-
cellation, which is used a the input for the rhombic dodecahedron interpolation algorithm to find
the set of duty cycles for the rotating in the compensating direction: DC'.. Because the algorithm
returns the duty cycles for maximum authority, these duty cycles will cause the maximum rotational
acceleration w, about the compensating axis, as shown in equation 22.

we=DC,-& (22)

The compensating duty cycles need to be scaled down to the magnitude required to offset the
unwanted rotation, resulting in D). as shown in equation 23.

DC, = DC, - _%(Wua: Wy @

) (23)

wCZE wCZ wCZ

94 Combine translation duty cycles with rotational correction

To find the approximate pure translation duty cycles D, the duty cycles for impure translation
DC;; are combined with the duty cycles to correct unwanted rotation DC,. by simply adding them
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together and normalizing the result so that the maximum of the 8 duty cycles is 100%, as shown in
equations 24 and 25.

DC; = DCyyp/ max(DCgyp) (25)

This "sum and normalize" technique can also be used to combine arbitrary translation and rota-
tion commands into one set of duty cycles. It is equivalent to time multiplexing between the two
commands.

10 Translation Interpolation Accuracy

As with the rotation interpolation algorithm, interpolating the impure translation duty cycles on the
surface of the translation polyhedron results in a perfect match with ideal results from the optimizer
for impure translation.

However, combining the impure translation duty cycles with an offsetting rotation correction to
approximate pure translation duty cycles does not result in a perfect match with the pure translation
results from the optimizer.

When all possible translation directions are considered, the mean difference in acceleration magni-
tude due to interpolated approximation verses optimized duty cycles for pure translation is 0.12%,
with a worst case difference of 3.0%. The worst case direction error is less than 1075 degrees.
While interpolating values for pure acceleration using this technique is not perfect, it is fairly close
to the optimum in terms of acceleration mis-alignment and control authority.

Pure translation interpolation is not as close to the optimum in terms of fuel efficiency. When all
possible translation directions are considered, the mean difference in fuel efficiency (measured by
the sum of the duty cycles) is 16% worse for the interpolated duty cycles, with a worst case increase
in fuel consumption of 50%.

The difference between interpolated and optimal fuel efficiency for pure translation duty cycles as
a function of translation direction is shown in figure 11. This plot shows that the fuel consumption
differences reduce to zero along the axes, and are greatest at about 45 degrees off axis.

11 Translation Interpolation Complexity

The total instruction counts for one control cycle computation of the eight RCS jet optimal duty
cycles for pure translation are summarized in table 3. This count includes computing both the
impure translation and the offsetting rotation duty cycles, as well as combining them.
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Pure Translation Fuel Consumption Error (max: 1.32273))

1.2

0.4

0.2

Figure 11: Pure translation fuel consumption difference between optimal and interpolated

Operation Repetitions Multiply Add Divide
Identify triangle (10 dets) 1 90 50 O
Point in plane 1 6 3 1
Barycentric coordinates 1 9 6 0
Interpolate 8 3 2 0

T acceleration calc 1 24 24 0
Rotation correction 1 93 55 1

R acceleration calc 1 24 21 0
Scaling and combining 1 8 8 9
Total 278 183 11

Table 3: Translation instruction counts for one control cycle
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12 Summary

Optimal RCS jet selection is desirable on spacecraft because it minimizes acceleration direction
errors, maximizes control authority, and minimizes fuel consumption. But on-orbit optimization
calculations take too much time, and accurate table lookup of optimization results takes too much
space. This paper describes a new efficient approach to interpolating optimization results that takes
advantage of the geometric symmetries of the optimal solution.

For pure rotations, the new algorithm yields a perfect match with optimal results. It has zero accel-
eration mis-alignment, maximum control authority, minimum fuel consumption, and after initial-
ization, requires a total of only 149 arithmetic operations to compute a result.

Pure translations are possible with the new algorithm, but require combining a translation with
unintended rotation and a compensating rotation. In this case, the results are not a perfect match
with the optimal, but are very close in terms of acceleration mis-alignment and control author-
ity. However, there is an increase (16% mean, 50% max) in fuel consumption compared to the
optimum.

The computational complexity of this new algorithm is fairly low, but it is non-intuitive due to
its dependence on the symmetry of optimal solution rather than obvious physical properties of the
spacecraft. The results presented here are based on the geometry of the Orion CEV spacecraft, and
the applicability of the algorithm to other spacecraft is dependent on their geometry.

Traditional jet selection algorithm are very simple, but far from optimal. They sometimes have over
50 degrees of acceleration direction error, and they make no attempt to optimize fuel consumption.
When compared to traditional jet selection, the added complexity of this new approach might be
justified in situations where accuracy and efficiency are most important. For example, during prox-
imity operation with other spacecraft, the ability to accelerate in the proper direction has increased
significance. The ability to do accurate pure rotations and translations with predictable combina-
tions of the two could be useful for more intuitive manual control of the spacecraft by astronauts.
And finally, long duration station keeping operations increase the importance of optimized fuel
consumption.
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