
Uncertainty Quantification of GEOS-5 L-Band1

Radiative Transfer Model Parameters using Bayesian2

Inference and SMOS Observations3
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Abstract13

Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM)14

affect the simulation of brightness temperatures (Tb) over land and the in-15

version of satellite-observed Tb into soil moisture retrievals. In particular,16

accurate estimates of the microwave soil roughness, vegetation opacity and17

scattering albedo for large-scale applications are difficult to obtain from field18

studies and often lack an uncertainty estimate. Here, a Markov Chain Monte19

Carlo (MCMC) simulation method is used to determine satellite-scale esti-20

mates of RTM parameters and their posterior uncertainty by minimizing21

the misfit between long-term averages and standard deviations of simulated22

and observed Tb at a range of incidence angles, at horizontal and vertical23

polarization, and for morning and evening overpasses. Tb simulations are24

generated with the Goddard Earth Observing System (GEOS-5) and con-25

fronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS)26
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mission. The MCMC algorithm suggests that the relative uncertainty of1

the RTM parameter estimates is typically less than 25% of the maximum2

a posteriori density (MAP) parameter value. Furthermore, the actual root-3

mean-square-differences in long-term Tb averages and standard deviations4

are found consistent with the respective estimated total simulation and obser-5

vation error standard deviations of σm=3.1 K and σs=2.4 K. It is also shown6

that the MAP parameter values estimated through MCMC simulation are7

in close agreement with those obtained with Particle Swarm Optimization8

(PSO).9

Keywords:10
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1. Introduction1

Uncertainties in radiative transfer modeling (RTM) affect the simula-2

tion of brightness temperatures (Tb) over land and the inversion of satellite-3

observed Tb to soil moisture retrievals. Quantification of these uncertainties4

is crucial to producing, validating and using passive microwave data, such5

as those obtained from the Soil Moisture Ocean Salinity (SMOS, Kerr et al.6

(2010)) and future Soil Moisture Active Passive (SMAP, Entekhabi et al.7

(2010)) missions. Yet, it is not particularly clear which RTM formulation8

and parameter values to use for large-scale applications.9

In the context of forward Tb simulation, several studies have analyzed10

the effect of different RTM formulations for the microwave roughness length,11

vegetation parameterization and soil dielectric model (Drusch et al., 2009;12

de Rosnay et al., 2009). The impact of parameter values and dynamic land13

surface variables as input to large-scale forward Tb simulations was demon-14

strated by, e.g., De Lannoy et al. (2013) and Balsamo et al. (2006), re-15

spectively. Similarly, soil moisture retrievals based on Tb observations are16

affected by the RTM formulation and parameter values (Crosson et al., 2005;17

Panciera et al., 2009; Konings et al., 2011; Parinussa et al., 2011), as well18

as by the choice of background and auxiliary fields, such as soil temperature19

and vegetation characteristics (Kerr et al., 2012; O’Neill et al., 2012). Col-20

lectively, these studies suggest that RTMs exhibit significant uncertainty and21

that the precise magnitude and impact of this uncertainty on large-scale Tb22

simulations and soil moisture retrievals remain unclear.23

Estimating the uncertainty of microwave RTM parameters is a major24

challenge, especially at larger spatial scales. Field experiments have pro-25
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vided RTM parameters values (de Rosnay et al., 2006; Grant et al., 2007;1

Panciera et al., 2009; Sabater et al., 2011), but mostly without uncertainty2

estimates. De Lannoy et al. (2013) derived global-scale RTM parameter val-3

ues and ad hoc uncertainty estimates using SMOS observations and Particle4

Swarm Optimization (PSO, Kennedy and Eberhart (1995)). PSO is espe-5

cially designed to find the optimal parameter values within a limited budget6

of function evaluations, but without recourse to estimating their underlying7

uncertainty.8

In this paper, we introduce a (Bayesian) Markov chain Monte Carlo9

(MCMC) simulation method to estimate the posterior RTM parameter dis-10

tribution. The DiffeRential Evolution Adaptive Metropolis (DREAM) algo-11

rithm is used with parallel direction and snooker sampling from past states12

(Vrugt et al., 2008, 2009; Laloy and Vrugt, 2012), referred to as DREAM(ZS).13

Bayesian approaches such as DREAM(ZS) have many advantages over op-14

timization methods such as PSO. The explicit treatment and analysis of15

uncertainty help to understand which parts of the RTM model are well re-16

solved and which elements require further attention. Furthermore, a formal17

analysis of the residuals can be used to check the validity of our assump-18

tions about the residual error distributions and to discern whether reliable19

parameter values have been derived.20

The added value of obtaining posterior parameter distributions with Bayesian21

approaches, however, comes at an increased computational cost. Adequately22

sampling the posterior parameter distributions is too costly for global-scale23

operational applications that rely on evolving modeling systems in need of24

frequent re-calibrations, but can provide a valuable benchmark to verify re-25
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sults from simple parameter optimization algorithms, such as for example1

PSO.2

The goals of the present paper are thus to infer RTM parameters and3

their posterior uncertainty using a Bayesian method, and to study the as-4

sociated simulated Tb uncertainty. We are using the Goddard Earth Ob-5

serving System (GEOS-5) modeling framework that will be used to gener-6

ate the planned global SMAP Level 4 Surface and Root Zone Soil Moisture7

(L4 SM) data product through assimilation of SMAP Tb observations (Re-8

ichle et al., 2012). As in De Lannoy et al. (2013), we focus on optimizing9

time-invariant RTM-parameters by minimizing climatological differences be-10

tween multi-angular, horizontally and vertically polarized Tb for morning11

and evening overpasses from SMOS observations and GEOS-5 simulations.12

The time-invariant optimized parameters will later be used in a data assimi-13

lation system (outside the scope of this paper), where state variables such as14

soil moisture and soil temperature will be updated in response to short-term15

variations in the observed Tb.16

To summarize, in this paper we apply MCMC simulation using multi-17

angular SMOS Tb observations to (i) verify if the maximum a posteriori18

density (MAP) parameter values derived from a converged posterior distri-19

bution with DREAM(ZS) can be approximated using PSO, (ii) obtain reliable20

parameter uncertainty estimates, and (iii) quantify the magnitude of param-21

eter and other error sources in Tb simulations. The remainder of this paper22

is organized as follows. Section 2 summarizes the modeling system and the23

SMOS observations used in the present study. This is followed in section 324

by a description of the DREAM(ZS) MCMC simulation method and PSO.25
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Section 3 also discusses several quantitative diagnostic metrics to analyze1

the simulated Tb uncertainty. Finally, this paper concludes in sections 4 and2

5 with a discussion of the results and conclusions.3

2. Observations and Model4

2.1. SMOS Tb Data5

Since its launch in November 2009, the SMOS mission provides global Tb6

data at a nominal spatial resolution of 43 km and with an equator overpass7

every 3 days. Here we use the multi-angular, full polarization Tb data from8

the period 1 July 2010 to 1 July 2012. Specifically, the data are extracted9

from the MIR SCLF1C product, with processor version 504 for the years 201010

and 2011, and version 551 from January 2012 onwards. Our previous study11

presented in De Lannoy et al. (2013) discusses in detail the various steps12

involved in the processing of the SMOS data. Most importantly, the data13

are screened extensively using both product-based data quality information14

and model-based quality control rules. Furthermore, the data are spatially15

mapped onto a 36 km Equal-Area Scalable Earth Grid (EASE) and binned16

per incidence angle. Consistent with our previous study, only a subset of17

6 incidence angles is used: θ=[32.5o, 37.5o, 42.5o, 47.5o, 52.5o, and 57.5o],18

where, for example, 32.5o represents the average of all data with incidence19

angles between 32o and 33o.20

For the purpose of estimating the microwave RTM parameters, long-term21

averages (mo) and standard deviations (so) of the SMOS data are computed22

separately for each of the 6 incidence angles, 2 polarizations (horizontal H23

and vertical V), and 2 overpass times (ascending at 06:00h local time (LT),24
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descending at 18:00h LT). This results in a total of 48 “observations” per grid1

cell: 24 for the long-term average Tb and 24 for the long-term Tb standard2

deviation. Section 3 provides more details.3

2.2. GEOS-5 Tb Modeling4

The modeling combines (i) land surface modeling with the Catchment5

land surface model (CLSM) and (ii) radiative transfer modeling with a tau-6

omega model to simulate long-term Tb averages and standard deviations. As7

in De Lannoy et al. (2013), the GEOS-5 CLSM (Koster et al., 2000) is set up8

on the 36 km EASE grid and spun up prior to the SMOS observation period.9

Surface meteorological forcing data at a 1/2o×2/3o spatial and hourly tem-10

poral resolution are taken from the Modern-Era Retrospective analysis for11

Research and Applications (MERRA, Rienecker et al. (2011)). The MERRA-12

precipitation is corrected with gauge-based precipitation from the National13

Oceanic and Atmospheric Administration (NOAA) Climate Prediction Cen-14

ter “Unified” (CPCU) product (Reichle, 2012). The model version is the15

same as that used for the MERRA-Land data product (Reichle et al., 2011),16

except for two changes that more closely align the model with the version17

that will ultimately be used for the SMAP L4 SM data product: (i) the sur-18

face soil moisture pertains to the top 5 cm surface layer (as opposed to the19

top 2 cm layer in MERRA-Land), and (ii) a preliminary version of updated20

soil parameters from a forthcoming version of GEOS-5 is used.21

The vegetation parameterization in CLSM uses 8 default vegetation classes.22

For the RTM simulations, these classes are further refined into the 16 classes23

defined by the Moderate Resolution Imaging Spectroradiometer (500 m MOD12Q124

V004) International Geosphere-Biosphere Programme (IGBP) land cover25
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classification (Loveland and Belward, 1997). Figure 1 shows the North Amer-1

ican study domain which covers 9 of the 16 IGBP vegetation classes.2

The soil moisture, soil temperature, vegetation water content, air temper-3

ature and climatological vegetation dynamics simulated with the prognostic4

CLSM are used as input to the diagnostic zero-order (tau-omega) microwave5

RTM to simulate L-band Tb. A short description of the RTM is given in Ap-6

pendix. In essence, the Tb is determined by the surface soil temperature and7

attenuated by dynamic and static soil and vegetation characteristics. The8

key model parameters that impact the rough surface reflectivity h (Eq. A.3,9

Eq. A.4), the scattering albedo ω, and vegetation optical depth τ (Eq. A.6)10

will be estimated using the multi-angular SMOS observations (section 3),11

where h is a function of soil moisture and τ depends on the leaf area index12

(LAI).13

3. Methods14

3.1. Overview15

Keeping up with our previous work (De Lannoy et al., 2013), the objec-16

tive of the parameter estimation is to minimize the difference between long-17

term (climatological) averages and standard deviations for multiple types of18

SMOS-observed and GEOS-5-modeled Tb. We purposely do not minimize19

differences in the time domain as the goal of the present paper is to derive20

parameter estimates that result in the smallest possible bias in the long-term21

simulation of Tb. Short-term differences between Tb observations and simu-22

lations will be exploited in future studies using sequential data assimilation.23

We estimate a time-invariant multi-dimensional parameter set (hereafter re-24
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ferred to as α) that determines climatological features of the simulated Tb.1

The parameters are optimized locally, i.e., for each grid cell independently,2

and only for non-frozen land surface conditions as determined by the GEOS-53

modeling system.4

Table 1 gives an overview of the parameters estimated in different exper-5

iments. All scenarios estimate the 5 most relevant RTM-parameters: hmin,6

Δh ≡ hmax − hmin, bH , Δb ≡ bV − bH and ω (according to the best scenario7

identified in De Lannoy et al. (2013)). Based on these time-invariant pa-8

rameters, time-variant values of h, τH and τV are computed, using dynamic9

information about soil moisture for h (Eq. A.4) and LAI for τ (Eq. A.6).10

Time-averaged results for < h > and < τ > are then presented, where < · >11

denotes the long-term time average. These RTM-parameters are estimated12

with either DREAM(ZS) or PSO, hereafter referred to as scenarios D and P,13

respectively. The DREAM(ZS) analysis is further expanded to also include14

the residual Tb error statistics σm and σs (scenario Dσ, discussed below).15

For each grid cell, we thus estimate 5 parameters for scenarios P and D, and16

7 for Dσ.17

To derive these parameters, we minimize per grid cell the climatological,18

or long-term, differences between 48 Tb observations and simulations. The19

2 × 24 observations consist of long-term Tb averages and Tb standard de-20

viations for the 24 combinations of 2 polarizations, 2 overpass times, and 621

incidence angles. The errors in these observations are assumed to be indepen-22

dent, that is, we neglect correlations in instrument errors and errors between23

H- and V-polarized observations at identical incidence angles. Similarly, the24

simulation errors are assumed to be independent, even though correlation is25
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to be expected. Note that temporal correlations in the errors are of little1

concern because the observations are long-term averages and standard de-2

viations, and not measurements in the time domain (Wöhling and Vrugt,3

2011).4

In keeping up with De Lannoy et al. (2013), the two years of historical5

SMOS data are divided into a calibration period (1 July 2011 - 1 July 2012)6

and an evaluation period (1 July 2010 - 1 July 2011). To ensure a meaningful7

calibration at each grid cell, we impose a minimum of 20 valid data points8

(Ni) per year to compute the long-term Tb average and standard deviation9

for a particular combination (i = 1, . . . , 24) of incidence angle, polarization10

and overpass time. The requirement of Ni ≥ 20 is used for the calculation of11

evaluation statistics as well.12

3.2. Markov Chain Monte Carlo (MCMC) Sampling13

The Bayesian framework allows deriving posterior probabilities of param-14

eter estimates and model simulations, conditioned on errors in observations15

and simulations. The posterior probability distribution is computed by com-16

bining the observation likelihood p(mo, so|α) with a prior distribution p(α):17

p(α|mo, so) =
p(mo, so|α)p(α)∫
α

p(mo, so|α)dα

(1)

The observations consist of long-term averages (mi,o ∈ mo) and standard18

deviations (si,o ∈ so) of Tb for 24 different combinations of incidence angles,19

polarizations and overpass times (i = 1, . . . , 24). The denominator is a nor-20

malization factor and thus it suffices to maximize p(mo, so|α)p(α) to find21

the posterior distribution of α. In practice, it is difficult to solve this prob-22

lem analytically and we therefore resort to MCMC simulation to generate a23
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sample of the posterior target distribution.1

In this paper, the differential evolution adaptive metropolis (DREAM(ZS),2

Vrugt et al. (2008); Laloy and Vrugt (2012)) algorithm with sampling from3

past states is used to efficiently explore the posterior parameter distribution.4

This algorithm adaptively updates the scale and orientation of the proposal5

distribution during sampling, and is specifically designed to rapidly explore6

multi-dimensional target distributions. In DREAM(ZS), multiple chains are7

running in parallel and the update of a chain is determined from an external8

sample of points that collectively summarizes the search history of all the9

individual chains. The log-likelihood of the current and proposed parameter10

values are compared using the Metropolis selection rule. If the proposal is11

accepted, the chain moves to this new point, otherwise the chain remains12

at its current position. Diminishing adaptation of the external archive of13

samples ensures convergence to the exact posterior distribution.14

We assume a Gaussian prior for each of the individual parameters α0,k ∈15

α0. The mean and standard deviation of this multi-normal distribution p(α)16

are derived from literature values that yield reasonable Tb simulations com-17

pared to SMOS Tb and are summarized in Table 1. Note that these values18

were referenced as ‘Lit2’ in De Lannoy et al. (2013). The prior mean for each19

individual parameter is given by a vegetation-dependent value α0,k and the20

standard deviation σα0,k
is defined by σ2

α0,k
= (αmax,k − αmin,k)

2/12, using21

upper and lower bounds [αmax,k, αmin,k].22

The following log-likelihood function is used to minimize the differences in23

long-term Tb averages and standard deviations between observations (mi,o, si,o)24
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and simulations (mi(α), si(α)):1

L = ln(p(mo, so|α)) = −24

2
ln(2π) − 24

2
ln(σ2

i,m) −
24∑
i=1

(mi,o − mi(α))2

2σ2
i,m

}
Lm,o

− 24

2
ln(2π) − 24

2
ln(σ2

i,s) −
24∑
i=1

(si,o − si(α))2

2σ2
i,s

}
Ls,o (2)

This formulation thus explicitly takes into consideration long-term biases in2

the Tb average (Lm,o [-]) and the Tb variability (Ls,o [-]) and is derived from3

a classical Gaussian likelihood function:4

p(mo, so|α) =

24∏
i=1

⎡
⎣ 1√

2πσ2
i,m

exp

(
−(mi,o − mi(α))2

2σ2
i,m

)⎤
⎦

.

24∏
i=1

⎡
⎣ 1√

2πσ2
i,s

exp

(
−(si,o − si(α))2

2σ2
i,s

)⎤
⎦ (3)

where σi,m and σi,s denote the (ensemble) standard deviations of the residual5

differences between the observed and simulated values of the long-term Tb6

averages and standard deviations, respectively.7

3.3. Particle Swarm Optimization (PSO)8

The PSO algorithm (Kennedy and Eberhart, 1995) is a global search9

method that uses a dynamic swarm of particles to explore the parameter10

space. The best position of each individual particle (cognitive aspect) and11

of the entire swarm (social aspect) are used to guide the particles towards12

the optimal solution. The iterative swarm search is performed in several13

independent repetitions to account for sampling variability.14

The fitness of each parameter combination in the swarm is measured by15

an integrated ‘cost’ or ‘objective function’ J [-] that measures the distances16

12



between the observed and simulated long-term Tb averages (Jm,o [-]) and1

standard deviations (Js,o [-]). To make sure that the estimated parameter2

values honor the prior information (as used in DREAM(ZS)), we also include3

a penalty term that quantifies deviations of the parameters from their ex-4

pected values (Jα [-]). This results in the following definition of the objective5

function to be minimized:6

J =
24∑
i=1

(mi,o − mi(α))2

2σ2
i,m

}
Jm,o

+

24∑
i=1

(si,o − si(α))2

2σ2
i,s

}
Js,o

+
Nα∑
k=1

(α0,k − αk)
2

2σ2
α0,k

}
Jα (4)

where Nα signifies the number of simultaneously estimated parameters. This7

formulation is essentially similar to the definition of the posterior density8

used in DREAM(ZS). The main difference is that PSO handles the prior9

information of the parameters explicitly as penalty term Jα in the objective10

function, whereas in DREAM(ZS), the prior parameter distribution is handled11

independently from the likelihood function by application of Bayes law. Both12

methods should thus find the same “best” parameter values.13

3.4. Likelihood, Objective Function and Algorithm Settings14

The design of the likelihood (L) or objective (J) function for DREAM(ZS)15

and PSO warrants further discussion. As discussed above, we sample the cli-16

matological, or long-term, Tb averages and standard deviations over multiple17

incidence angles, polarizations and overpass times (that is, 2 × 24 observa-18

tions, i = 1, . . . , 24) per location, rather than one observation at multiple19

13



time steps. The long-term Tb averages and standard deviations could also1

be interpreted as ‘summary statistics’ or ‘signatures’ of the system, and hence2

our approach has many elements in common with the diagnostic model eval-3

uation procedure presented in Vrugt and Sadegh (2013).4

The variables σi,m and σi,s in Eq. 2 and Eq. 4 measure the (ensemble)5

standard deviation of the residual differences between the observed and sim-6

ulated long-term Tb averages and standard deviations, respectively, for each7

observation i. The residual errors are assumed to have a zero mean and in-8

clude both SMOS observation and simulation errors, due to e.g. inaccurate9

soil moisture, temperature or vegetation characteristics. These σi,m and σi,s10

statistics trade-off errors in the long-term Tb averages against those of the11

long-term Tb standard deviations (as well as deviations from the prior pa-12

rameter constraints). Since only one sample is available for each observation,13

it is impossible to estimate individual σi,m- and σi,s-values. Therefore, we de-14

fine σi,m and σi,s as a combination of a homoscedastic term (σm, σs) and a15

tuning factor wi to account for the robustness of the diagnosed long-term Tb16

averages and standard deviations, i.e. σ2
i,m = wiσ

2
m and σ2

i,s = wiσ
2
s . The17

homoscedastic term is identical for all 24 observations and set to a default18

value of 1 K (De Lannoy et al., 2013), or alternatively we estimate σm and σs19

jointly with the RTM parameters (see section 3). The weights are given by20

wi = N
Ni

, where Ni denotes the number of data points in time that contribute21

to a particular long-term Tb average (or standard deviation), and N signifies22

the average number of time steps across all observations. These weights are23

typically close to 1 and assign somewhat more (less) weight to climatologi-24

cal differences that are based on more (fewer) individual data points in the25
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original 1-year data time series.1

A maximum of 12,000 log-likelihood function evaluations are performed2

with DREAM(ZS) using standard settings of the algorithmic variables. For3

PSO, we use the same algorithmic settings as De Lannoy et al. (2013), except4

a swarm size of 10 particles is used with a minimum of 10 and maximum of 1005

iterations. The search is terminated if the reduction of the objective function6

is smaller than 1E-5 over the last 10 iterations. A total of 12 repetitions are7

performed, which results in a maximum of 12,000 function evaluations.8

3.5. Posterior Parameter Distribution9

The ‘optimal’ parameter values are defined as those with the maximal a10

posteriori density (MAP), i.e. with the largest value for L (Eq. 2, DREAM(ZS))11

or smallest value for J (Eq. 4, PSO). Note that these MAP values are not nec-12

essarily identical to the posterior ensemble mean of the distribution derived13

with of DREAM(ZS). For the DREAM(ZS) experiments, the last 25% of the14

MCMC chains (3,000 samples) are used to summarize parameter uncertainty15

by calculating the standard deviation of each individual parameter. To illus-16

trate this in more detail for one grid cell, consider Fig. 2a, which depicts the17

marginal distributions of the RTM parameters. We define the uncertainty as18

the ensemble standard deviation stdv[α] ≡ α − α centralized around the en-19

semble mean α, not around the MAP parameter value αMAP . The notation20

· refers to the ensemble mean. Note that the standard deviation around21

the MAP estimate stdvMAP [.] can be found as a function of the centralized22

standard deviation stdv[.], i.e. stdvMAP [.]2 = stdv[.]2 + Δα(Δα − stdv[.]),23

where Δα = α − αMAP is the difference between the ensemble mean and24

MAP parameter estimate. We found that, across the different experiments,25
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Δα is either small or Δα and stdv[.] are of similar magnitude (not shown1

herein), so that stdvMAP [.] ∼ stdv[.].2

3.6. Convergence3

‘Convergence’ can reflect accuracy (closeness to the actual optimum solu-4

tion) or precision (reduction of the prior uncertainty). The following hypothe-5

ses will be verified to assess the convergence of the DREAM(ZS) algorithm:6

(i) the Tb performance (accuracy) with posterior parameter estimates should7

be better than with prior parameter guesses (section 3.7), (ii) the posterior8

parameter uncertainty (section 3.5) and the corresponding uncertainty in Tb9

simulations (section 3.7) should be reduced compared to their counterparts10

derived from the prior parameter uncertainty, and (iii) the potential scale re-11

duction factor
√

R by Gelman and Rubin (1992) should be near 1 to inspire12

confidence that the different MCMC chains have converged to the appro-13

priate limiting distribution. The latter metric measures by which scale the14

posterior distribution will shrink as the number of MCMC iterations would15

go to infinity.16

3.7. Tb Performance and Ensemble Verification17

A number of measures are used to evaluate the long-term Tb simulations18

and their associated uncertainty. Fig. 2b illustrates some of the terms used19

in this evaluation. First, we assess the quality of the deterministic Tb sim-20

ulations with the MAP parameter estimates, using the mean-square differ-21

ence (MSD [K2]) between the observed and simulated long-term Tb averages22

16



(Eq. 5) and standard deviations (Eq. 6) across the 24 different observations:1

MSDm =
1

24

24∑
i=1

(mi(αMAP ) − mi,o)
2 (5)

MSDs =
1

24

24∑
i=1

(si(αMAP ) − si,o)
2 (6)

If the modeling errors were solely due to uncertainties in the parameter val-2

ues, these metrics should be very close to zero. In practice, however, the3

metrics will substantially deviate from zero and reflect residual errors that4

cannot be explained by parameter uncertainty. The 24 differences contribut-5

ing to MSDm are illustrated as Δmi
in Fig. 2b.6

Secondly, we verify whether the spread in prior and posterior ensemble Tb7

simulations is in agreement with the misfit between modeled and observed8

values, in a mean-square sense. To this end, an ensemble of Tb simulations9

is generated by randomly drawing 20 samples from the prior and posterior10

parameter distributions. The misfit or skill is again defined using the mean-11

square difference (MSD [K2]), but now for the ensemble means:12

MSDm =
1

24

24∑
i=1

(
mi(α) − mi,o

)2

(7)

MSDs =
1

24

24∑
i=1

(
si(α) − si,o

)2

(8)

where · denotes the ensemble mean. Fig. 2b illustrates the 24 differences13

contributing to MSDm as Δmi
. If the uncertainties are well estimated and14

biases between observations and simulations are constrained during the cal-15

ibration, the MSDm and MSDs metrics should match the total expected16

uncertainty (MEnSpm, MEnSps), which is the sum of the Tb simulation17

17



spread due to parameter uncertainty (EnSpi,m,par, EnSpi,s,par) plus the resid-1

ual Tb error variance (σ2
i,m, σ2

i,s):2

MEnSpm =
1

24

24∑
i=1

[
EnSpi,m,par + σ2

i,m

]
(9)

MEnSps =
1

24

24∑
i=1

[
EnSpi,s,par + σ2

i,s

]
(10)

where σ2
i,m and σ2

i,s are dominated by observation, input and structural error3

after the MAP parameters values have been found. The constituent terms4

EnSpi,m,par and EnSpi,s,par for each observation type i are given by:5

EnSpi,m,par =
(
mi(α) − mi(α)

)2

(11)

EnSpi,s,par =
(
si(α) − si(α)

)2

(12)

An illustration of EnSpi,m,par is given in Fig. 2b. Again, if the uncertainties6

are well estimated, then the ratios MSDm/MEnSpm and MSDs/MEnSps7

should be close to 1, or in other words: the “actual” (MSDm, MSDs) and8

“expected” (MEnSpm, MEnSps) errors should be similar. These metrics9

are very similar to those used to verify the prescribed observation and simu-10

lation uncertainties in data assimilation systems (Reichle et al., 2002) and for11

ensemble forecast verification (De Lannoy et al., 2006). The only difference12

is that here, the mean values (i.e. the ‘M’, or mean, in MSD and MEnSp)13

are derived from multiple observations types (i = 1, . . . , 24), whereas in the14

earlier studies the mean was calculated in the time domain.15
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4. Results1

4.1. RTM-Parameters and Their Uncertainty2

In this section, we analyze the MAP values of < h >, < τ > and ω, and3

their posterior uncertainty (stdv[.]). The DREAM(ZS) scenario Dσ should4

be considered as benchmark in the following discussion, because of statisti-5

cal rigor of the sampled posterior (will be further discussed below). Fig. 36

shows maps of the prior parameter values and the MAP estimates derived7

from scenario P (PSO), D and Dσ (DREAM(ZS)) (Table 1). The spatially8

averaged posterior parameter values are very similar for all 3 scenarios, with9

a microwave roughness < h > around 0.75±0.5 [-], a nadir opacity < τ >10

of 0.26±0.15 [-] and a scattering albedo ω of 0.09±0.07 [-], where the values11

after the ± sign measure the spatial standard deviation and reflect the vari-12

ability of the MAP parameters across the spatial domain. Note that these13

values should not be confused with uncertainty estimates. Compared to the14

prior values (Table 1 and 2), < h > has generally increased for grassland,15

< τ > is smaller for forests and ω has increased for all vegetation classes16

except grassland (details per vegetation class not shown; these finding are17

similar to those of De Lannoy et al. (2013)). The spatial patterns for the 318

scenarios are also very similar. Moreover, Fig. 3 suggests that MAP values19

derived with the PSO algorithm closely match those of DREAM(ZS).20

Fig. 4 shows the ensemble parameter uncertainty for scenarios D and Dσ.21

Maps with RTM parameter uncertainty estimates for PSO (obtained as in22

De Lannoy et al. (2013)) are not shown, because they are statistically invalid23

and significantly larger than those derived with DREAM(ZS). The relative24

uncertainties for scenario D are less than 10% of the MAP parameter value25
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and substantially smaller than the spatial variability in the MAP values. For1

scenario Dσ, the relative uncertainties increase, with errors ranging up to2

25% of the MAP values: for < h >, the spatially averaged uncertainty is3

0.10±0.08 [-], for < τ > 0.04± 0.04 [-] and for ω 0.02± 0.02 [-], respectively.4

The uncertainty in < h > typically increases with more complex terrain and is5

smallest in the cropped region southwest of the Great Lakes. The uncertainty6

of < τ > is largest in the forested Appalachian mountains where the highest7

MAP values of < τ > are found. On the contrary, ω is best defined in this8

area and uncertainties in ω increase in the Western dry mountain ranges. The9

< h >-values are more uncertain where either the uncertainty in ω (Fig. 4e)10

or < τ > (Fig. 4f) is larger.11

In summary, both DREAM(ZS) scenarios D and Dσ provide MAP pa-12

rameter values that are very similar and in close agreement with the PSO13

estimates. The DREAM(ZS) derived posterior parameters appear well defined14

with relative uncertainties that are less than 25% of the MAP values. It will15

be shown below that the uncertainty estimates of scenario Dσ are consistent16

with the sample RMSD between long-term Tb observations and simulations.17

4.2. Residual Tb Error Standard Deviation Estimation18

To analyze the effect of σm and σs in more detail, Table 2 summarizes the19

MAP parameter values and their associated uncertainties averaged over the20

entire study domain. In addition, Fig. 5 depicts the results for different veg-21

etation classes. As discussed above, scenarios D and Dσ return similar MAP22

RTM-parameter values, but when σm and σs are simultaneously estimated,23

the posterior RTM-parameter uncertainty increases about 2 - 3 times. The24

domain-averaged values for scenario Dσ are σm = 3.1 K and σs = 2.4 K25
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(Table 2), whereas scenario D uses default values of these variables of 1 K.1

The value of σm and its posterior uncertainty are largest in cropped re-2

gions (Fig. 5g) where residual Tb errors are dominated by less skillful model3

simulations. This is to be expected because irrigation is not simulated and4

the climatological LAI estimates do not account for interannual crop rota-5

tions. The parameters can not compensate for these errors, and the default6

values of σm = σs = 1 K make scenarios D and P vulnerable to suboptimal7

solutions. For example, the relative large differences between D and Dσ for8

σm and σs over cropland areas increases the differences in the MAP values of9

ω. For forests, σs = 1 K appears to be a good estimate (Fig. 5i) because the10

variability in Tb is expected to be low due to vegetation attenuation. Both11

the MAP values and uncertainties for σm are always larger than those derived12

for σs. One of the reasons for the higher σm are the opposite signs in the13

biases for the long-term averages of ascending and descending Tb, which can-14

not be mitigated with time-invariant RTM-parameters. These biases are due15

to sensor error and modeled temperature errors as discussed in De Lannoy16

et al. (2013). In a separate exercise (not shown herein), we verified that the17

σ-values absorb biases in geophysical fields: by re-scaling the soil moisture18

both the RMSD (see below) and σ-values are jointly reduced.19

For the simulations with prior parameters, we also calculated (i.e. not20

optimized) σm and σs as 7.5 K and 4.8 K, respectively (Table 2). Unlike21

the MAP σm- and σs-values, these prior residual σ-values are dominated by22

simulation error due to suboptimal parameter values.23
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4.3. MAP Tb Performance1

Fig. 6 shows the misfit between observed and MAP simulated long-term2

Tb averages and standard deviations (RMSDm, RMSDs, square-root of3

Eq. 5 and 6) across the 24 observations for the calibration and evaluation4

period, averaged per vegetation class. The performance skill is very similar5

for scenarios P, D and Dσ, which reflects that the three scenarios generate6

similar parameter estimates. The RMSDm ranges between 2 and 4.5 K dur-7

ing the calibration (Fig. 6a) and increases up to 8 K for cropland in the8

evaluation period (Fig. 6c). The RMSDs ranges between 1 and 3 K during9

calibration (Fig. 6b) and reaches values of 5 K for cropland in the evaluation10

year (Fig. 6d). Cropland has the highest errors, because of known simula-11

tion errors (see above). Note also that the RMSDm and RMSDs values of12

scenario Dσ during the calibration period (Fig. 6a-b) show the same pattern13

as σm and σs in Fig. 5g and 5i. The increased errors in the evaluation period14

suggest that the calibration could benefit from climatological observations15

based on longer data records to better estimate the parameter values.16

4.4. Ensemble Tb Performance17

For DREAM(ZS), we analyze the balance between the actual Tb misfit and18

the expected uncertainty (ensemble variance) in the ensemble Tb simulations19

(20 members, as opposed to single deterministic MAP simulations above).20

The results are presented in Table 2 and Fig. 7. Table 2 shows the skill of the21

ensemble mean Tb simulations mi(α) and si(α) for the calibration period in22

terms of RMSDm and RMSDs, i.e. the square-root of Eqs. 7 and 8. These23

values are very similar to the results for the MAP simulations (section 4.3).24

For both scenarios D and Dσ, the RMSDm and RMSDs are respectively25
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3 K and 2.5 K, which is less than half of the actual misfit when the prior1

parameters are used.2

Table 2 also lists the square-root of the combined mean simulation and3

observation spread or expected uncertainty, i.e. RMEnSpm and RMEnSps4

(square-root of Eqs. 9 and 10), along with the constituent terms (RMEnSpm,par,5

RMEnSps,par, σm and σs). Generally, the uncertainty associated with the6

parameter values is much smaller than the uncertainty related to other fac-7

tors, that is, RMEnSppar < σ, which is valid both when using prior and8

posterior parameter distributions. Moreover, after calibration both the σ-9

and RMEnSppar-values are significantly reduced compared to their prior10

values.11

If the uncertainty estimates are consistent, RMSDm ∼ RMEnSpm and12

RMSDs ∼ RMEnSps, i.e. there should be a balance between the actual and13

expected errors (section 3.7). The domain-averaged RMSDm/RMEnSpm is14

2.7 for scenario D and 1.0 for scenario Dσ. Similarly, the domain-averaged15

RMSDs/RMEnSps is 2.5 for scenario D and 1.0 for scenario Dσ. Optimal16

results are thus only found after including an estimation of σm and σs in17

scenario Dσ. Note that for the evaluation period (not shown), the ratios18

always exceed 1, because of an increased RMSDm and RMSDs.19

Fig. 7 shows how the ensemble spread is consistent with misfits between20

observations and simulations for scenario Dσ. Specifically, Fig. 7a shows the21

SMOS observed mi,o and the GEOS-5 simulated mi(α) for ascending, H-22

polarized Tb at 6 angles for scenarios D and Dσ, averaged over the entire23

study domain. Fig. 7b shows the same for V-polarized Tb, and Figs. 7c24

and d provide this information for the long-term Tb standard deviations.25
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Also shown is the total ensemble simulation and observation uncertainty for1

each observation type, presented as error bars around the ensemble mean Tb2

simulations for illustration.3

The error-bars for scenario Dσ fully envelop the observations, whereas this4

is not the case for scenario D. Fig. 7 also explains the nature of the residual5

misfit. Except for the 57.5o-angle, the ascending ensemble mean simulations6

mi(α) consistently underestimate the SMOS-observed mi,o for H-polarization7

and randomly deviate from the SMOS-observed mi,o at V-polarization. In8

contrast, the descending simulations mi(α) slightly overestimate the SMOS-9

observed mi,o at H-polarization (see De Lannoy et al. (2013)). The SMOS-10

observed si,o is always larger than the simulated si(α). This is probably11

dominated by observation noise, but could also be attributed to an under-12

estimated variability in the Tb simulations. For example, an increase in the13

RTM-parameter h not only compensates for a cold bias but simultaneously14

also reduces the Tb variability. Fig. 7 clearly illustrates why the uncertainty15

estimates obtained from scenario Dσ are superior.16

4.5. Convergence and Computational Cost17

The effectiveness of the posterior parameter sampling is measured by the18

convergence of the algorithms. Table 2 confirms that both the posterior19

uncertainties in the parameter estimates (stdv[.]) and the misfit between the20

simulations and observations (RMSD) of the long-term Tb averages and21

standard deviations are greatly reduced compared to the results with the22

prior parameter distribution. Another measure for convergence is the scale23

reduction factor, or
√

R-statistic by Gelman and Rubin (1992). Values close24

to 1 are preferred, and suggest that the MCMC sampler has converged to a25
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limiting distribution. Fig. 8 shows the evolution of the convergence diagnostic1

√
R for both DREAM(ZS) scenarios. The

√
R is averaged over all estimated2

parameters and across the study domain, since no obvious differences in
√

R3

are found between the different vegetation classes (not shown). Initially, the4

values of
√

R exhibit a lot of variation (due to random initial sample) before5

they settle down and reach values close to 1.6

Finally, we report that the derivation of the posterior distributions re-7

quires approximately 225 seconds for a single grid cell using DREAM(ZS).8

For global applications that involve 105 − 106 grid cells, posterior distribu-9

tion exploration may be too costly. Yet, if we target the MAP value only,10

PSO or DREAM(ZS) are both viable options.11

5. Conclusions12

Accurate estimates of microwave RTM parameters for large-scale L-band13

applications are difficult to obtain. The available parameter estimates are14

generally based on small-scale field experiments and often come without any15

estimate of posterior uncertainty. This complicates radiative transfer mod-16

eling for both the forward simulation of L-band Tb over land and the re-17

trieval of soil moisture based on Tb observations. This paper expands earlier18

research reported in De Lannoy et al. (2013) to derive time-invariant RTM-19

parameters using observations of the long-term average Tb and the long-term20

Tb standard deviation obtained from SMOS data. The overall objective is to21

optimize GEOS-5 Tb simulations prior to sequential assimilation of SMOS22

or SMAP Tb data, such as planned for the SMAP L4 SM product (Reichle23

et al., 2012) and to examine the uncertainties involved in the optimization.24
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Per grid cell, 48 observations of the long-term Tb averages and standard de-1

viations were constructed for 24 different combinations of 6 incidence angles,2

2 polarizations and 2 overpass times. The differences with their respective3

long-term GEOS-5 simulations are minimized (as opposed to minimizing dif-4

ferences between Tb observations and simulations in the time domain) and5

used along with the prior parameter information to derive posterior param-6

eter estimates.7

In the present paper, the full posterior distribution of RTM-parameters8

is derived using MCMC simulation with the DREAM(ZS) algorithm. To our9

knowledge, this is the first large-scale application of the DREAM(ZS) algo-10

rithm for the estimation of RTM-parameters and their underlying uncer-11

tainty. The results serve as a benchmark to verify the results from simpler12

parameter optimization algorithms, such as for example PSO. Simple algo-13

rithms are desirable for global-scale operational applications that rely on14

evolving modeling systems in need of frequent re-calibrations.15

First, we verified that the MAP RTM-parameter values derived from16

converged posterior distributions with DREAM(ZS) can be approximated by17

a simpler optimization algorithm (PSO), which corroborates our earlier re-18

search (De Lannoy et al., 2013). Secondly, we obtained reliable parameter19

uncertainty estimates with DREAM(ZS), which are impossible to estimate20

with PSO. The relative parameter uncertainties are generally less than 25%21

of the MAP value for < h >, < τ > and ω, when including the residual22

(observation and simulation) error statistics (σm, σs) of the long-term Tb23

averages and standard deviations in the estimation.24

The third objective of this paper was to quantify the importance of param-25
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eter and other errors on Tb simulations. The uncertainty associated with the1

parameter values only contributes a small part to the total Tb uncertainty.2

Most of the discrepancy between Tb simulations and observations is covered3

by residual Tb errors, with MAP estimates of the standard deviations σm and4

σs (assumed homoscedastic) around 3.1 K and 2.4 K, respectively. The prior5

estimate of 1 K was thus too low, except for σs over forests which exhibit6

limited Tb variability due to vegetation attenuation. The largest σm-values7

are found in cropped regions where the RMSD between Tb simulations and8

observations is also highest, due to observation errors and errors in geophys-9

ical fields (e.g. soil moisture and temperature) that constitute important10

inputs to the Tb simulations.11

The expected Tb error, i.e. the total of the MAP residual Tb error12

variance estimates (σ2
m, σ2

s) and the Tb spread introduced by the posterior13

parameter uncertainties (EnSpi,m,par, EnSpi,s,par), is found to be consistent14

with the actual RMSD of 3 and 2.5 K for the long-term posterior Tb aver-15

ages and standard deviations. In other words, the joint estimation of RTM-16

parameters, σm and σs with DREAM(ZS) results in a balance between actual17

and expected errors in Tb simulations, and in statistically adequate param-18

eter values and uncertainty estimates.19

In summary, the Bayesian inference of the posterior distribution of the20

RTM-parameters ensures reliable Tb simulations with GEOS-5. Further-21

more, the DREAM(ZS) algorithm also reveals the importance of observation22

error and simulation error that cannot be explained by the RTM parameters.23

These error sources can be addressed using model refinement and assimilation24

of satellite-observed Tb data.25
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Appendix A. Radiative Transfer Model1

A diagnostic zero-order (tau-omega) microwave RTM is used to simulate2

L-band Tb at the top of the atmosphere (TbTOA,p [K]). The TbTOA,p at3

polarization p = [H, V ] (horizontal or vertical) is a combination of (i) soil4

emission, possibly attenuated by vegetation, (ii) vegetation emission, possibly5

reflected by the soil, and (iii) atmospheric effects:6

TbTOV,p = Ts(1 − rp)Ap + Tc(1 − ωp)(1 − Ap)(1 + rpAp)

+Tbad,prpA
2
p (A.1)

TbTOA,p = Tbau,p + exp(−τatm,p)TbTOV,p (A.2)

where TbTOV,p [K] is the top of vegetation Tb, Ts [K] is the surface soil tem-7

perature, Tc [K] is the canopy temperature (assumed equal to Ts), Tbad,p [K]8

and Tbau,p [K] are the downward and upward atmospheric radiation, Ap [-] is9

the vegetation attenuation, exp(−τatm,p) [-] is the atmospheric attenuation,10

τatm,p [-] is the atmospheric optical depth, rp [-] is the rough surface reflec-11

tivity, and ωp [-] is the scattering albedo. The atmospheric contributions12

(Tbad,p, Tbau,p and exp(−τatm,p)) are described by Pellarin et al. (2003). The13

rough surface reflectivity rp [-] is derived from the smooth surface reflectivity14

Rp [-] following (Choudhury et al., 1979; Wang and Choudhury, 1981):15

rp = (Q Rq + (1 − Q)Rp) exp(−h) cosNrp(θ) (A.3)

where Q [-] is the polarization mixing ratio and typically set to 0 for L-16

band (Kerr and Njoku, 1990), θ [rad] is the incidence angle, h [-] is the17

roughness parameter accounting for dielectric properties that vary at the sub-18

wavelength scale, Nrp [-] is the angular dependence, and q = V for p = H19
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and vice versa. The smooth surface reflectivity Rp [-] is given by the Fresnel1

equations as a function of the dielectric constant, which itself depends on soil2

moisture, temperature, texture, incidence angle and wavelength. We select3

the Wang and Schmugge (1980) soil dielectric mixing model for this study.4

The results with this model are similar to what is obtained with the Mironov5

et al. (2004) model, and both are in a better agreement with the SMOS data6

than the Dobson et al. (1985) model. We include the dependence of h on soil7

moisture (SM [m3.m−3]) through a stepwise linear expression (adapted from8

the proposed SMOS soil moisture retrieval algorithm (CESBIO et al., 2011;9

Kerr et al., 2012)):10

h =

⎧⎪⎨
⎪⎩

hmax if SM <= wt

hmax + hmin−hmax

poros−wt
(SM − wt) if wt < SM <= poros

(A.4)

where poros [m3.m−3] and wt [m3.m−3] are the porosity and transition soil11

moisture, respectively. The latter is modeled as wt = 0.48.wp+0.165 (Wang12

and Schmugge (1980)) where wp [m3.m−3] is the wilting point.13

The vegetation attenuation Ap [-] is based on the Jackson and Schmugge14

(1991) vegetation opacity model:15

Ap = exp(− τp

cos θ
), with (A.5)

τp = bp V WC = bp LEWT LAI (A.6)

where τp [-] is the nadir vegetation opacity, which is a function of a vegetation16

structure parameter bp [-] and the vegetation water content (V WC) [kg.m−2].17

The latter is modeled here as the product of LAI [m2.m−2] and the leaf18

equivalent water thickness (LEWT ) [kg.m−2].19
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Table 2: Domain-averaged parameters values and their uncertainty stdv[.] for the prior

distributions and the posterior distributions obtained with scenarios P, D and Dσ .

The bottom half of the table shows ensemble Tb prediction statistics (square-root of

Eq. 7-8, 9-10 and 11-12), averaged across 24 long-term Tb observations and calcu-

lated for the calibration period. Only for the prior parameters, σm and σs are cal-

culated assuming (a) RMEnSpm = RMSDm and RMEnSps = RMSDs, and (b)

σm =
√

RMSD2
m − RMEnSp2

m,par and σs =
√

RMSD2
s − RMEnSp2

s,par.

Prior P D Dσ

< h > [-] 0.59 0.74 0.75 0.77

< τ > [-] 0.35 0.26 0.26 0.25

ω [-] 0.05 0.09 0.09 0.09

σm [K] 7.45b 1.00 1.00 3.08

σs [K] 4.78b 1.00 1.00 2.39

stdv[< h >] [-] 0.63 - 0.04 0.10

stdv[< τ >] [-] 0.27 - 0.02 0.04

stdv[ω] [-] 0.09 - 0.01 0.02

stdv[σm] [K] - - - 0.71

stdv[σs] [K] - - - 0.53

RMSDm [K] 7.63 - 2.77 3.02

RMSDs [K] 5.04 - 2.53 2.54

RMEnSpm [K] 7.63a - 1.04 3.24

RMEnSps [K] 5.04a - 1.01 2.45

RMEnSpm,par [K] 1.65 - 0.28 0.92

RMEnSps,par [K] 1.57 - 0.14 0.39
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Figure 1: Study domain with indication of the dominant IGBP vegetation classes.
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Figure 2: Illustration of marginal distributions for (a) RTM-parameters and (b) Tb simu-

lations at a single grid cell. Crosses (×) indicate the MAP estimates, the vertical dashed

lines and white box indicate the ensemble mean posterior estimate, and horizontal dotted

arrows indicate one standard deviation uncertainty around the ensemble mean. The per-

formance of the Tb simulations is quantified by comparing either the MAP (mi(αMAP ),

si(αMAP )) or the ensemble mean (mi(α), si(α)) simulations against (black dots) 24 ob-

served values (mi,o, si,o) with i = 1, . . . , 24. The differences Δmi
and Δmi

contribute to

MSDm (Eq. 5) and MSDm (Eq. 7), respectively.
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Figure 5: (Left) MAP parameter values and (right) uncertainties aggregated per vegetation

class for DREAM(ZS) scenarios D and Dσ. Each row represents a different parameter: (a,b)

< h >, (c,d) τ , (e,f) ω, (g,h) σm, (i,j) σs.
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Figure 6: RMSD in long-term Tb (a,c) average and (b,d) standard deviation during the

(top) calibration (1 July 2011 - 1 July 2012) and (bottom) evaluation period (1 July

2010 - 1 July 2011), using the MAP parameter values derived from PSO (scenario P) and

DREAM(ZS) (scenarios D and Dσ).
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Figure 7: (a-b) Long-term average and (c-d) standard deviation, for (a-c) H- and (b-d)

V-polarized Tb (dots) SMOS observations and (lines) ensemble simulations averaged over

the study domain, during the calibration period (1 July 2011 - 1 July 2012) and only

including ascending time steps. The simulations use an ensemble of parameter estimates

derived with DREAM(ZS) scenarios (gray) D and (black) Dσ. The ensemble mean is shown

by a central horizontal dash. The error bars indicate the total simulation and observation

uncertainty and are drawn around the simulated Tb for illustration. For clarity, symbols

are slightly offset from the nominal incidence angle.
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