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ABSTRACT

Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic
properties and ionization state of our universe from z ∼ 6 − 30. Synchrotron foregrounds are orders of
magnitude larger than the cosmological signal, and are the principal challenge faced by these experiments.
While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of
freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such
complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of
the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does
not. The discovered modes are projected out of each line-of-sight of a data cube. An angular weighting then
optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this
method, we show that it is essential for the passband to be stable to at least ∼ 10−4. In contrast, the constraints
on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of
spatial information. To the extent it is understood, controlling polarization to intensity leakage at the ∼ 10−2

level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission.

Subject headings: dark ages, reionization, first stars – methods: data analysis – methods: statistical

1. INTRODUCTION

One of the richest yet least understood narratives in cosmol-
ogy is the formation of the complex structure that we see to-
day out of the simple initial conditions implied by the cosmic
microwave background (CMB). The first luminous objects are
thought to have formed at z ∼ 20 − 30 through collapse in
106 − 108 M� halos (Barkana & Loeb 2001; Bromm 2013).
The radiation from these objects heated and then reionized
the intergalactic medium (IGM). There are several sources of
complementary information about the evolution of ionization
in this epoch.

The CMB temperature anisotropy is damped by the total
Thomson depth to free electrons. The Planck collaboration
has used this effect, combined with a constraint on the scalar
amplitude from gravitational lensing, to measure the op-
tical depth through reionization (Planck Collaboration et al.
2013). In addition, Thomson scattering through the reion-
ization epoch generates a unique polarization signature on
large angular scales. WMAP has measured the total optical
depth using this polarization signature (Bennett et al. 2013).
These are integral constraints on the free electron abundance,
and can be translated into a central reionization redshift of
10.6± 1.1 (Bennett et al. 2013).

Once the IGM is highly ionized, it is transparent to Lyman-
α photons. Absorption measurements along sight lines to
high-redshift quasars indicate that reionization must have
ended by z < 6 (Fan et al. 2006). Absorption saturates at
low abundance, so these should be taken as bounds on the end
of reionization, which could still have been largely complete
at redshifts higher than 6.
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Recently, two methods have been developed to place much
more direct bounds on the duration of reionization. The
ionization process is thought to be spatially patchy, as lo-
cal sources of radiation blow ionized bubbles that coalesce
into the fully-reionized IGM. CMB photons scattering from
this patchy screen produce an additional kinetic Sunyaev-
Zel’dovich anisotropy appearing most clearly at � > 3000,
where the primary CMB is negligible (Knox et al. 1998). Up-
per limits on this effect translate into a model-dependent up-
per bound on the duration of reionization (Zahn et al. 2012),
and hold the promise of direct detection of patchy structure in
the near future.

The patchy structure of reionization can also be observed
directly in three dimensions using emission of neutral hydro-
gen through its 21 cm line (Furlanetto et al. 2006). Recent
bounds from GMRT (Paciga et al. 2013), MWA (Dillon et al.
2014) and PAPER (Parsons et al. 2013; Pober et al. 2013) are
marching down to the expected level of fluctuations, in par-
allel to efforts at LOFAR (van Haarlem et al. 2013). An al-
ternative to measuring the 21 cm anisotropy is to measure the
signal of its global emission (or absorption at earlier times)
(Pritchard & Loeb 2008, 2010), which reveals the bulk ener-
getic properties and ionization state of the universe during
reionization and preceding epochs when the first luminous
structures were forming. Global 21 cm experiments include
EDGES (Bowman & Rogers 2010) and SCI-HI (Voytek et al.
2014) (which have both reported bounds), LEDA5 and the
proposed DARE mission (Burns et al. 2012).

The frequencies of interest in these global studies are ∼
50−200MHz, and fiducial theoretical models suggest a max-
imum contrast of ∼ 100mK relative to the synchrotron emis-
sion of the galaxy, which can vary ∼ 102 − 105 K across the
sky and frequency range. Astrophysical synchrotron emis-
sion is thought to be fully described by a handful of spectrally
smooth functions that can be distinguished from the variation
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of the global reionization signal.
Extremely bright foregrounds make the measurement sus-

ceptible to instrumental systematics. For example, if an in-
strument with a 1% ripple in one spectral band observed a
500 K power law, subtraction of a pure power law would leave
a 5 K residual, significantly larger than the signal. Through
careful instrumental design, the level of instrumental system-
atics may be controlled, but generally cannot be nulled en-
tirely.

Here, we develop methods that can be used to con-
strain the cosmological signal in these heavily contaminated
data. Following the monopole nature of the signal, experi-
ments to-date have mapped the sky with very large beams
(Bowman & Rogers 2010; Voytek et al. 2014). However, a
unique trait of the foregrounds is that they vary across the
sky, while the signal is constant. This regime is the oppo-
site of the situation normally found in analysis of small sig-
nals, where a modulated signal is pulled out of foregrounds.
Liu et al. (2013) (henceforth L13) proposed that experiments
seeking to measure the global signal should also resolve the
sky with an instrumental beam. This allows selective weight-
ing against regions of high contamination, and allows for the
use of angular correlation information to reject foregrounds.
The additional spatial resolution yields higher fidelity recov-
ery of the cosmological 21 cm spectrum.

Here, we extend the ideas in L13 to a method that uses
the spatial fluctuations of foregrounds in the data to discover
contaminated spectral modes. A similar idea has been em-
ployed successfully in 21 cm large scale structure measure-
ments (Switzer et al. 2013; Masui et al. 2013; Chang et al.
2010) at z ∼ 1, and has been suggested for cleaning iono-
spheric contamination (Vedantham et al. 2014).

Discovery of foreground spectral modes in the measured
data makes the method more robust to assumptions about
the foreground contamination. For example, now if the in-
strumental passband has a 1% ripple, the largest foreground
mode discovered in our foreground cleaning method will also
self-consistently exhibit this ripple. Generally, instrumen-
tal systematics take relatively clean and smooth functions of
frequency from synchrotron emission and convert them into
more complex structure that requires additional spectral func-
tions to describe. We argue that the primary goal in instru-
mental design should be to prevent proliferation of bright, new
foreground modes in the data. Each new foreground degree
of freedom produced by instrumental response to foregrounds
results in more signal loss and makes discovery of the signal
more ambiguous.

The methods described here of 1) using spatial variation to
discover spectral foreground modes, which can then be pro-
jected out, and 2) downweighting known spatial areas of high
contamination (the galaxy) provide the strongest methods for
recovering the global 21 cm signal in the absence of additional
prior information about the foregrounds or instrumental re-
sponse. While the algorithm of mode subtraction and angular
weighting is intuitive, we develop it from the ground up to
expose several implicit choices and possible pitfalls.

Recently, Bernardi et al. (2014) argued that a dipole gain
pattern can be calibrated in an interferometric array. How-
ever, additional variations in spectral response due to factors
such as the analog to digital converter, reflection and signal
loss after the antenna were not included. Our goal here is to
understand how data analysis can be made more robust to this
class of instrumental response (or any other source of fore-
ground covariance), or alternately how tightly certain instru-

mental tolerances must be constrained.
In Sec. 2 we review the basic properties of the global signal

and describe our foreground model. Sec. 3 builds up the esti-
mator for joint foreground and signal estimation using a sim-
plified model of spectra along independent sightlines. Sec. 4
considers implications of this model for passband calibration.
Sec. 5 develops spatial weights, and Sec. 6 combines the es-
timators with spatial and spectral weights. Sec. 7 describes
a number of considerations for using the methods developed
here and for global 21 cm signal estimation in general. We
discuss telescope beamwidth, the foreground monopole, how
aggressively foreground modes should be removed, and sus-
ceptibility to Faraday rotation. We also consider mode re-
moval of the pre-reionization absorption feature and exten-
sions of the simple template amplitude constraint considered
throughout. We summarize our conclusions in Sec. 8.

2. THE GLOBAL SIGNAL AND FOREGROUND
MODELS

From radiative transport arguments, the brightness temper-
ature of 21 cm radiation is

Tb ≈ 27(1− x̄i)

(
TS − TCMB

TS

)(
1 + z

10

)1/2

mK, (1)

where x̄i is the mean ionization fraction, TS is the spin tem-
perature of the hyperfine transition, and TCMB is the CMB
temperature. The basic physics of the spin-temperature cou-
pling is well-understood (Pritchard & Loeb 2010), but the
detailed astrophysical processes that determine the coupling
strength and the gas temperature are still conjectural.

For z > 200, the universe is dense enough that electron
collisional interactions drive the spin temperature to the gas
temperature, which is cooling faster than the CMB. This pro-
duces absorption. By z ∼ 30, the universe is sufficiently rar-
efied that the spin temperature is better coupled to the CMB
bath, and absorption is expected to subside. Once the first lu-
minous objects form, these produce radiation that drives the
Wouthuysen-Field (Wouthuysen 1952; Field 1958) coupling
of TS again to the gas temperature, leading to a second ab-
sorption feature. Then, X-ray heating of the gas can drive
the spin temperature above the CMB temperature, leading to
emission. As these luminous processes proceed and increase,
they also ionize the IGM, which causes the signal to disappear
as 1− x̄i → 0 (Pritchard & Loeb 2010).

We will find it convenient to have a reionization model with
a small number of parameters, rather than a full spectrum. For
concreteness, we will spend most of the paper focusing on
the evolution of the brightness temperature as the universe is
re-ionized, rather than the absorption dip as heating begins.
However, our methods are applicable at all redshifts, and in
Sec. 7.6 we will briefly discuss the pre-reionization dip.

At the beginning of the reionization epoch, it is thought that
the spin temperature is strongly coupled to the gas, and that
the gas is heated, driving 21 cm emission. As the ionization
proceeds, this emission dies away. A simple way of parame-
terizing this is (Pritchard & Loeb 2010)

x̄i(z) =
1

2

[
1 + tanh

(
zr − z

Δz

)]
, (2)

so that the brightness temperature scales as (Fig. 1)

Tb(z) =
27

2

(
1 + z

10

)1/2 [
1 + tanh

(
zr − z

Δz

)]
mK (3)
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Figure 1. Brightness temperature of the global 21 cm emission in a simpli-
fied two-parameter model of reionization. The central redshift is taken from
the WMAP9 constraint at z = 10.6, and several representative values for the
duration of reionization are shown.

Foregrounds at 80 MHz

2.81057 4.69444

Figure 2. Foreground model at 80 MHz, displayed as log(T ).

where we have assumed that TS � TCMB .
Our model for the diffuse intensity (Stokes-I) of the fore-

grounds is based on an extended version of the Global Sky
Model (GSM) of de Oliveira-Costa et al. (2008) that is de-
veloped in L13. The original GSM used a principal com-
ponent analysis to extrapolate and interpolate between pre-
vious galactic surveys at a wide range frequencies. It is based
on 3 spectral components and is accurate down to ≈ 10◦.
L13 extends this model by adding additional (less smooth)
spectral eigenmodes, as well as a population of power-law
sources with randomly distributed spectral indices, drawn
from the dN/dS brightness distribution of Di Matteo et al.
(2002). The goal of adding these components is to boost the
rank of the foreground covariance to reflect spectral fluctua-
tions that can be expected on the real sky. These cannot be
probed in the original rank-3 GSM. An example map of our
foreground model at 80MHz is shown in Fig. 2.

In Sec. 7.7, we will additionally consider the impact of
Faraday rotation and polarized foregrounds. As this is some-
what peripheral to the development of our data analysis meth-
ods in the next few sections, we will defer our discussion of
our foreground polarization model until then.

3. GLOBAL 21CM OBSERVATIONS ALONG
INDEPENDENT LINES OF SIGHT

A global 21 cm experiment that maps the sky will have a
finite number of resolution elements across its field, defined
by the beam. In each one of these resolution elements, it ob-
serves the spectrum of incoming radiation. A reasonable ap-
proximation is to split the survey into Nθ spectra of length
Nν along all the angular resolution elements. Let yi be that
vector, where i indexes the sight line (1 to Nθ) and the length
of the vector is Nν . In this section, we will build up infras-
tructure and intuition using this simplified case of Nθ inde-
pendent and identically-distributed sight lines. Sec. 6 extends
this to a method that treats realistic foregrounds with proper
angular correlations. Because angular correlations become
largely irrelevant when considering wide-beam experiments
with essentially no angular sensitivity, much of the intuition
developed here is directly transferable to the analysis of such
experiments.

In writing an estimator, there are many choices for aspects
of the global signal that could be estimated. The goal could
be to constrain 1) an arbitrary spectrum of the cosmological
21 cm evolution, 2) some modes of its variation that relate to
physical parameters, 3) some amplitudes that are based on ex-
ternal information about the expected redshift of reionization,
4) the amplitude of a template of a provisional global 21 cm
signal. For our purposes here, it is simplest to develop esti-
mators for the amplitude of an assumed 21 cm signal template.
Initially, experiments will simply be stepping down in bounds
and seeking some evidence of z ∼ 20 absorption and heat-
ing or a z ∼ 11 reionization signal—an amplitude constraint
could provide the simplest, clear indication of a cosmological
signal. Sec. 7.5 considers other estimation regimes in light of
the methods developed here.

Let the assumed template of the global signal be a vector x
of length Nν and normalized to have a maximum of 1. Mul-
tiply by some amplitude α to get the 21 cm signal. Then the
observed spectrum is the sum of signal, thermal noise ninst,i

and foregrounds nfg,i

yi = αx+ nfg,i + ninst,i. (4)

Initially we will assume that the foregrounds and noise
are identically and independently normally distributed along
each line of sight i, nfg,i ∼ N(0,Σfg) and ninst,i ∼
N(0,Σinst). In reality, the foreground field is strongly cor-
related in angle and non-Gaussian. These issues will be ex-
amined in subsequent sections. In contrast, thermal noise
is uncorrelated between sight lines and normally distributed:
ninst,i ∼ N(0,Σinst) will remain an excellent approxima-
tion. Throughout, the Nν ×Nν matrix Σ ≡ Σinst +Σfg will
refer to the total (ν, ν′) covariance.

3.1. Known covariance
If the foregrounds and thermal noise are drawn from a total,

known covariance Σ, then the maximum likelihood estimate
for the template amplitude is

α̂ML = (xTΣ−1x)−1xTΣ−1ȳ (5)

where

ȳ = N−1
θ

Nθ∑
i=1

yi (6)

is the mean spectrum along all lines of sight.
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This can be understood as “deweighting” the foregrounds
(Σ−1ȳ), projecting onto the signal template (xTΣ−1ȳ) and
then applying a normalization to account for the weights. The
estimated amplitude is normally distributed and its error is

Var(α̂ML)|Σ = (xTΣ−1x)−1. (7)

To convert this into a more intuitive cleaning process, take

the eigendecomposition of the covariance Σ = V ΛV T . The

cleaning operation Σ−1ȳ is then V Λ−1V T ȳ. Here V T

projects the data onto a basis where the contaminated modes
vj (the j’th row of V ) are orthonormal. Those modes are

weighted against λ−1
j = [Λ−1]jj , where the highest vari-

ance, most contaminated modes are down-weighted. Then,
V projects this down-weighted basis back onto the spectral
basis.

In the usual assumptions, the foregrounds are not full rank,
even if the spectral covariance Σ—which contains instrumen-
tal noise—is full rank. Often, the foregrounds are instead de-
scribed as some set of contaminated modes vj where j ranges
from 1 to the number of contaminated modes Nfg, or

nfg,i =

Nfg∑
j

ai,jvj . (8)

If the foreground covariance is described by only Nfg

highly contaminated modes, a robust cleaning method is
to null those modes entirely, setting λ → ∞ artificially
(Liu & Tegmark 2012). This is equivalent to fitting and sub-
tracting those spectral modes from each line of sight, as

ȳclean =

Nfg∑
j

(1− vjv
T
j )ȳ, (9)

where the vi are normalized so that vT
i vi = 1.

Here we have assumed that the foreground spectral func-
tions are known in advance and can be projected out. This
is essentially the same as arguments for subtracting polyno-
mials or power laws along the line of sight. A crucial differ-
ence is that there is no assumption of smoothness—if the fore-
grounds were known to have a particular spectral shape, that
could be represented in the vectors vi. The essential prop-
erty of the foregrounds that allows for their removal is not
that they are smooth, but that they are described by few func-
tions. In the limit that the number of orthogonal functions
removed approaches Nν , all of the signal is removed because
{vi, i = 1 . . . Nν} spans the space, assuming orthogonality
of the vi. The rank of bright foregrounds is the primary de-
terminant of cosmological signal that can be extracted.

Subtraction of bright foregrounds has proven to be signif-
icantly more challenging in practice due to instrumental ef-
fects (Switzer et al. 2013). Fig. 3 shows an example of 0.1%
calibration for a power law foreground spectrum similar in
amplitude to the one reported by Voytek et al. (2014), and
scaled to the slightly different frequencies of interest here.
This represents the case where the vi mode removed assumes
a pure power law, but the actual measurement reflects the in-
strument’s response to vi. Residuals are considerably larger
than the signal.

One approach to treating the passband is to control it
through instrumental design, and to measure it very precisely
prior to the experiment. In principle, this could be achieved
by long integrations on a calibration reference that is known
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Figure 3. Impact of calibration uncertainty. Top: a power-law foreground
spectrum similar to the one observed in Voytek et al. (2014), multiplied by a
0.1% calibration error. Bottom: residuals when a smooth power-law spec-
trum is subtracted from data with a calibration error. For contrast, the global
signal at these redshifts is expected to be ∼ 30mK. Also note that calibration
error will not integrate down thermally.

to be smooth. This carries the challenge of calibrating on
a source other than the sky. An alternative is to recognize
that the foregrounds are a bright spectral reference, viewed
through the same survey program as the primary science. One
calibration scheme would then consist of integrating down on
bright synchrotron emission and renormalizing the spectrum
under the assumption that the emission is spectrally smooth
(Voytek et al. 2014).

An alternative to calibrating the instrument to meet the
smooth mode functions {vi} is to adjust the mode functions
to reflect imperfections in the instrument. In the next sec-
tion we develop a method for discovering foreground spectral
mode functions in the data based on their spatial variations.
The central idea is that the cosmological signal is a monopole
spectrum, so the spectrum of anything that fluctuates across
the sky must reflect some foreground modes (hence the ti-
tle “Erasing the variable”). If there are monopole foreground
components, they are formally indistinguishable from the cos-
mological 21 cm monopole in this picture (in the absence of
prior information).

Measurement of {vi} modes within the data may also dis-
cover unanticipated or unconstrained instrumental response
systematics. Examples include 1) a passband that varies with
time or pointing, which causes a response to synchrotron ra-
diation that varies across the sky, 2) polarization leakage,
which can cause Faraday (spectral) rotation that varies across
the sky, 3) terrestrial interference that varies with instrument
pointing, and 4) un-modeled frequency dependence of the
beam. Even if the foregrounds were intrinsically a simple
rank-1 spectral function, the instrument response will tend to
proliferate the rank of the foreground covariance. This limits
the ultimate sensitivity to the global signal. While many of
these sources of systematics may be tightly controlled by the
instrument’s construction, residual imperfections will not be
known in advance and could be discovered by this method.

We will assume throughout that the true synchrotron fore-
grounds are described by a small number of modes Nfg,true.
The instrument observes these bright foregrounds and records
spectral data that may need some Nfg ≥ Nfg,true functions to
describe the contamination.
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3.2. Covariance from the measurements
This section considers the joint determination of the global

signal amplitude α and the contaminated foreground modes.
The statistical methods described and extended here were de-
veloped by Rao (1967). The central idea in these methods is
to begin with a poor, contaminated estimator for the 21 cm
signal amplitude. This initial estimator can then be cleaned
up by projecting out correlations with the foregrounds.

To reflect the reality that often one does not know the co-
variance a priori, first consider a simple estimator that does
not use any information from the spectral covariance. This
will serve as our starting point for constructing an estimator
that simultaneously estimates the spectral covariance from the
data. Again, let x be the spectral template of the cosmologi-
cal signal that we would like to constrain. The simplest (and
arguably worst) estimator we could develop for the amplitude
is

T (‖ x) = (xTx)−1xT ȳ, (10)

which takes the dot product of the 21 cm template and ob-
served data (xT ȳ) and normalizes through (xTx)−1. We re-
fer to this as T (‖ x) because it estimates the amplitude of the
component of ȳ parallel to the signal x. This is exactly the
estimator that would be used if there were no frequency cor-
relations in the noise. What makes this a very poor estimator
is that it is strongly correlated with the foreground modes, and
will therefore contain strong foreground residuals. In contrast,
Eq. (5) in the previous section used the known frequency co-
variance to de-weight the foreground contamination.

We can begin to improve upon our simple estimator by con-
structing spectral modes that contain no cosmological signal
by design. Using a Gram-Schmidt process, we can make a set
of vectors zi that span the space orthogonal to the theoreti-
cal template of the cosmological signal x, so that zT

i x = 0.
There are Nν − 1 such vectors, and the choice of these vec-
tors is completely arbitrary at this point. Any spectrum can be
represented as a sum

y = αx+
∑
i

βizi (11)

because {x, zi} span the Nν-dimensional space. We can pack
these vectors zi into a matrix Z and write an estimator for all
the spectral information orthogonal to x, T (⊥ x) = ZT ȳ.
This represents all the components of ȳ orthonormal to the
signal, and is dominated by foregrounds. (Note that we
could choose to normalize this for general vectors z and find

(ZTZ)−1ZT ȳ. This would make the equations more com-
plex, but not modify the estimator for the cosmological quan-
tity.)

The covariance between T (‖ x) and T (⊥ x) is

Cov‖,⊥=

(
C‖,‖ C‖,⊥
C⊥,‖C⊥,⊥

)
(12)

=

(
(xTx)−1xTΣx(xTx)−1 (xTx)−1xTΣZ

ZTΣx(xTx)−1 ZTΣZ

)
.

The off-diagonal terms (xTx)−1xTΣZ represent correla-
tions between T (‖ x) and T (⊥ x) caused by the (ν, ν′) co-
variance of foregrounds in Σ. If the noise terms were only
thermal fluctuations, Σ = σ2

inst1, and by the construction

xTZ = 0, the off-diagonal terms vanish. In other words, an
estimator T (⊥ x) that is known to contain only contaminants

(and no cosmological signal) is correlated with our estimate
of the cosmological signal, so the latter must be contaminated.

With knowledge of spectral correlations, we can form an
improved, adjusted estimator

α̂ = T (‖ x)−C‖,⊥C
−1
⊥,⊥T (⊥ x) (13)

that projects foreground frequency correlations out of the T (‖
x) estimator. Intuitively, this estimator instructs us to make
an estimate T (⊥ x) of the portion the measurement that is
known to contain only foregrounds. Off-diagonal elements
of the covariance matrix then allow the level of foreground
leakage (into our estimate T (‖ x) of the cosmological signal)
to be predicted and subtracted off. A similar technique was
used recently in a power spectrum analysis of PAPER data
(Parsons et al. 2013).

So far, we have assumed that Σ is known, but the same
covariance adjustment can be performed with respect to an

estimated Σ̂. Without perfect knowledge of Σ, the error bars
grow but the estimator remains unbiased. The (ν, ν′) covari-
ance can be estimated empirically using

Σ̂ = (Nθ − 1)−1
Nθ∑
i=1

(yi − ȳ)(yi − ȳ)T (14)

Writing out Eq. (13),

α̂ = (xTx)−1xT (1−Π)ȳ (15)

where Π = Σ̂Z(ZT Σ̂Z)−1ZT . Remarkably, under our cur-
rent assumptions where Z spans the rest of the Nν dimen-
sions, this estimator is equivalent to (see Appendix A)

α̂ = (xT Σ̂−1x)−1xT Σ̂−1ȳ, (16)

which is precisely the same as Eq. (5), except with the esti-

mated spectral covariance Σ̂ replacing the known covariance
Σ.

Gleser & Olkin (1972) develop the same result through a
completely independent method. They write down the joint
likelihood of the covariance and mean (cosmological signal),
where the covariance is Wishart-distributed and the mean is
normally distributed. They then maximize the likelihood and

find the same result, showing that the choice Σ → Σ̂ coin-
cides with the maximum likelihood.

In summary, the proposed procedure is to

• Find the sample mean and (ν, ν′) covariance across ob-
served lines of sight.

• Invert the measured covariance and use it to down-
weight contaminated modes in the data.

• Find the inner product of the cleaned data and the signal
template, then normalize.

While the maximum of the likelihood has the same form
as the case where the covariance is known, the distribution
of the estimated 21 cm global signal template amplitude is no
longer Gaussian, and is generally broader. These changes are
due to the fact that the data are also used for the covariance
estimation, which uses up degrees of freedom in determining
the foreground modes. Rao (1967) shows that

Var(α̂) =
Nθ − 1

Nθ − 1− r
[C‖,‖ −C‖,⊥C

−1
⊥,⊥C⊥,‖], (17)
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where r is the rank of the additional degrees of freedom that
are estimated. In our case here, r = Nν − 1 (Z spans the rest
of the spectral space) so that

Var(α̂) =

(
1 +

Nν − 1

Nθ −Nν

)
(xT Σ̂−1x)−1, (18)

where we have also plugged in the explicit forms for C‖,‖,
C‖,⊥,C⊥,⊥, and C⊥,‖ from Eq. (12). We see that the co-
variance is enhanced relative to the case of perfect foreground
covariance knowledge [Eq. (7)] by a factor related to the num-
ber of frequencies and independent lines of sight. The er-
ror diverges when Nθ approaches Nν from above. The rank

r(Σ̂) ≤ min(Nθ, Nν), and for Nθ � Nν , the covariance is
well-measured. This suggests that the optimal limit is to have
many more resolution elements than spectral bins.

There is little instrumental limitation on the number of
spectral bins Nν over the bands observed. In contrast, there
is a hard limit on the number of “independent” lines of sight
that can be observed, Nθ. At the frequencies of interest for the
global 21 cm signal, the beam size tends to be large by diffrac-
tion. Angular correlations and noise generally limit the num-
ber of independent samples of the spectrum (see Sec. 7.1).

The requirement Nθ > Nν stems from the fact that Σ̂ is
trying to estimate a full Nν rank covariance. In general, the
sensitivity to α should not depend on the number of spectral
bins in the survey, once they become fine enough to resolve
the signal. The solution is to instead estimate some number
Nfg of contaminated spectral functions, less than the number
of spectral bins. Then the estimation becomes independent of
the Nν , so long as Nν > Nfg.

3.3. Empirically-determined foregrounds of limited rank
The key step in the covariance adjustment scheme of the

previous section was the formation and application of Π =

Σ̂Z(ZT Σ̂Z)−1ZT , which modeled contaminated modes in
the original “poor” estimator for later subtraction. The modes
formed a basis Z orthogonal to the signal x. The specific
choice of vectors in Z was arbitrary so long as they were
orthonormal (for simplicity) and spanned the spectral sub-
space orthogonal to the signal. For concreteness, we sug-
gested forming this basis blindly using a Gram-Schmidt pro-
cess. While formally a solution to our problem, this is not
a particularly efficient way to implement our recipe in prac-
tice, for each of the resulting basis vectors will be a linear
combination of noise and foreground modes. On the other
hand, the foregrounds should be describable by a small num-
ber of modes (Liu & Tegmark 2012; Bernardi et al. 2014). A
sensible alternative would therefore be to intelligently parti-
tion the basis Z into two sub-bases, one that is of a relatively
low rank Nfg containing the foregrounds, and another of rank
Nν − Nfg − 1 consisting of the remaining noise-dominated
modes. Computationally, this means that rather than estimat-
ing the full Nν rank covariance from the data, we only need
to estimate a subset of contaminated modes and their ampli-
tudes. This limits the number of degrees of freedom r that
need to be estimated from the data, which as we saw from
Eq. (17), is crucial for keeping the final error bars small.

In the rank-restricted foreground approximation, the data
along a line of sight are the cosmological signal plus some
amplitudes β times foreground modes F plus thermal noise,
as

y = αx+ Fβ + nt ⇒ Σ = FΓF T + σ2
inst1, (19)

where we have taken the noise to be stationary for simplicity.
The amplitude-ordered eigenvalue spectrum of the total co-
variance Σ in this case would show some large contaminant
amplitudes followed by a noise floor set by σ.

Unlike Z of the previous section, the foreground mode vec-
tors in F alone do not span the entire spectral subspace or-
thogonal to the cosmological signal. The remaining portion
of the space is spanned by basis vectors that describe instru-
mental noise, under the assumptions of Eq. (19). These vec-
tors can be formed, like before, using a Gram-Schmidt pro-
cess (this time relative to the signal x and foregrounds F )
and packed into a matrix G. The observed spectrum y can
then be written as

y = αx+

Nfg∑
j=1

βjf j +

Nν∑
j=Nfg+1

γjgj , (20)

which is to be contrasted with Eq. (11).
Again, we can form poor estimators for the amplitudes of

the signal (α̂ = (xTx)−1xT ȳ), foreground modes (β̂ =

F T ȳ) and thermal noise modes (γ̂ = GT ȳ). To do so, how-
ever, we must first specify how the foreground modes F are
identified and defined, and in the following section we outline
two different methods for this.

3.4. Two outlooks on separation of signal and foregrounds
The first method is closely related to the treatment that we

have presented so far. In particular, we considered modes in
the matrices Z (full rank) or F (finite rank) that represent
components of the data that are orthogonal to the cosmolog-
ical signal. There is, however, nothing preventing real fore-
grounds from being parallel to the signal, and generally nfg

will be the sum of nfg,‖x (foregrounds parallel to the cosmo-
logical signal) and nfg,⊥x (foregrounds perpendicular to the
signal). For example, if the signal and foregrounds share a
slowly varying spectral component, it will fall in nfg,‖x.

An alternative is to form foreground spectral modes that
best describe the covariance of the fluctuating terms on the
sky, without regard for the cosmological signal. Then, the
signal has a piece which is parallel to those foreground modes,
and a piece which is perpendicular, or x = x‖F + x⊥F .

In equations, these two methods are

Method 1: y=x+ nfg,‖x + nfg,⊥x delete: nfg,⊥x

Method 2: y=x⊥F + x‖F + nfg delete: x‖F + nfg.

In the first method, we can develop a cleaning operation that
removes/deweights nfg,⊥x, that is, components of the fore-
ground variance orthogonal to the signal. This estimator does
not touch the signal by design, so is guaranteed to have no cos-
mological signal loss. However, substantial foregrounds will
remain in the estimated signal with this rather conservative
approach. In the second method, we can develop cleaning that
removes any foreground spectral modes that vary spatially on
the sky, along with any component of the signal parallel to
that. If implemented carelessly, this aggressive method will
entail cosmological signal loss, although the problem is recti-
fiable.

Method 1 is described in Rao (1967), and is a simply a
slight modification of the prescription in Sec. 3.2. Method
2 is the one we develop here and advocate for global 21 cm
signal recovery.

We demonstrate the differences in approach using simple
simulations. These have Nθ lines of sight and a number of
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Figure 4. A simple simulation of 10 lines of sight with a random combina-
tion of three power laws.

power laws in the synchrotron emission (to limit the rank).
The indices of these power laws are {−1.5,−1.8,−2} and
the amplitude is uniformly distributed and positive. Again,
as amplitudes we take representative values from the recent
observations of Voytek et al. (2014) and scale to the slightly
higher frequencies of interest here. For the purposes here we
will neglect thermal noise, and assume the integration is deep
relative to the cosmological signal. Fig. 4 shows one realiza-
tion of the foreground model. This model is only meant to be
pedagogical, showing the main point of the algorithms here
for independent sightlines in a simplified setting with three
spectral modes. Beginning in Sec. 5 we will use the full ex-
tended GSM model data cubes described in Sec. 2.

3.4.1. Method 1: Foreground modes orthogonal to signal

To find foreground spectral modes that are orthogonal to the
cosmological signal x, we can find the largest eigenmodes of
the restricted covariance

Σ̂

∣∣∣∣
⊥x

= [1− x(xTx)−1xT ]Σ̂, (21)

which in practice will be eigenmodes that represent fore-

grounds. By construction, any eigenmode f i of Σ̂
∣∣
⊥x

will

be orthogonal to x, i.e. fT
i x = 0. Let F⊥ hold the restricted

eigenvectors f i. The top left subplot of Fig. 5 shows the unre-
stricted eigenvectors of an input foreground simulation, while
the bottom left subplot shows the restricted eigenvectors rela-
tive to a signal template.

Having identified our foreground eigenvectors, we can con-
struct our estimator for the signal amplitude α using the meth-
ods introduced in Sec. 3.2. Once again, we first form a poor
initial estimator of the signal, which we then adjust using the
covariance between the poor estimator and the foregrounds
(which is non-zero because a substantial foreground contam-
ination remains in the estimate of the signal). The covariance
of this estimator takes the form

Covα̂,β̂ =

(
(xTx)−1xT Σ̂x(xTx)−1 (xTx)−1xT Σ̂F⊥

F T
⊥Σ̂x(xTx)−1 F T

⊥Σ̂F⊥

)
,

(22)
which looks exactly like Eq. (12), but with all occurrences of
Z replaced by F⊥. This is unsurprising, since the modes in
G represent a diagonal piece of the covariance, σ2

inst1, so are

not correlated in frequency with either the foreground modes
or the signal.

Projecting out the piece of the signal estimator that is cor-
related with the foregrounds,

α̂=(xTx)−1xT (1−Π)ȳ (23)

Π= Σ̂F⊥(F T
⊥Σ̂F⊥)−1F T

⊥. (24)

That is, project foreground-contaminated modes in the data
and then dot against the signal template. The operation Π puts
the signal in the basis of foreground modes, weights those by
their covariance, and moves back to the spectral space. Note
that F⊥ does not span the rest of the spectral space like Z
in the previous section. Here, Eq. (23) is not equivalent to

α̂ = (xT Σ̂−1x)−1xT Σ̂−1ȳ.
By construction, our estimator suffers from no loss of cos-

mological signal (despite the projecting-out of foregrounds)

because (1 − Π)x = x − Σ̂F⊥(F T
⊥Σ̂F⊥)−1F T

⊥x = x.

In the last step, we used the fact that F T
⊥x = 0 through the

choice of forming F⊥ with eigenvectors restricted to be or-
thogonal to x, Eq. (21).

The error on α̂ is

Var(α̂)∝ [C‖,‖ −C‖,⊥C
−1
⊥,⊥C⊥,‖] (25)

∝ (xTx)−1xT (1−Π)Σ̂x(xTx)−1. (26)

Here xT (1−Π)Σ̂x can be interpreted as projecting all of the
foreground modes orthogonal to the signal out of the (ν, ν′)
covariance and finding the noise with respect to that resid-
ual covariance. The residual covariance originates from fore-
ground components parallel to the signal and from thermal
noise—any (ν, ν′) covariance component with a non-zero dot
product into the signal x will contribute to the variance of α̂.
This property can be seen in Fig 5. The recovered signal has
exactly the shape of the signal template x, but the amplitude is
dominated by foregrounds. This feature is clearly undesirable
in the regime where foregrounds vastly exceed the signal.

Another undesirable property of this estimator is that the
quoted error Var(α̂) relies on the foregrounds being normally
distributed. Real foregrounds are strongly non-Gaussian, and
we would like to avoid describing those components in the er-
rors of α̂. We can make a simple modification to the estimator
in Rao (1967) to treat both of these shortcomings.

3.4.2. Method 2: Signal component orthogonal to foregrounds

In some sense, the method described in Sec. 3.4.1 was
too conservative. By limiting our labeling of foregrounds to
modes that are orthogonal to the signal, we arrived at an es-
timator with no formal signal loss, but one in which substan-
tial foreground residuals remained in the final answer. Here
we consider an estimator that more aggressively projects out
foregrounds. The result will be a lossy treatment, but we will
also show how this can be rectified.

Instead of isolating the foregrounds orthogonal to the sig-
nal, consider the component of the signal that is orthogonal to
the foregrounds. The signal is then partitioned as

x = x‖F + x⊥F (27)

For this decomposition to be meaningful, we must once again
decide on a definition for our foreground modes. We let F be

the largest foreground eigenvectors of Σ̂ (without the orthog-
onality restrictions of the previous section). In the calculation

for Σ̂, the mean ȳ contains the cosmological signal and is
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Figure 5. Modes discovered from the (ν, ν′) covariance of simple simulations with three synchrotron spectral indices (Fig. 4). These include only the foregrounds

and simple signal model of Eq. (3) with Δz = 0.5 and zr = 10.6. Top left: the largest three eigenvectors of the covariance Σ̂ that fully describe the foregrounds.

Top right: The filtered data (1 − FF T )ȳ. The input signal in red is largely recovered after cleaning the three foreground eigenmodes in the top left. In this
toy model, the foregrounds are removed entirely, and only the signal (minus components parallel to the subtracted foregrounds) is left. Bottom left: The largest

three eigenvectors of the restricted covariance Σ̂|x = [1− x(xTx)−1xT ]Σ̂. These are all orthogonal to the cosmological signal. Bottom right: The data after

subtracting the restricted eigenvectors [or (1 − F⊥F T
⊥)ȳ.] are exactly the signal template shape, by the construction of the mode functions. The amplitude,

however, is clearly dominated by residual foregrounds. These are the foreground components parallel to the cosmological signal. While this procedure is immune
from loss of cosmological signal, it is insufficiently aggressive when dealing with foregrounds, and the final result is strongly influenced by the foreground
covariance. We note that the apparent recovery of the reionization step’s location in the bottom right subplot is spurious, for it is almost entirely driven by our
choice of which theoretical template we use. The location of the “step” in the top right subplot, on the other hand, is truly constrained by the data, although signal
loss means that it no longer appears as a clean step.

subtracted out. For this reason, the cosmological signal does
not perturb the (ν, ν′) covariance or its eigenmodes. This is
in contrast to inhomogeneous 21 cm mapping, where the cos-
mological signal is stochastic, cannot be subtracted from the
covariance, and does perturb the eigenvectors (Switzer et al.
2013; Masui et al. 2013). (The foreground modes can op-
tionally be isolated from thermal noise by forming the (ν, ν′)
cross-variance of maps acquired at two different times, as was
done in Switzer et al. 2013.)

To project the identified foreground modes out of the esti-

mator, we apply 1−Π = 1−FF T . This operation splits the
spectrum into a foreground contaminated and a (theoretically)
foreground-clean subspace as(

Π
1−Π

)
y =

(
Π

1−Π

)
αx+

(
nfg

0

)
+ ninst. (28)

Unlike the previous estimator Eq. (23), however, the fore-
ground modes are no longer constructed to be orthogonal
to the signal. By projecting out the foregrounds, then, it is
likely that some cosmological signal will be lost. Mathemat-

ically, (1 − FF T )x equals x⊥F , not x, and the estimator

α̂ = (xTx)−1xT (1−Π)ȳ is an incorrectly normalized esti-
mator of the signal amplitude (i.e., it suffers from a multiplica-
tive bias). Correcting this, we propose the revised estimator

α̂ =
xT (1− FF T )ȳ

xT (1− FF T )x
. (29)

In the error calculation from Eq. (26), the key term (1 −
Π)Σ̂ now reduces to 1σ2

inst, under the assumption that all
foregrounds are removed to a good approximation, and only
Gaussian thermal noise remains. While the foregrounds may
be strongly non-Gaussian, we will assume that the residuals
after the modes F have been subtracted are Gaussian and due
to the thermal noise floor. This would need to be verified in
analysis of real data.

The overall error is now

Var(α̂) ∼
(
1 +

Nfg

Nθ − 1−Nfg

)
σ2
inst

[xT (1− FF T )x]2
(30)

To get some rough intuition, assume that the foreground
modes all have about the same overlap with the cosmological

signal. Then xT (1 − FF T )x ∝ Nν − Nfg. As Nfg ap-
proaches Nν , the foreground modes do a progressively better
job of spanning the Nν spectral space. In the limit that they
fully span the space (there is no signal distinguishable from
foregrounds), the signal is also nulled and the error diverges.
Alternately, as Nfg approaches Nθ, the foreground discovery
process uses up all the spatial degrees of freedom and the error
diverges. In this formulation, then, we are self-consistently
including the possibility of signal-loss in our error analysis.

4. CONSTRAINTS ON PASSBAND CALIBRATION

The abstract design guidance suggested by this method is
that 1) the experiment should not increase the rank of the
foreground covariance (keep Nfg small) 2) if there are fore-
grounds with Nfg spectral degrees of freedom, at least Nθ =
Nfg samples of its variations need to be observed if those fore-
grounds are to be subtracted.

A time-varying passband calibration is the worst instrumen-
tal systematic in this sense. Here each line of sight sees a
slightly different foreground spectrum and so requires a dif-
ferent spectral function for cleaning. In the limit that each
line of sight can have a different foreground, Nfg → Nθ and
the errors diverge. In contrast, a constant passband error only
modulates the foreground covariance spectral functions, but it
does not increase the rank of its covariance. Its impact is more
aesthetic, can be corrected by re-calibrating off the brightest
mode, and it does not fundamentally limit the investigation.
(This is proven in Sec. 6 using specific notation developed
there.)
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Fig. 6 shows the 10 simulated lines of sight with a constant
10% calibration error. Here we multiply the spectrum along
each line of sight by a constant 1+δ, where δ is Nν-long and
normally-distributed. Fitting a smooth power law in this case
would leave unacceptable residuals, but the modes are able to
discover the constant calibration error and subtract the fore-
ground. In contrast, Fig. 7 shows that even a 0.1% variable
passband calibration error spreads foreground variance into
many modes that are all significantly larger than the signal
(10−5 there). To implement a variable passband, we multiply
each line of sight by a different 1 + δi, representing a change
in the instrument response with time.

The rule of thumb here is that if foregrounds are R times
larger than the signal, then the per-pointing calibration needs
to be stable to ∼ 1/R. Averaging over sightlines tends to
relax this constraint. In simulations shown in Sec. 7.1, we
find that the stability must be better than ∼ 10−4 to have no
effect. The constraint degrades rapidly above that. In the other
limit of extremely high stability, we find that once calibration
stability is suppressed below the thermal noise, there is no
further gain in foreground discrimination.

An important point is that the method developed here can
discover any response to foregrounds that varies across the
sky (non-monopole). This does not necessarily need to orig-
inate from passband calibration or differential polarization
response—these are just plausible sources of error from in-
strumental response.

5. INCORPORATING SPATIAL INFORMATION

The previous discussion assumed that the foregrounds are
stationary and independent between different lines of sight. It
is for this reason that the first step in the prescription outlined
above was to form y, the unweighted average of all lines of
sight—with stationary statistics, there is no reason to prefer
one direction of the sky over another, and an unweighted av-
erage provides the best signal-to-noise. This is the implicit
assumption that is being made by experiments that average
over large regions of sky at once (such as single-dipole exper-
iments) and produce a single spectrum as their measurement.
The results in preceding sections therefore also apply to ex-
periments with no angular sensitivity, except without angular
information, error bars and foreground cleaning methods can-
not be informed by the data itself and must be derived a priori.

In reality, foregrounds are neither stationary nor indepen-
dent. The synchrotron brightness varies across the sky (vio-
lating stationarity), and in addition the foregrounds are known
to be spatially correlated (violating independence).

Angular information can be leveraged in several ways.
First, non-stationarity of the foregrounds allows the estimator
to down-weight parts of the sky that are known to be partic-
ularly noisy, such as the galactic center. Second, correlation
information allows foreground properties in one part of the
sky to be inferred from observations of another part of the
sky. For example, in the unrealistically extreme limit of per-
fectly correlated foregrounds, a measurement of foregrounds
in any part of the sky automatically allows a perfect prediction
of foreground brightness in any other part of the sky.

To take advantage of angular information, L13 considered
an optimal estimator given full-sky maps at all frequencies of
interest, as well as a known NνNpix × NνNpix covariance
N between all pixels and all frequencies. Let d be a vector
of length NνNθ containing the measured sky maps. Here we
use Npix to denote the number of pixel indices in a full-sky
healpix map (Górski et al. 2005). For reasons we will see in

Sec. 7.1, this also prevents confusion between the Nθ inde-
pendent sightlines in the previous section and the present dis-
cussion, which is made more complex by beam convolution.

The observations d are related to the global 21 cm spectrum
s via the measurement equation

d = As+ n, (31)

where n ≡ nfg + ninst is the generalized noise, containing
nfg and ninst as the foreground and instrumental noise con-
tribution to d, respectively. The NpixNν × Nν matrix A is
given by 1 ⊗ e0, where ⊗ is the Kronecker product, 1 is an
Nν ×Nν identity matrix, and e0 is the spatial monopole, i.e.,
an Npix-long vector of 1s. Its function is to copy, at every
frequency, the value of the global spectrum s to all the spa-
tial pixels comprising the sky map. The maximum-likelihood
estimate ŝML for the full global spectrum is given by

ŝML = (ATN−1A)−1ATN−1d, (32)

where N ≡ 〈nnT 〉−〈n〉〈n〉T is the covariance matrix of the
generalized noise, which is assumed to be known. To facili-
tate comparisons with previous work, we will begin by con-
sidering the estimator ŝ of the full global spectrum. Sec. 6
returns to the template amplitude constraint.

5.1. Spatial weighting to recover the spectrum
L13 used a series of analytic manipulations to show that

incorporating angular information via Eq. (32) could in prin-
ciple lead to large reductions in foreground contamination. In
practice, however, this prescription is difficult to implement
for a number of reasons. First, one may not possess suffi-
ciently accurate models of the instrument and the foregrounds
to write down the matrix N , placing a priori expectations on
the instrument response. This matrix cannot be derived from
the data (unlike Σ from previous sections), since it has di-
mensions NνNθ × NνNθ and therefore contains many more
degrees of freedom than the number of measurements NνNθ.
Moreover, even if the matrix is somehow known, its large size
makes its inversion in Eq. (32) computationally challenging.

To deal with these challenges, consider a modified recipe
where the sky maps are dealt with frequency-by-frequency
[unlike in Eq. (32) where all frequencies and all lines of sight
are mixed together] and an estimator for the global signal at
each frequency is formed by spatially averaging with non-
trivial weights [unlike in Eq. (6), where different lines-of-
sight were equally weighted]. Let dβ be a vector of length
Npix that represents the map within d corresponding to the
βth frequency channel. The global signal at this frequency
channel can then be estimated by computing the weighted av-
erage

ŝβ = wT
βdβ , (33)

where wβ is a vector of length Npix with weight appropri-
ate for the βth frequency channel. Throughout this paper, we
adopt a convention where summations are written explicitly.
Repeated indices therefore do not imply summations. The
variance of this estimator—which we will seek to minimize—
is

Var(ŝβ) ≡ 〈ŝ2β〉 − 〈ŝβ〉2 = wT
βΦβwβ , (34)

where Φβ is the Npix ×Npix spatial covariance matrix of the
map at the βth frequency. For our final estimator to be cor-
rectly normalized, we require the weights at each frequency
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Figure 6. A toy model showing that an absolute passband calibration error that does not vary with time does not impact primordial signal recovery. Top left:
Observations of the spectrum across 10 lines of sight with a stable 10% passband calibration error between bins (here neglecting thermal noise). The input
synchrotron is taken from a mixture of three power laws, so is described by three spectral modes in the data. Bottom left: Foreground modes discovered in the
data. Because of passband calibration error, these modes are not smooth. A constant calibration error does not increase the rank of the three input power laws.
Right: Recovered cosmological signal compared to the input signal, and the cosmological signal with the three modes on the left removed. The fixed calibration
error is cosmetic.
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Figure 7. Residual foregrounds as a function of modes removed in a toy
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reaches thermal noise after three modes are removed. If the passband calibra-
tion varies between lines of sight, the residuals become significantly worse.

Generally, for foregrounds 105 times larger than the signal, the passband
should be stable to ∼ 10−5. Passband calibration instability spreads the
variance of the three intrinsic foreground modes across many more degrees
of freedom.

to sum to unity, i.e. wT
β e0 = 1. To obtain the minimum-

variance solution for our weights, we use a Lagrange multi-
plier μ to impose our normalization constraint, and minimize
the quantity

L = wT
βΦβwβ − μwT

β e0. (35)

Doing so gives

wβ =
Φ−1

β e0

eT0 Φ
−1
β e0

, (36)

and therefore

ŝβ =
eT0 Φ

−1
β dβ

eT0 Φ
−1
β e0

. (37)

In words, these weights tell us to whiten the sky maps at each

frequency using the inverse spatial covariance before sum-
ming together different lines-of-sight and normalizing. Since
the whitening takes the form of a non-diagonal matrix multi-
plication, this operation not only down-weights brighter parts
of the sky, but also makes use of angular correlation infor-
mation to better estimate the monopole signal. Tegmark et al.
(2003) tackled the transpose of this problem for CMB fore-
ground removal. Note that in modeling Φβ , it is essential to
capture the non-stationary nature of our galaxy’s foreground
emission. It is insufficient, for example, to describe the galaxy
using an angular power spectrum alone, which assumes sta-
tistical isotropy. This would not only be physically unrealis-
tic, but would also make our weights constant across the sky
(a fact that can be derived by applying Parseval’s theorem to
our expression for wβ), defeating the purpose of using spatial
weights in the first place.

5.2. Spatial weights within a separable covariance model
The spatial weight recipe that we have just specified can

also be considered a special limit of the maximum-likelihood
estimator, albeit with one small modification. Suppose that
the full NνNθ × NνNθ covariance N is separable, so that
we can write it as Σ ⊗ Φ, where Σ is the Nν × Nν spectral
covariance from previous sections, Φ is an Npix×Npix spatial
covariance, and ⊗ is the Kronecker product.

Using the identities (G⊗H)−1 ≡ G−1 ⊗H−1 and (G⊗
H)(J ⊗K) ≡ GJ ⊗HK, we have

ATN−1 = Σ−1 ⊗ eT0 Φ
−1 (38)

and

(ATN−1A)−1 = Σ⊗ (eT0 Φ
−1e0)

−1. (39)

Inserting these into Eq. (32), the final estimator in this sepa-
rable approximation is then

ŝβ

∣∣∣∣∣
sep

=
eT0 Φ

−1dβ

eT0 Φ
−1e0

, (40)

which is almost identical to Eq. (37). If we slightly relax the
assumption of perfect separability by allowing Φ to acquire
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a frequency dependence (so that Φ → Φβ), the correspon-
dence becomes exact. Including this frequency-dependent
non-separability also allows us to incorporate the fact that the
instrumental beam will generally broaden toward lower fre-
quencies, in addition to intrinsic non-separability of the fore-
grounds. Sec. 6.1 discusses non-separability caused by the
differences between foregrounds and thermal noise.

Interestingly—but unsurprisingly—the spectral covariance
Σ drops out of the optimal estimator for the global spectrum
once separability is invoked. As discussed in L13, this is due
to the fact that once we spatially average over the maps, we
are left with a spectrum consisting of Nν numbers. If our
final goal is to measure a cosmological spectrum, that is also
of length Nν , the constraint that our estimator be correctly
normalized and unbiased means that there is nothing left to
do. Mathematically, this manifested itself in our derivation
when the factors of Σ in Eqs. (38) and (39) canceled each

other out when forming (ATN−1A)−1ATN−1.
If we return to our method in previous sections, however,

and attempt to constrain the amplitude α of a theoretical
template, the spectral covariance Σ re-enters the discussion.
When constraining α, one is seeking to measure a single num-
ber from Nν measurements, which in general ought to be
combined non-uniformly if these measurements have differ-
ent error properties (as captured by Σ).

6. ANALYZING GLOBAL 21CM DATA CUBES

In this section we combine the finite-rank, in situ estimate
of spectral foregrounds with a model of angular correlations.
The end product will be an estimator for the amplitude of a
cosmological signal template that can be applied to experi-
mental global 21 cm data cubes. The angular part of the esti-
mator uses assumed spatial distributions to improve the ampli-
tude estimate. In contrast, the central aspect of this estimator
is that it does not assume a set of spectral modes, or spectral
covariance of the data.

It is notationally convenient to write the NpixNν-long data
matrix d by reshaping it into an Nν × Npix matrix Y . This
“data cube” is a stack of maps at all the observed frequencies.
The original data vector d can be recovered through the seri-
alizing “vec()” operation vec(Y ) = d. This data cube form
naturally accommodates weighing operations by the separa-
ble covariance. A left-multiplication acts on the spectral di-
rection, and a right-multiplication acts on the spatial direction.

The essential weighting operation on the full dataset is

N−1d, which under the separable covariance assumption be-
comes

N−1d = (Σ⊗Φ)−1y = Σ−1Y Φ−1 (41)

using identities of the Kronecker and vec operations.
A model for the noise on Y is to draw some matrix E

with shape Nν × Npix of normal deviates from N(μ =
0, σ2 = 1), and then correlate the spectral and spatial parts

as Σ1/2EΦ1/2 to give a noise realization drawn from the co-
variance Σ⊗Φ.

The data model in this presentation is

Y = αxeT0 +Σ1/2EΦ1/2. (42)

This is a specialized case of the “growth curve” model
(Kollo & von Rosen 2005), reviewed in Appendix B. We can
transfer the separable method developed in the Sec. 5.2 to the
present case of constraining the template amplitude α by let-
ting s → α and A = 1 ⊗ e0 → x ⊗ e0 (since we are

now assuming a form for x as a theoretical template). Here,
the maximum-likelihood estimate for the amplitude of some
spectral template x is

α̂ = (xTΣ−1x)TxTΣ−1Y Φ−1e0(e
T
0 Φ

−1e0)
−1. (43)

This applies the familiar maximum likelihood estimators for
the spatial monopole (with respect to covariance Φ) and spec-
tral template (with respect to covariance Σ) to the right and
left side of our data cube Y .

Following Sec. 3.2, we can seek to replace Σ with a (ν, ν′)
covariance measured in the data, Σ̂. Kollo & von Rosen
(2005) show that, again, this choice of weight yields the max-
imum likelihood α̂. Again note that the errors on α̂ will be in-
flated (and non-Gaussian) by the fact that the estimation uses
additional degrees of freedom in the data. As before, we want
to find the sample variance with the monopole mean spec-
trum subtracted so that the cosmological signal does not enter
the covariance. Additionally, now that the angular covariance

Φ−1 is known, it can be applied in the covariance estimation
as

Σ̂=Y Φ−1[1− e0w
T ]Y T (44)

w=Φ−1e0(e
T
0 Φ

−1e0)
−1

where w is an Npix-long weight map.
The estimator for the monopole spectrum template ampli-

tude is then

α̂ = (xT Σ̂−1x)−1xT Σ̂−1Y w (45)

The inverse Φ−1 of the Npix × Npix spatial covariance ap-
pears explicitly only in the construction of the sample vari-
ance. Elsewhere, it is collapsed onto the single simple weight
map w. One approximation that can be made in practice is to
replace Φ−1 with its diagonal, which simply weighs angles
differently in the (ν, ν′) variance estimation.

Similar to the discussion in Sec. 3.3, we can replace the

Σ̂−1 operation by a projection that removes a finite number
of contaminated spectral modes. This is equivalent to 1) iden-
tifying a data subspace parallel to foregrounds that is contam-
inated and fully removed, 2) keeping a data subspace orthog-
onal to foregrounds.

Let F contain the largest eigenvectors of the sample covari-

ance Σ̂. Then

α̂ =
xT (1− FF T )

xT (1− FF T )x
Y w. (46)

The denominator xT (1− FF T )x is a scalar normalization.
This is analogous to Eq. (29), except that instead of a simple

ȳ, each spatial slice of the map Y is weighted to find the mean
as Y w.

Using this notation, we can easily prove that constant pass-
band calibration errors do not increase the rank of fore-
ground spectral modes. Let 1 + δc be an Nν-long vec-
tor that represents constant mis-calibration of the passband.
If a constant calibration error multiplies all lines of sight,
C = diag(1 + δc) modifies the data as CY . So long as
the response is not zeroed out at some frequencies, C is in-

vertible, and rank(CΣ̂CT ) = rank(Σ̂) for invertible C. In-
tuitively, a constant passband error can be thought of as just a
per-frequency rescaling of units. Since such a rescaling does
not affect the rank of the foregrounds, there is no increase in
the number of foreground modes that need to be constrained.
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Our self-discovery scheme for spectral modes will therefore
be just as effective when constant passband mis-calibrations
are present.

6.1. Deriving the final estimator: a two-component
covariance

In deriving Eq. (46), the key assumption that we made was
that the total covariance is separable into spatial and spectral
components. This confuses foregrounds and thermal noise,
which each have very different angular distributions. For ex-
ample, we know that a synchrotron spectral mode is associ-
ated with broad spatial distributions of galactic emission. In
contrast, thermal noise is always uncorrelated across angular
pixels, but may change in variance across the sky. In the limit
that spectral foreground subtraction is perfect, only Gaussian
thermal noise will remain. In contrast, the separable assump-
tion would dictate that it has approximately the same angular
correlations as the galaxy. This issue ultimately translates into
the angular weight w that should be applied.

The solution to this problem is to let the total covariance
be non-separable, but comprised of independently separable
foreground and noise components. Here, N = Nf + Ng

where Nf = Σf ⊗ Φf and Ng = Σg ⊗ Φg . For con-
creteness, imagine that the “f” component consists of mod-
eled foreground modes in F , while the “g” component con-
sists of any residuals after the projection operation. This is
exactly analogous to the F /G split in Rao (1967) described
in Sec. 3.3. If our discovered foreground modes happen to
perfectly capture the true foregrounds, then the “g” compo-
nent would consist only of Gaussian thermal noise. In gen-
eral, however, we need not make this assumption.

The central problem with the model N = Σ ⊗ Φ is that

(1 − FF T ) only acts on the Σ part, but not Φ. In contrast,

in the two-component model, when (1 − FF T ) acts on the
data, the remaining covariance is only Σg ⊗ Φg, e.g., it cor-
rectly ascribes Φf ’s spatial correlations to the modes that F
removes.

We can now reassess the w in Eq. (46) which yields the
minimum-variance estimate of α. To clarify the discussion,

let q ≡ [xT (1−FF T )x]−1(1−FF T )x. The first step of Eq.

(46) in this notation is to form qTY , which can be interpreted
as a series of estimators for α, one for each line-of-sight.

With our two-component covariance, a little algebra reveals
that the variance to minimize is given by

Var(α̂) = (qTΣfq)(w
TΦfw) + (qTΣgq)(w

TΦgw).
(47)

The first term is zero by construction, since qTΣf ∝ (1 −
FF T )F = 0. Minimizing the remaining term subject to the
constraint that the weights sum to unity requires minimizing
the quantity

L = (qTΣgq)(w
TΦgw)− μwTe0, (48)

where μ is again a Lagrange multiplier. Since qTΣgq is just
a constant, it can be absorbed into μ by a simple rescaling.
One then sees that L is identical to Eq. (35) except that Φg

(the spatial covariances of the residuals) takes the place of Φβ

(the full spatial covariance at the βth frequency). We may thus
import our previous solution for the spatial weights to find

w = Φ−1
g e0(e

T
0 Φ

−1
g e0)

−1 (49)

In conclusion, we see that a simple re-interpretation of Eq.
(46) is all that is required to accommodate a two-component

covariance model. The new weights w reflect the spatial co-
variance of residuals after the frequency mode subtraction
rather than the spatial covariance of the sky itself. In spirit,
this is reminiscent of the approach in L13, where a best-guess
model of the foregrounds was first subtracted from the sky
maps before the variance of the residuals was minimized. The
difference here is that our best-guess cleaning is based on the
data rather than a model. In addition, the estimator operates
with separable spectral and spatial steps that are computation-
ally trivial (a feature that we have managed to retain even with
the non-separable two-component covariance of this section).

6.2. Angular weighting
If the F modes cleanly separate the finite rank foregrounds,

the spatial covariance Φg that determines the angular weight
represents Gaussian thermal noise. In this case Φg diagonal,

and proportional to T 2
sys based on the radiometer equation.

Experimentally, synchrotron emission on the sky dominates
the receiver noise temperature, so the angular weight w is
simply to divide by the synchrotron template-squared.

In reality, there will not be a clean separation of foregrounds
and thermal noise. This is related to the fact that there is
not a rigorous way to determine the number of modes to re-
move (Sec. 7.4). If the eigenvalue spectrum has a long tail,
we can remove the obvious, high signal-to-noise modes, but
some residual will remain. This means that the w needs to
represent the angular covariance of the residual foregrounds.
Following L13, we split the problem of non-stationarity and
angular correlation of the angular covariance by writing

Φg = diag(m)Qdiag(m)T (50)

where m is the foreground mean map. This is equivalent to
dividing the foreground by the expected mean, and then en-
coding the angular correlations of that normalized map in the
matrix Q. Let these correlations be full-sky, isotropic and
diagonal. If T is a matrix that converts from real space to
spherical harmonics, then the correlations will be diagonal

Λ = TQT T , where Λ is just some function of �. The op-
eration Φ−1 can be interpreted algorithmically as

• Divide each spatial slice of the data by a foreground
model map (a synchrotron template)

• Transform to spherical harmonic space and de-weight
�-by-� by w� (defined below)

• Transform back to map space and divide by the fore-
ground model map again.

Here the � weighting reflects the angular correlations of any

residuals after the (1 − FF T ) cleaning step. This is also
the step where galactic masks could be applied in real space
through a choice of m−1 that is zero in those regions.

The choice of w is related to the optimality of the estimate
of α̂. As a first pass, we can always use the Gaussian thermal
noise assumption, which has w� = 1. An �-by-� weighting of
the residuals then has the potential to improve the estimate of

α̂. Detecting some angular power spectrum in the (1−FF T )-
cleaned map that is measurably different than Gaussian noise
could indicate that a better weight w� is possible. A simple,
two-parameter model for the correlations is to let the residuals
have some amplitude ξ relative to thermal noise and correla-
tion length σ, as

w� =
[
ξe−σ2�(�+1)/2 + eθb�(�+1)

]−1

. (51)
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Figure 8. Top: Spatial weights at 80MHz for noise-dominated residuals
(ξ = 0.5; σ = 20◦). The main purpose of spatial weighting in this regime
is to average down noise, so all the weights are positive. Bright regions
of the sky (which cause more instrumental noise for sky-noise dominated
instruments) are down-weighted. Bottom: Spatial weights at 80MHz for
foreground-dominated residuals (ξ = 50; σ = 20◦). In this regime, the
spatial weights play a role in foreground subtraction, and thus the weights are
both positive and negative, as different parts of the sky are differenced to miti-
gate residual foregrounds. The beam size assumed in both cases is θb = 10◦.
The weights are defined to sum to 1, but only the shape, not normalization, is
relevant.

Here we have assumed that the input data are deconvolved by
the beam before applying angular weights (dividing by B�).

The term eθb�(�+1) describes thermal noise in that case. By
picking the σ and ξ to give the lowest error, we may give
preference to parameters where the error spuriously scatters
low. A better alternative is use the known instrumental ther-
mal noise to inform ξ, and assume residuals in the data are
correlated across the beam scale θb (not determining wl based
on the error of α̂). Ideally, the residuals would be dominated
by nearly Gaussian thermal noise, and w� = 1 would be a
sufficiently optimal weight.

In Fig. 8 we show example spatial weights computed from
Eqs. (49), (50), and (51) in two different regimes. The top
panel shows a noise-dominated case (ξ = 0.5) while the
bottom panel shows a foreground residual-dominated case
(ξ = 50). In the noise-dominated case the spatial weights are
designed to simply average down the noise, and are therefore
all positive. The galactic plane and the bright point sources
are seen to receive almost zero weight, since they contribute
the most thermal noise in a sky-noise dominated instrument.
In the foreground-dominated case, the spatial weights attempt
to further suppress residual foreground contamination. There
are thus both negative and positive weights, since different
parts of the sky can be differenced to subtract off foregrounds.
In both regimes, the right half of the sky is given more weight,
since the galaxy is dimmer there (see Fig. 2).

An important property of our spatial weighting scheme is
that the normalization is irrelevant, and only the shape mat-

ters. This is a particularly attractive property, since most mod-
els of the sky at our frequencies of interest are based on in-
terpolations and extrapolations from other frequencies. The
amplitude may have large uncertainties, but the shape infor-
mation is likely to be much more reliable. If one is particu-
larly confident about the available shape information, it may
be prudent to go one step further and to set w�=0 = 0 by
hand. Examining Eqs. (50) and (51) reveals that this projects
out any component of the measured sky that has precisely the
same spatial shape as our foreground model. Note that even
though this is the � = 0 weight, we do not destroy the global
monopole signal that we seek to measure, since the w� act in
a pre-whitened space after dividing by m. The global signal
therefore takes the form 1/m and is no longer just the � = 0
mode. It is instead spread out over a wide range of � val-
ues. Setting w�=0 = 0 then sacrifices the sensitivity in one of
the modes within this range, resulting in slightly increased er-
ror bars as one deviates slightly from the optimal prescription
described above. However, this may be a cost that is worth
bearing for the sake of robustness in an aggressive campaign
against foreground systematics.

6.3. Summary of the proposed algorithm
The final algorithm suggested here for analyzing global

21 cm data cubes is

• Use a spatially-weighted average to project the
monopole spectrum out of the map and find the (ν, ν′)
sample covariance.

• Find the largest eigenvectors of the sample covariance
and project them out of the map.

• Combine lines of sight using a prescription for the an-
gular correlation of the residuals (which conservatively
is to divide by the synchrotron template-squared).

• Dot this against the signal template to find the ampli-
tude and perform error analysis.

While this algorithm is intuitive, our goal here has been
to describe some of the implicit choices: 1) discovering fre-
quency modes within the data (and implications for errors), 2)
choosing to remove the part of the signal parallel to the fore-
ground modes, 3) assuming a two-component separable form
for the thermal noise and foregrounds/respectively. The next
section describes several considerations for using estimators
of this type, and challenges in global 21 cm signal measure-
ment.

7. CONSIDERATIONS FOR ANALYZING GLOBAL 21
MAPS

In the next few subsections, we will consider 1) the no-
tion of resolution elements and the choice of beam size, 2)
combined passband stability and resolution considerations, 3)
challenges in error estimation from residual monopoles, 4) de-
termination of the number of modes to remove, 5) extensions
to simple amplitude constraints, 6) applications of our meth-
ods to the pre-reionization absorption feature, and 7) com-
plications in foreground mitigation that result from Faraday
rotation.

7.1. Resolution elements and foreground modes
In Sec. 3, the data were spectra of independent lines of

sight. There, the number of foreground modes removed (Nfg)
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compared to number of sightlines (Nθ) entered the errors as
∼ (Nfg − Nθ)

−1. The sense of Nθ is more complex in our
present case of an Nν × Npix Y data cube where the spatial
part of sky signal is convolved by an instrumental beam,.

Intuition suggests that the number of independent sight
lines is approximately the number of beam spots on the sky,
but this is incorrect. If each spatial slice of a noiseless full-
sky map is written in terms of its spherical harmonics T�m,
convolution by the beam is multiplication by B�. Unless the
beam falls to zero somewhere, this operation is invertible and

so does not modify the rank of Σ̂. The rank of Y is Nfg so
long as Npix > Nfg and Nν > Nfg. Hence, all the spec-
tral modes can still be recovered from the noiseless beam-
convolved map.

With wider beams, higher eigenvalue spectral eigenmodes
(typically the less smooth modes) are washed out by the beam.
These modes do not disappear entirely, but their amplitude di-
minishes. We can develop a rough rule for this effect by find-
ing the eigenvalue spectrum of full-rank white noise that is
convolved by a given beam size. A fitting form for the sup-
pression of eigenvalues (normalized to give no suppression

for infinitely fine beams) is bn ≈ 10−(θFWHM/300◦)2f−1
skyn, as a

function of eigenvalue n and full-width at half-max (FWHM)
of the beam.

At first sight, it would appear that a more rapidly falling
eigenvalue spectrum is beneficial because it means that the
foregrounds are better described by fewer covariance modes.
When the suppression occurs because of beam convolution,
however, it can be problematic in the presence of instrumental
noise. With instrumental noise, the information about a mode
may be suppressed below the noise floor. That foreground can
therefore no longer be cleanly detected and removed, and may
contaminate the signal and lead to larger errors. Such detec-
tion and removal is potentially crucial, since higher eigenval-
ues can still greatly exceed the signal (even after beam sup-
pression) because of the hierarchy of scales.

We therefore come to the conclusion that even if angular
resolution does not impose a hard limit on the number of fore-
ground modes that may be discovered (as suggested in the
case of independent sight lines), it does put a practical limit
on the efficacy of the cleaning. Note that the eigenvalues of
Σ = Σfg+Σinst will be different than Σfg. Adding noise has
the effect of mixing the high-variance foreground modes with
the thermal noise modes, making it harder to cleanly separate
foregrounds.

A rule of thumb for finding the number of modes dis-
coverable before they are confused by noise is to plot the
eigenvalue spectrum of noiseless foregrounds and the ther-
mal noise, then find where they intersect. Modes some mar-
gin above this point will still be well-measured. Consider a
normalized eigenvalue spectrum of foregrounds that follows
λn ≈ bn · 10−an (Liu & Tegmark 2012). The eigenvalues of
thermal noise are relatively flat in n in comparison. Finding
the intersection with the noise level, the number of foreground
modes that can be learned in the data is

Nfg ∼ log(FNR)

[(
θFWHM

300◦

)2

f−1
sky + a

]−1

, (52)

where FNR is the foreground-to-noise ratio (in map variance).
In our simple models here, a may be a factor of a few, for only
a few modes in total. In this idealized setting, the rather le-
nient scale of 300◦ in our fitting form for bn means that an
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Figure 9. Error of the recovered cosmological template amplitude as a func-
tion of calibration stability and instrumental resolution, where the fiducial
amplitude is α = 1. The thermal noise is set so that in the limit of no cal-
ibration or beam effects, the amplitude can be constrained to 5σ. Here we
consider foregrounds with four intrinsic spectral degrees of freedom. The

constraint degrades for FWHM above ∼ 50◦ and 10−4 stability in passband
calibration. At low resolution, the modes can not be discovered. Calibration
stability worse than the thermal noise produces many more modes that must
be constrained and removed. The Monte Carlo estimates in the upper right
become very noisy and we saturate the color scale.

instrument could cover the full sky at poor resolution and still
discover all the foreground modes. In reality, instrumental
effects will drive a higher number of required modes. For ex-
ample, Switzer et al. (2013) had to remove tens of modes to
clean foregrounds even though only approximately four in-
trinsic synchrotron modes were expected.

An advantageous factor here is that the sky signal is con-
volved by the beam while instrumental thermal noise is not.
Hence, thermal noise can be estimated within the data using
Npix independent samples. In an ideal experiment, all of the
foreground modes can be discovered and subtracted in F so
that only thermal noise remains. Then errors could then be
assessed from the map’s thermal noise, and signal loss could

be corrected against the subtracted modes as xT (1−FF T )x.
It is generally beneficial to cover larger areas with finer res-

olution to better constrain and discover foreground modes.
Higher resolution also helps focus de-weighting of particu-
lar contaminated sky regions. An important exception to this
occurs when the number of foreground modes scales with
the FWHM or sky fraction. Both Faraday rotation and pass-
band instability will generally increase the number of modes
needed for studies on larger areas with smaller beams. Each
new beam that is observed could see a new rotation measure,
or be observed with a different passband.

7.2. Summarizing the effects of passband stability and
angular resolution

Fig. 9 summarizes two of the main points of our paper.
Here, we use the galaxy model described in Sec. 2 to perform
a Monte Carlo simulation for the errors on α as a function of
calibration stability and instrument resolution. Fig. 10 shows
the four largest modes of this extended GSM model. All fur-
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Figure 10. Spectral eigenmodes of the foreground model described in Sec. 2.

The second, third, and fourth modes are 3× 10−4, 8× 10−7 and 6× 10−8

down from the first mode (in variance), respectively.

ther modes of the model itself (without noise) are negligible,
at the level of machine precision. Note that in contrast to the
simple pedagogical models in Sec. 3 (with three modes), the
full data cube simulation is more representative of the syn-
chrotron sky.

The sense of the passband calibration stability in our Monte
Carlo is pixel-to-pixel (e.g., not beam convolved), so is not af-
fected by the beam convolution operation. We set the thermal
noise level to produce a 5σ detection of α in the absence of
beam and calibration effects. For beams that are too large,
not all foreground modes can be recovered and subtracted.
In the simulations here with four modes, the constraint on α
worsens gradually as the FWHM exceeds ∼ 50◦. For calibra-
tion stabilities worse than ∼ 10−4, each line of sight responds
differently to bright foregrounds, so requires a new spectral
function to remove. As soon as these passband calibration
perturbations exceed the noise floor, they rapidly degrade the
constraint.

Decreasing the thermal noise through longer integration
times loosens the beam resolution requirement (because fore-
ground modes are better measured). It does not modify the
passband stability requirement. Passband stability is driven
by the separation in scales between the foregrounds and cos-
mological signal, and the fact that each line of sight has a
different response to the foregrounds. Even if the modes are
well-measured relative to thermal noise, they quickly over-
whelm the signal.

Throughout, we have assumed that the angular resolution
at all frequencies is constant. This is difficult to arrange ex-
perimentally. More typically, FWHM ∝ λ by diffraction.
In the frequency range considered here, a diffraction-limited
FWHM would change by a factor of 2.5. Variation of the
beam will mix spatial structure into frequency structure as
different beams at each frequency see different angular con-
tamination patterns (Morales et al. 2012). Implicitly, we have
assumed that the beam is known well enough to convolve all
the frequency slices to a common resolution. In contrast, if no
correction is performed, the simulations described in Sec. 2
with four modes will proliferate into 11 modes. These new
spectral modes describe the spatial structure that is mixed in
to the spectral direction. The frequency-dependent beam must
therefore be corrected to achieve efficient cleaning. Errors in
the beam model executing this correction then translate into
new spectral contamination modes.

The tolerance of beam models is experiment-dependent and
is beyond the scope of the present work, but must be care-
fully considered. We emphasize that frequency-dependent
beam effects impact any global 21 cm experiment, whether

they choose to take advantage of angular information or not.
The new spectral mixing modes reflect a best effort of our
algorithm to describe new spectral covariance that must be
cleaned to reach the 21 cm monopole. Careful experimental
design and measurement of the beam will control these co-
variance modes (which remain inaccessible in a single-beam
measurement).

Here we have limited the intrinsic foreground rank to four.
In reality, it may be discovered that foregrounds on the sky
have higher rank, pushing the resolution constraint. Also,
we assume a full sky here—an experiment covering a smaller

fraction of the sky would need f−1
sky more resolution in our

simple approximations here.

7.3. Challenges in error estimation
In the absence of prior information, monopole contamina-

tion is indistinguishable from the signal. This contamina-
tion may arise from a synchrotron monopole, or from ad-
ditive Trx(ν) of the receiver that is temporally constant but
has some spectral structure. The foreground modes are esti-

mated from the (ν, ν′) sample covariance Σ̂ of the map with
the mean spectrum removed. The modes in F represent the
frequency components of the spatially fluctuating part of the

foregrounds, and the operation 1 − FF T is uninformed by a
monopole signal.

The monopole foregrounds may have significant overlap
with the spectral functions of the spatially fluctuating fore-
grounds. In our simulations here, the foregrounds are ran-
domly drawn from a fixed set of spectral modes. For example,
if there is spatially-varying synchrotron with a spectral index
of −2, that synchrotron emission will also be subtracted from

the monopole by 1− FF T .
In reality, we cannot rule out the possibility of a foreground

monopole that remains even after cleaning the spatially-
varying synchrotron modes. Further, the spectral pattern
of constant instrument Trx(ν) will never be discoverable by
mapping across the sky, and could be confused with the global
signal. These present serious challenges for rigorous error es-
timation.

Performing the angular operations on the right of Eq. (46)
first, the noise terms of α̂ can be isolated as

α̂ = α|true + xT (1− FF T )

xT (1− FF T )x
(nfg + ninst) (53)

where nfg and ninst are the foregrounds and thermal noise of
the monopole through Y w. We lump the constant Trx(ν) in
with nfg rather than introducing a new term.

While the thermal noise contribution ∝ xT (1−FF T )ninst

has a well-defined distribution and can easily be included

in the errors, xT (1 − FF T )nfg is much more challenging.

If xT (1 − FF T )nfg were always positive, then α̂ could
be interpreted as an upper bound. This practice is com-
mon in treating foregrounds to the power spectrum because
their contribution is always positive in the quadratic quantity
(Switzer et al. 2013; Parsons et al. 2013; Dillon et al. 2014;
Paciga et al. 2013). Here, we have no guarantee that the resid-
ual foreground monopole dotted into the signal is positive.
Recall that even though synchrotron may be a strong power
law, the residuals here will largely represent unknown instru-
mental factors that could dot with arbitrary sign with the sig-
nal template. It has long been known that higher-order poly-
nomials lead to better subtractions. This suggests that resid-
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uals will generally produce two-sided errors. Further, any
monopole residual foregrounds are likely to be non-Gaussian,
inheriting from non-Gaussianity of the bright foregrounds.

These “monopole” foregrounds do not strictly need to be a
monopole on the sky—they only have to be constant over the
area of the survey, if that only covers part of the sky. This
again bolsters the argument that global 21 cm experiments
should observe as much of the sky as possible with modest
resolution to maximize their sensitivity to spatial variations
that could lead to significantly cleaner signal recovery.

Barring any prior information about the foregrounds or in-
strumental response, the best ways to immunize the analysis
against this response are 1) to document that the spectral cube

cleaned with (1− FF T ) is consistent with Gaussian thermal
noise, 2) to cover a large area of the sky with modest reso-
lution to capture additional spatial variation of foregrounds.
Additional information about spectral smoothness and in-
strument response can be used (Bowman & Rogers 2010;
Voytek et al. 2014) to further clean the spectral monopole.
Quoted errors would be based only on thermal noise, and
boosted to account for signal lost in the cleaning process,
Eq. (30). Another possibility would be to conduct e.g. sur-
veys of the North and South Celestial Poles with different re-
ceiver architectures. If these were performed independently
and had the same result up to thermal errors, it could lend
some confidence that the any residual monopoles in the re-
spective surveys are small compared to noise.

7.4. Determining the number of modes to remove
Fig. 11 shows the fractional rms of the cosmological reion-

ization signal remaining after removing the four foreground
modes of the extended GSM (Sec. 2), shown in Fig. 10. We

use the operation (1−FF T ) described previously. The fore-
ground spectral functions overlap strongly with the signal, es-
pecially for slower, spectrally smoother reionization histories
(high Δz in the plot). Nulling four foregrounds causes sig-
nificant signal loss over a range of reionization models. Any
instrumental response that increases the rank of these fore-
grounds will result in additional signal loss from the new
modes it introduces.

In the case of these simulations, we know the precise num-
ber of spectral degrees of freedom. In experimental practice,
the number of contaminated modes can not be determined di-
rectly. This can be made especially ambiguous by an eigen-
value spectrum that drops slowly rather than reaching a clear
noise floor.

A central challenge of any global 21 cm signal estimator
is the determination of the number of modes to remove (Rao
1967; Kollo & von Rosen 2005). In similar methods applied
to the 21 cm autopower (Switzer et al. 2013), an advantage
is that the bias from foregrounds is purely additive. In this
case, an experiment can report the constraint with errors as a
function of modes removed. This will generically fall as more
contaminated modes are removed. This decline will level out
if the foreground have been discovered. As further modes are
removed, the errors will increase due to cosmological signal
loss, which is self-consistently included in our formalism. A
reasonable prescription for a bound is to find the number of
modes which gives the most stringent upper bound.

In the global spectrum case, foreground residuals after N
spectral modes are removed can have either sign in the dot
product with the signal template. This two-sided bias should
stabilize as most of the foreground modes are discovered. For
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Figure 11. Fraction of the root-mean-squared of the reionization signal re-
maining after the first four foreground modes are removed. The signal is
given by Eq. (3) for a simple reionization scenario with central redshift zr
and width Δz. The first mode is a power law (see Fig. 10) and most of the
signal remains for these reionization scenarios. The other three modes carry
more redshift information, and tend to express signal variations at high red-
shift better. In all cases, as the signal becomes smoother (Δz increasing) it
becomes harder to differentiate from the foreground modes.

more modes removed, the errors will grow, but the central
value should remain stable if most of the foreground covari-
ance is described and removed. The summary of a global
21 cm experiment results should include plots of the spec-
tral modes removed and characterization of the constraint as
a function of modes removed.

Both this issue and the residual monopole in Sec. 7.3 cannot
be addressed rigorously. An irreducible challenge of global
21 cm measurement is determining whether any foreground
bias remains. The methods here provide excellent prospects
for cleaning the data and guiding an experiment, but do not
solve these central issues.

7.5. Extending the spectral template
We have discussed constraints on the amplitude of a cosmo-

logical 21 cm signal template that is known in advance. The
primary goal of the current generation of instrument is dis-
covery of this amplitude. Subsequent experiments will then
constrain the spectrum itself. The methods developed here
can also be applied to that case.

There is a continuum of models between the template esti-
mate here and a full spectrum. One possibility would be to use
prior information about the redshift of reionization and esti-
mate two amplitudes, α(z < zr) and α(z > zr) then examine
the significance of a step feature. Another option would be
to constrain a fixed number of spectral spline amplitudes. In
the limit that each frequency bin has a different amplitude, the
methods developed here can find the component of that signal
orthogonal to the identified foreground modes.
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Figure 12. The same as Fig. 12, except that we now consider a pre-
reionization absorption feature parameterized by a Gaussian. The duration
is given as the σ-width of the Gaussian. Note that significantly more signal
remains.

The decision between models must juggle 1) use of prior
information, 2) discriminatory power, 3) insight about the tra-
jectory of the global 21 cm signal. This model selection prob-
lem is deferred to future work.

7.6. Application to pre-reionization absorption
Throughout the paper, we have considered the global 21 cm

signal from reionization. This choice was primarily pedagog-
ical, to have a simple step around which the foregrounds are
subtracted. The maximum contrast of this feature is ∼ 30mK,
and for even modest Δz, it becomes smooth and more easily
subtracted by the foreground modes. In contrast, in the period
prior to reionization, the 21 cm is thought to go into absorp-
tion at ∼ 100mK (Pritchard & Loeb 2010). Here, the spin
temperature is strongly radiatively coupled to the cold gas.
However, while synchrotron radiation contaminating z ∼ 10
21 cm radiation around the time of reionization is ∼ 500 K
(averaged across the sky), the contamination of an absorption
signature at z ∼ 20 is ∼ 3000 K.

While the synchrotron emission from higher redshift 21 cm
emission may be greater, the absorption signature has the ad-
ditional feature that it is two-sided, both falling and rising.
This generally makes foreground modes less parallel to the

signal and leads to less signal loss. For our purposes here,
we can again develop a simple model where Tb is a Gaus-
sian function parameterized by a central redshift and width
σz . Fig. 12 is analogous to Fig. 11 except that it considers
this era. Generally much more cosmological signal remains
orthogonal to the foreground modes.

7.7. Susceptibility to Faraday rotation
In addition to the Stokes-I component of the foregrounds,

synchrotron emission is also polarized. The polarized emis-
sion is subject to Faraday rotation as it traverses various col-
umn densities of free electrons in magnetic fields. If a re-
ceiver were designed to be purely sensitive to Stokes-I, then
this spectral fluctuation could be ignored. Generally though,
a receiver will have some level of response to polarized sig-
nals, and Faraday rotation produces a signal which oscillates
in frequency. The rotation angle is (RM)·λ2, where RM is the
rotation measure. Even for modest RM, the rotation angle can
vary rapidly over our band. This is especially problematic for
the global 21 cm signal because the rotation measure varies
over the sky, increasing the number of contaminated modes in
the data.

Extragalactic sources are subject to Faraday rotation
through the screen of the entire Milky Way. This has been
measured recently by Oppermann et al. (2012, 2014), and is
shown in Fig. 13. Each point source will generally have
a different rotation measure and require a new degree of
freedom to describe. Bernardi et al. (2013) has conducted
deep, wide-field observations of polarization of galactic syn-
chrotron emission at 189MHz. They find only one source out
of 70 with S > 4 Jy with polarization at the level of 1.8%
in 2400 deg2, with all others falling below 2% polarization
fraction.

Polarization and Faraday rotation of galactic synchrotron
emission is more complex because synchrotron emission is
interspersed with the Faraday screen. Bernardi et al. (2013)
find peak polarized emission at ∼ 13 K and rotation measures
mostly below 10 radm−2. The low rotation measures and
polarization fraction are thought to be due to a depolarization
horizon (Landecker et al. 2010; Uyaniker et al. 2003) within
the galaxy, a distance beyond which most of the emission is
depolarized along the line of sight.

The global 21 cm experiments to-date have been single-
element, making it difficult to make a precise comparison
with interferometric galaxy polarization surveys conducted
at similar frequencies (Pen et al. 2009; Bernardi et al. 2013).
Vinyaikin et al. (1996) measured 3.5 ± 1.0 K at 88MHz
(24◦ FWHM, phased array) and 2.15 ± 0.25 K at 200MHz

(8◦ FWHM, single-dish) for the value of
√
Q2 + U2 toward

the North Celestial Pole.
To assess the galactic polarization field, we use the model of

Waelkens et al. (2009), which self-consistently simulates the
polarized emission and rotation measure. Fig. 13 shows the
eigenvalue spectrum of the Stokes-Q spectral modes. Unlike
Stokes-I, polarization is spectrally much more complex, and
its covariance is spread among many modes. Ideally, all of
these modes would be suppressed well below the noise level
of the experiment so they do not need to be estimated and sub-
tracted. Based on the measured amplitudes of the polarized
signals above, suppose that polarization is 10−3 of intensity.
To achieve a 105 suppression, the polarization leakage must
be kept below 1%.
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Figure 13. Top: Galactic rotation measure map of Oppermann et al. (2014),

in units of radm−2, with color range truncated at ±100 radm−2 to show
more structure out of the plane. Bottom: The eigenvalue spectrum of Stokes
Q emission in the galactic model of Waelkens et al. (2009), normalized to 1.
This component falls off very slowly because the rotation measure introduces
many degrees of freedom that vary across the sky.

8. CONCLUSION

Measurements of the global 21 cm signal are very chal-
lenging due to 1) astrophysical foregrounds and their interac-
tion with instrumental systematics, 2) terrestrial radio interfer-
ence, and 3) the ionosphere. Here we have examined the first
issue, especially in regard to instrumental response. Follow-
ing z ∼ 1 21 cm literature (Switzer et al. 2013; Masui et al.
2013; Chang et al. 2010), we develop a new method where
foregrounds can be jointly estimated with the monopole spec-
trum. This relies on the fact that foregrounds vary across the
sky, while the cosmological signal is constant. This idea also
extends L13, who argue that surveys with moderate angular

resolution covering much of the sky are able to better discrim-
inate between the monopole 21 cm signal and foregrounds.

The key observation arising from our cleaning method is
that the instrument should be designed to minimize the gen-
eration of new spectral degrees of freedom from the fore-
grounds. For example, if each line of sight has a slightly
different passband calibration, it also requires a new spectral
degree of freedom to describe the foregrounds there. In this
sense, the instrument “spreads out” the variance over modes
that ultimately require more aggressive cleaning and signal
loss. In contrast, a constant passband calibration error does
not increase the rank of the foreground spectral covariance,
and its effect is primarily aesthetic. This is fortuitous because
obtaining a smooth spectral calibration of an instrument at
these frequencies would require very large, expensive struc-
tures that are black in radio wavelengths. Simply requiring
that galactic foregrounds be smooth to a few percent provides
a sufficient passband calibration for signal recovery. In con-
trast, significant effort must be put into maintaining passband
stability to at least ∼ 10−4. This may require using much of
the instrument’s sensitivity to integrate against a stable refer-
ence.

Polarization to intensity leakage is another example of an
instrumental systematic that increases the rank of the fore-
ground covariance. It allows spectral oscillations in the
Faraday-rotating polarization signal to contaminate the spec-
tral intensity measurement. Because of depolarization, sky
polarization is only a fraction of the intensity, and our esti-
mates of the instrumental constraints are more lax, < 10−2.

In attempting to measure the global 21 cm signal, one is
faced with bright contaminating foregrounds that can inter-
act with instrumental systematics in non-trivial ways, over-
whelming the cosmological signal that one seeks to measure.
In this paper, we have developed methods that bear simi-
larities to various previously-proposed intuitive data analysis
techniques. However, our methods arise from a rigorous, self-
consistent framework that allows unknown and unanticipated
foreground properties to be derived from real data. Such a
framework also provides guidance for instrument design. If
design requirements can be adequately met, high-significance
measurements of the global 21 cm signal will be possible, pro-
viding direct access to the rich and complex astrophysics of
the first luminous objects and reionization.
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APPENDIX

A. RELATION BETWEEN COVARIANCE ADJUSTMENT AND THE MAXIMUM-LIKELIHOOD LINEAR
ESTIMATOR

In Sec. 3.2, we claim that the estimator m = (XTΣ−1X)−1XTΣ−1x is equivalent to the projection operation, m =

(XTX)−1XT (1−Π)y where Π = ΣZ(ZTΣZ)−1ZT . The two essential conditions here are that XTZ = 0 (that the signal

and non-signal vectors are orthogonal) and that the vectors in X and Z together span the space. The operations XT and ZT can
be understood as projecting onto the signal basis and the everything-but-signal basis, respectively. This proof follows Lemma 2b
of Rao (1967). Writing out the terms, we would like to prove

(XTΣ−1X)−1XTΣ−1 = (XTX)−1XT − (XTX)−1XTΣZ(ZTΣZ)−1ZT . (A1)
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Multiplying on the right by X is trivially true because ZTX = 0 and the other terms are the identity matrix. This checks just
the X subspace of the equality. To prove general equality we need to check the Z subspace. Multiply on the right by Z and from

the left by XTΣ−1X (which will allow simplification)

XTΣ−1Z = −(XTΣ−1X)(XTX)−1XTΣZ(ZTΣZ)−1ZTZ (A2)

XTΣ−1Z = −(XTΣ−1X)(XTX)−1XTΣZ[(ZTZ)−1(ZTΣZ)]−1 (A3)

XTΣ−1Z[(ZTZ)−1(ZTΣZ)] = −(XTΣ−1X)(XTX)−1XTΣZ (A4)

XTΣ−1[Z(ZTZ)−1ZT +X(XTX)−1XT ]ΣZ = 0. (A5)

Because X and Z span the space, Z(ZTZ)−1ZT +X(XTX)−1XT = 1, then noting that XTZ = 0 proves the identity. In

many of the methods in the paper, the projection Π is reduced to (1 − FF T ), completely projecting out a set of modes. The
modes in F clearly cannot span the space. Further, we let the modes F overlap with the signal. These choices make the estimator
less formally optimal, but more robust to very bright, non-Gaussian foregrounds.

B. EXTENDING THE MONOPOLE CONSTRAINT: THE GROWTH MODEL

The separable model for the monopole can be extended to a more general spatial-spectral template scheme. Rather than a
simple signal model αxeT0 , the mean of the observed data can be described by the outer products spectral modes ui and spatial
modes vi (not necessarily mutually orthogonal). In terms of the Nν ×Npix data cube Y ,

Y = UXV T =
∑
i,j

xijuiv
T
j . (B1)

This extended model could represent spatial and spectral templates of galactic emission in addition to the monopole signal. The
noise terms in the model would then describe any residuals with respect to this model, written as

Y = UXV T +Σ1/2EΦ1/2 (B2)

This separable estimation problem is considered in detail by Kollo & von Rosen (2005). (To reach their notation, right multiply

by Φ−1/2.) Form the weighted (ν, ν′) sample covariance with the spatial components of the signal projected out, as

S = Y Φ−1(1− V W V )Y T (B3)

where WV = (V TΦ−1V )−1V TΦ−1 is the standard maximum-likelihood estimator for the amplitudes of the spatial vectors in
V . The maximum likelihood estimator for X and full-rank spectral foregrounds S is

X̂ = (UTS−1U)−1UTS−1Y W T
V . (B4)

Kollo & von Rosen (2005) describe extensions of this more general estimation problem to finite rank S.
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