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Abstract 

This analysis defines an analytic model for the pitching motion of blunt bodies during atmospheric entry. 

The proposed model is independent of the pitch damping sum coefficient present in the standard formulation 

of the equations of motion describing pitch oscillations of a decelerating blunt body, instead using the 

principle of a time-lagged aftbody moment as the forcing function for oscillation divergence. Four 

parameters, all with intuitive physical relevance, are introduced to fully define the aftbody moment and the 

associated time delay. It is shown that the dynamic oscillation responses typical to blunt bodies can be 

produced using hysteresis of the aftbody moment in place of the pitch damping coefficient. The approach 

used in this investigation is shown to be useful in understanding the governing physical mechanisms for blunt 

body dynamic stability and in guiding vehicle and mission design requirements. A validation case study using 

simulated ballistic range test data is conducted. From this, parameter identification is carried out through the 

use of a least squares optimizing routine. Results show good agreement with the limited existing literature for 

the parameters identified, suggesting that the model proposed could be validated by an experimental ballistic 

range test series. The trajectories produced by the identified parameters were found to match closely those 
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from the MER ballistic range tests for a wide array of initial conditions and can be identified with a 

reasonable number of ballistic range shots and computational effort.  

Nomenclature 

A  = Euler-Cauchy angle of attack coefficient 
CA  = axial force coefficient 
CD  = drag coefficient 
CL  = lift coefficient 
Cm  = pitching moment coefficient 

  = aerodynamic pitching-moment slope coefficient 

 = aerodynamic pitch-damping sum 
  = aerodynamic pitch-damping coefficient 

  = effective pitch damping  
d  = aerodynamic reference diameter 
g  = acceleration due to gravity 
h  = altitude 
Iyy = pitch axis mass moment of inertia 
� � = characteristic length 

m  = mass 
M  = Mach number 
Rp  = planet radius 
S  = cross sectional area 
t  = time 
tlag  = lag time 
t -  = time referenced by aftbody, t - = t-tlag 
V  = vehicle velocity 
� � = characteristic velocity�

W = work over one oscillation cycle 
Greek 
� = angle of attack 
� = parameter of aftbody moment Mach number dependence 
� = flight-path angle 
� = phase shift constant 
� = residual 
�� � = pitch angle 
� =  Euler-Cauchy oscillation growth exponent 
� = Euler-Cauchy frequency coefficient 
�  = atmospheric density 
�  = lag time factor 
Subscripts 
eq  = equivalent�
�  = freestream 
0  = initial quantity 
Superscripts 
AB  = aftbody contribution 
FB  = forebody contribution  
*  = reference value for aftbody moment curve�
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� �

I. Introduction 

TMOSPHERIC entry is a critical phase for missions which seek to return astronauts or scientific payloads back 

to Earth or explore the surface of a body with an appreciable atmosphere. As a blunt vehicle enters a planetary 

atmosphere, the aerodynamic moments acting upon it can result in unstable pitching motions and divergence of 

oscillation amplitude. These instabilities typically arise just prior to maximum dynamic pressure and peak in the low 

or mid supersonic regime of the trajectory just prior to parachute deployment [1]. Characterizing the dynamic 

stability performance of an entry configuration is an area of research that has been plagued with experimental 

difficulties, contradictory observations, and large uncertainties [2]. Accompanying uncertainties in the expected 

dynamic response is a general lack of understanding regarding the flow physics that govern this complex 

phenomenon.  As the paradigm for aerodynamic decelerators shifts from the rigid aeroshells used over the past half-

century to more unfamiliar configurations such as inflatable decelerators which are being developed for utilization 

on future missions seeking to improve landed mass capability, there is added importance to understanding the 

mechanism by which dynamic instabilities arise and finding a means to rapidly and reliably quantify them.  

 Throughout the experimental history of dynamic stability investigations, it has been observed that the pitching 

moment often tends to exhibit a dependence on the direction of the pitching motion [3]-[6]. This type of hysteresis 

has been attributed to a phase lag between the aftbody and forebody pressure fields (and therefore pitching moment 

contributions).  In the past decade, work has been conducted to investigate the possible means by which flow 

structures surrounding the blunt body can manifest into unsteady aftbody moments and, subsequently, oscillation 

divergence. Studies by Teramoto et al, [4] Abe et al, [5] and Schoenenberger [7] have shed light on and given 

credibility to this theory.  

 In order to further investigate the possible implications of a hysteresis effect on the aftbody contribution to the 

pitching moment and subsequent oscillation behavior, this study develops a governing model of the pitch dynamics 

through implementation of a time-lagged of the aftbody pitching moment. After developing this model, a parametric 

sweep is conducted on the variables relating to the time delay, amplitude, angle of attack dependence, and Mach 

number dependence of the aftbody pitching moment to identify values for these that parameters result in favorable 
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damping or cause oscillation divergence. These findings are then related to an equivalent pitch damping sum for 

comparison with the current formulation of the problem. The model is then used to reconstruct simulated ballistic 

range data and coupled with parameter estimation techniques, thereby demonstrating that combinations of the 

parameters governing the time-lagged pitching moment behavior can reproduce observed pitching behaviors without 

use of the pitch damping sum.  

 The possibility of finding a set of governing principles regarding the dynamic stability of blunt bodies that is not 

reliant on the pitch damping sum also leads to questions regarding the physical relevance of the coefficients which 

produce the pitch damping effect. If an equivalent response can be attained by using the formulation postulated here, 

perhaps the notion of the pitch damping sum is unnecessary and has served as a placeholder for the hysteresis in the 

aftbody pitching moment. 

 Although the standard description of pitch dynamics for entry vehicles does an adequate job of modeling a blunt 

body system, no reliable computational techniques exist to predict the key parameter for this model (the pitch 

damping sum) and the experimental methods for identifying this parameter are complex, expensive, and carry large 

uncertainties. Furthermore, the physical significance of the pitch damping sum is convoluted and non-intuitive.  By 

developing a model which is independent of the pitch damping sum and instead relies on quantities which are both 

easier to measure or calculate computationally and have physical significance, the potential benefits of the model 

identified in this study are far-reaching for entry vehicle dynamics.  As such, this work represents a first step 

towards development of an improved understanding of the governing physics of dynamic instability, and provides a 

more efficient and intuitive means of characterizing the dynamic behavior of entry vehicles.  

II. Pitching Moment Hysteresis of a Blunt Body 

Experimental observations citing the importance of unsteady 

aftbody pressure fields on the pitch dynamics of blunt bodies are 

the driving motivation behind this work. As a body is pitching 

during its deceleration through the atmosphere, pressure changes 

on the forebody result in changes in the pitching moment 

contribution from the forebody. Similarly, the aftbody pressure 

field changes in time as the attitude of the vehicle changes. 

Fig. 1  Proposed sequence of events as the 
mechanism governing dynamic stability.[4] 
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However, changes in the aftbody pressure field, and thus the pitching moment contribution of the aftbody, are 

delayed by some finite time relative to the forebody. This time lagged response of the aftbody pressure field has 

been observed both experimentally and numerically [4], [6].  

The duration of the delay is dependent on the physical mechanism by which pressure information in the flow is 

transmitted to the aftbody. One possible means by which this transmission occurs was proposed by Teramoto et al in 

a study where they tracked the position of the recompression shockwave and its time delay relative to the pitching 

motions [4]. It was determined that the base pressure fluctuations within the recirculation region were associated 

with the behavior of the recompression shockwave. Wang et al suggested a similar connection between the 

oscillation of a body and the motion of the rear stagnation point [8]. The behavior of the recompression shockwave 

seemed to be dictated by the behavior of the wake downstream following the convection of disturbances due to pitch 

oscillations.  

 The mechanism proposed by Teramoto et al is depicted in Fig. 1 and can be broken down into four steps: 

propagation of upstream disturbances due to pitching motions, modification of the wake downstream, motion of the 

recompression shock, and changes in the flow structure and base pressure within the recirculation region [4]. Each 

of the steps within this sequence has some finite time delay associated with it due to finite convection speeds within 

the flow. Combined, these time delays are responsible for the time lag seen in the base pressure and result in the 

observed hysteresis in the pitching moment. Computational pressure calculations from the work of Teramoto et al 

show the time delay of the aftbody pressure relative to changes in angle of attack and forebody pressure as well as 

the resulting pitching moment hysteresis of the Muses-C (Hayabusa) capsule (Fig. 2) [4]. 

 

Fig. 2  Pressure variation with pitching motion (left, adapted) and corresponding hysteresis in pitching 
moment (right).[4] 



 
American Institute of Aeronautics and Astronautics 

6 
 

 
Teramoto’s results show that the front pressure adjusts almost instantaneously as the angle of attack oscillates, 

however, oscillations in the pressure field on the back of the vehicle lag by approximately 2 ms. The corresponding 

hysteresis loop in the pitching moment results in a net input of work to the system over each oscillation cycle and 

this influx of energy may be responsible for dynamic instabilities [3], [5] :  

 
 

(1)   

 

III. Methodology 

A. Standard Formulation of the Equations of Motion 

 The equations of motion that govern atmospheric entry trajectory of a blunt body are discussed thoroughly in the 

literature. Derivations of the equations typically assume planar motion and aerodynamic derivatives which are 

independent of Mach number and vary linearly with angle of attack [9]-[13]. These simplified equations of motion 

neglect rotational and gravitational effects and are only valid for low L/D vehicles flying at small angles of attack (� 

< 30o) [9]. The governing equations for the altitude, velocity, flight path angle, and pitch angle are given below: 

 
 

(2)   

 
  

(3)  

 
 

(4)  

 
 

(5)  

 
 Applying a few additional simplifying assumptions to Eq. 5, a closed form second order differential equation 

describing the time dependent behavior of the angle of attack oscillations can be attained [9] : 

 
 

(6)  

Eq. 6 represents the traditional formulation of the dynamic pitching motion and will serve as the baseline description 

to which the results in this study will be compared. When all of the parameters for this standard formulation of the 

pitch dynamics are known, it does an excellent job of predicting the resulting dynamics of a vehicle. However, the 
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pitch damping sum  is difficult to quantify and non-intuitive in nature. The resulting uncertainty in 

the pitch damping sum is detrimental to vehicle and mission design, as it is responsible for the growth rate of the 

pitch oscillations. The time-lagged aftbody pitching moment model developed in the following section seeks to 

describe the dynamics with more intuitive and tangible parameters than the pitch damping sum, thus allowing for 

more accurate and efficient prediction of the pitch dynamics of a vehicle while providing some insight into the 

driving mechanisms behind dynamic stability of blunt entry vehicles.       

 

B. Time-Lagged Aftbody Pitching Moment Model 

1. Form of the Aftbody Pitching Moment Curve 

 To investigate the dynamic stability implications of an unsteady aftbody pitching moment experiencing 

hysteresis with respect to the pitching motion, a new model to describe the pitching moment of decelerating blunt 

bodies was developed. This model is applicable to simulating free-oscillation wind tunnel tests, ballistic range tests, 

and actual entry trajectories.  As in the studies of Abe et al [5] and Schoenenberger [7], the approach is based on 

separating the forebody and aftbody contributions to the total pitching moment of the body: 

  (7)  

 The total pitching moment coefficient can be obtained via experimental data, CFD tools, or approximated with 

Modified Newtownian impact methods and is typically linear with angle of attack. A negative slope of the total 

pitching moment coefficient versus angle of attack corresponds to a statically stable configuration which will 

generate restoring moments following a perturbation. As the contribution to the pitching moment from the aftbody is 

generated by the unsteady pressure field of the recirculation region beyond the shoulder of a blunt vehicle, it can be 

periodic both temporally and with respect to angle of attack [4], [6]. This behavior was noted in the investigations of 

he hysteresis effects on dynamic stability by Beam and Hedstrom [3]. Fig. 3 displays both experimental (extracted 

from rear pressure measurements) and computational data for the MUSES-C capsule from Abe [5], and 

computational data generated with the CFD tool LAURA for the MER and Viking configurations by 

Schoenenberger [7]. These data sets show the angle of attack dependence of the aftbody pitching moment. Key 

features of these curves are: zero moment contribution at an angle of attack of zero, a global peak in the pitching 

moment between 5-10o followed by a small local minimum, and a second smaller peak at a high angle of attack.  
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Sensitivity studies showed that the response of the vehicle was relatively insensitive to the amplitude and location of 

the second peak. Additionally, the angle of attack where the second peak is located approaches the limit where the 

small angle assumption inherent to equations of motion and the theory of the aftbody recirculation being the primary 

mechanism causing the aftbody moments begins to break down. Thus, the peak amplitude of the aftbody moment 

(ABCm
*) and the angle of attack corresponding to this peak (�*) were identified as the two key parameters by which 

the shape of the aftbody moment curve would be defined. In the proposed model, the location and amplitude of the 

second peak were held constant to reference values from the MER curve from Schonenberger [7] (equal to 1.25x10-3 

at M=2 and 20o, respectively). The local minimum was 

set to a value of 0.625 x 10-3 and occurred at an angle of 

attack equidistant from the value of �* and the location 

of the second peak, 20o. Finally, the model was 

restricted to be symmetric for negative and positive 

angles of attack about an angle of attack of zero.  

 Further, the MER data from Schonenberger shows a 

significant Mach number dependence with 

approximately the same angle of attack dependence [7]. 

This observation is consistent with literature which 

suggests that the pitching moment coefficient has a 

Fig. 3  Aftbody pitching moment vs. angle of attack from Abe[5] (left) and Schonenberger[7] (right) 

Fig. 4  Aftbody moment curve as defined by the three 
parameters: �*, ABCm

* , and 	
� 
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derivative with respect to velocity [14]. To account for the Mach number dependence, an additional parameter was 

introduced to fully define the aftbody moment contribution at all angles of attack and Mach numbers. This 

parameter (	) is a constant which scales the  at each angle of attack by the Mach number via a power law 

relation: 

  (8)  

 The parameter 	 incorporates the Mach number dependence of the pitching moment. Values less than one 

indicate that the amplitude of the pitching moment curve decreases with increasing Mach number. Similarly, if 	 is 

greater than one, the amplitude grows with increasing Mach number. A value of unity corresponds to an aftbody 

pitching moment curve which is independent of Mach number.  Using this definition of 	, the value of ABCm
* 

corresponds to a reference ABCm at a Mach number of zero. A representative set of the aftbody pitching moment data 

using this parameterization is shown in Fig. 4. 

2. Time Lag 

 Differentiating the forebody and aftbody pitching moment contributions with respect to angle of attack yields: 

 
 

(9)  

 
 

(10)  

 Notice in Eq. (10) that the forebody moment slope is not explicitly defined as a constant, but is set equal to the 

difference of the total pitching moment coefficient slope and the aftbody contribution to maintain a constant total 

pitching moment coefficient slope. With a pitching moment slope coefficient defined as a function of Mach number 

for a wide range of angles of attack, the equations of motion can be integrated from the initial flight conditions of 

the vehicle to some terminal state. An ordinary differential equation solver (such as ode45 in MATLAB) is 

insufficient for propagating this formulation of the equations of motion, as the pitch dynamics rely on not only the 

current state of the vehicle, but also some previous state at an earlier time (t - = t-tlag). Therefore, to implement the 

time lag of the aftbody response with respect to changes of the forebody pitching motion, a delay differential 

equation solver should be utilized (within MATLAB, ddesd). The value of tlag can be constant, or defined by some 

function which is problem and state dependent.  From Teramoto et al, it is clear that there exists some characteristic 
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parameters within the system that govern the resulting lag of the aftbody moment contribution.[4] For this study, the 

value of tlag was defined by the ratio of a characteristic length and a characteristic velocity multiplied by a lag time 

factor, �: 

 
 

(11)  

 This is akin to the reduced frequency parameter defined in many studies of dynamic stability [8],[15]-[17], but 

the value of � scales this parameter to account for a possible increase in the length scale or decrease in the 

characteristic velocity. The hysteresis of the pitching motion and the subsequent oscillation growth of the vehicle are 

dependent on the factor � and its influence is discussed in following sections. Historically, the characteristic length 

and time scales used to describe this phase lag and the dynamic behavior of a blunt body were the maximum 

diameter (or radius) of the vehicle and the freestream velocity [18]. Abe et al suggested that the characteristic length 

and velocity scales that govern the hysteresis effects are related to the flow in the wake region [5]. Specifically, Abe 

et al proposed that the characteristic length should be twice the maximum diameter of the vehicle and the 

characteristic velocity equal to half of the freestream value. Teramoto et al concluded from their study that the 

length scale was governed by the distance to the recompression shockwave (	 4d) and the characteristic velocity was 

the approximate convective velocity within the shear layer of the wake ( ) [4]. Large values of � indicate 

that the length scale which governs the lag time are larger than the diameter of the vehicle, the propagation velocity 

of the forebody pressure changes to the aftbody is less than the freestream velocity, or some combination of these 

two effects. For example, using Teramoto’s proposed characteristic length and velocity of 4d and , 

respectively, the lag time factor, � = 4/0.5 = 8.  

3. Governing Equations With The Time-Lagged Aftbody Pitching Moment 

 Using this time lag concept combined with separation of the contributions of the forebody and aftbody to the 

total pitching moment coefficient, a new formulation of the pitching dynamics is postulated: 

  (12)  

 
 
where: 

  (13)  
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and: 

 
 

(14)  

 This formulation is a function of the environmental conditions, the mass properties of the vehicle, the axial force 

coefficient, the forebody pitching moment slope at the current time step, and the aftbody moment at time t = t -. Note 

the absence of the pitch damping sum coefficient from this formulation. Instead, it is the time-shifted sampling of 

the angle of attack by the aftbody which creates a hysteresis in the pitching moment ( ) and pitching moment 

slope ( ) curves which govern pitch oscillation growth. At each time step within the ddesd integration of the 

equations of motion, an interpolation is done to determine the appropriate  for the current state of the 

vehicle, based on the state at t=t -. 

 Fig. 5 displays an example of the time history of the angle of attack of the vehicle as well as the shifted angle of 

attack sampled by the aftbody (due to the time lag). Notice that the lag time grows almost exactly linearly with time. 

Fig. 5  True and lagged responses of pitching motion for the associated lag time (left) and the resulting 
hysteresis in the total pitching moment coefficient versus angle of attack (right) 

Pitching Up 
Pitching Down 
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This is because the velocity drops approximately inversely proportional to time (i.e. V(t) � 1/t) and the time lag is 

proportional to the inverse of the velocity. Also plotted are both the static and lagged curves for the total pitching 

moment coefficient with respect to angle of attack. The static curve has a constant slope and a typical result of the 

total pitching moment slope throughout the trajectory from the baseline equations of motion would lie on this line 

due to the lack of the hysteresis effect. The lagged response exhibits both nonlinearities (due to the contribution of 

the non-linear aftbody moment coefficient) and significant hysteresis during each pitch cycle. As � increases, the 

area enclosed within the pitching moment coefficient curve due to hysteresis increases, causing increased energy 

addition to the pitching motion.  

 

IV. Results 

A. Dynamic Excitation Analysis 
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 With the model described in the previous section, the effect of the aftbody pitching moment and the hysteresis 

associated with it were investigated to examine the resulting oscillatory behavior for various combinations of the 

four governing parameters.  From this, insight is gained about which combinations excited or impeded the dynamic 

response relative to a baseline case having the same mass properties and static aerodynamic characteristics, but 

using the traditional pitch damping description of dynamic stability. These results can provide insight pertaining to 

the governing physics of dynamic stability, such as the flow structures (characteristic size and velocity of the flow) 

which are most closely coupled to observed dynamic behaviors.  Fig. 6 illustrates example cases with reduced and 

increased oscillation growth found using the model proposed in this study relative to the baseline dynamics. 

 The expected baseline response can be found numerically by propagating the baseline equations of motion and 

looking at either the maximum angle of attack reached during the trajectory or the growth rate of the oscillation 

peaks. The growth rate can also be predicted analytically for a given vehicle using the relation derived by 

Schonenberger as the solution to the Euler-Cauchy equation:[9] 

  (15)  

where: 

 
 

(16)  

The growth rate for the response generated by the time-lagged aftbody moment model for dynamic stability 

proposed in this study was found by fitting the observed peaks and their corresponding times with a power law: 

Fig. 6  Examples of reduced and increased oscillation divergence relative to a baseline trajectory 
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  (17)  

From this fit, an “equivalent effective Cmq response” was determined by rearranging Eq. 16 and using the value of 

the growth exponent determined by the fit, �fit : 

 
 

(18)  

This is the response generated by the time lagged aftbody pitching moment model which produces an equivalent 

oscillation growth rate as the standard pitch dynamics model with a given value of  .   

1. Case Study: Mars Exploration Rover Ballistic Range Model 

 For a vehicle with given static aerodynamics and mass 

properties, the four parameter design space for generating 

dynamic responses using the model proposed in this study can be 

explored. To visualize the space, one parameter is fixed at 

various discrete values for which the other three can be 

continuously varied to generate a 

response. These responses can be 

viewed in either 2D contour slices of 

the space or through isosurfaces. There 

are various approaches to choosing the 

fixed parameter, but the most efficient 

scenario is to isolate the one for which 

there is some predetermined 

knowledge. 

 The design space exploration 

process will be demonstrated through a 

case study for a simulated ballistic 

range test for which the initial Mach 

number is 3.0, the terminal Mach 

Table 1.  MER Case Study Properties 
Parameter Value 

M0 3.0 

Mf 2.0 

�0 3o 

Diameter, d .07  m 

Mass, m  .584  kg 

Iyy 1.55 x 10-4  kg-m2 

Note: from the two MER curves in Fig. 3, it can be 
determined that for MER: �* = 5o, ABCm* = 0.008, 
and � = 0.5 

Fig. 7  Selected contour slices (a-c) and isosurfaces (d, indicated by 
arrows on the colorbar) for the maximum angle of attack reached of 

the MER ballistic range model with �=8.0.  
*Note: MER values are indicated on figure a) with a star 

a) b) 

c) d) 
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number is 2.0, and the initial angle 

of attack is 3 degrees. The vehicle 

has the mass properties and static 

aerodynamic characteristics of the 

MER ballistic range model that 

was used by Schonenberger et al 

for the dynamic stability testing of 

the MER aeroshell design (see 

Table 1).[18]  

 The parameter which was 

discretized and fixed in this 

example case is the time lag factor, 

�. The time lag factor was set equal 

to 8.0, which is the value proposed 

by Teramoto et al.[4] Thus, by 

examining the rest of the design 

space, the validity of �=8.0 can be assessed by subjectively determining if realistic responses can be produced with 

values of the other three parameters. Fig. 7 and Fig. 8 show the dynamic response in terms of maximum angle of 

attack and equivalent effective pitch damping sum, respectively. Displayed in these figures are contour slices in all 

three of the remaining parameter dimensions as well as isosurfaces at four discrete values of the two respective 

response measures (indicated by the arrows on the colorbar). 

 There exists a vast amount of information in Fig. 7 and Fig. 8 which can be useful for understanding dynamic 

instability and guiding vehicle development. In general, it can be seen that oscillation divergence increases strongly 

with the magnitude of the reference peak amplitude of the aftbody moment coefficient (ABCm
*) and the Mach 

number dependence of the aftbody moment (	. Divergence also increases weakly with increasing angle of attack of 

peak aftbody moment, �*, with a maximum occurring between 6 o and 10o.  If one can find a means of controlling 

Fig. 8  Selected contour slices (a-c) and isosurfaces (d, indicated by 
arrows on the colorbar) for the equivalent pitch damping sum 

responses of the MER ballistic range model with �=8.0 
*Note: MER values are indicated on figure a) with a star 

a) b) 

c) d) 
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Fig. 9 Maximum angle of attack and equivalent Cmq 
responses of the MER ballistic range model with �=8.0 

and ABCm
* = 0.009. 

the amplitude of ABCm
*

 (say, for example, through 

geometry modifications to alter the flowfield) then an 

upper bound on the angle of attack divergence may be 

estimated, even without additional knowledge about �* 

or 	. 

Another key observation regarding the data in Fig. 7 

and Fig. 8 is that, within the three free parameters, 

there exists a three-dimensional surface of values of 

which can produce a given response. Taking into 

account the fact that a three-dimensional surface exists 

for each possible value of the isolated parameter (in this case,��), it is clear that the design space within this 

parameterization is multi-modal, having numerous non-unique solutions.  The process of isolating individual 

parameters can be carried out in parallel, based on the information at hand, or sequentially where the design space is 

reduced with knowledge about additional parameters. If knowledge about a second parameter can be estimated 

experimentally or computationally, the possible values that the remaining two parameters can take to produce a 

particular response are reduced to lie on a line.  This can be seen in Fig. 9 where the space is reduced to values of �* 

and 	 for a given reference peak amplitude (ABCm
*). The more that is known about the possible values that the 

parameters can take, the further the design space for the dynamic response can be reduced.  

 The ability to visualize and understand the design space can be used not only for parameter identification 

purposes, but also to bound the parameters for a given response requirement. For example, consider a parachute 

staging scenario for an entry vehicle where parachute deployment is triggered by a specified velocity condition 

which should occur somewhere between Mach 3 and 2, depending on the atmospheric conditions. For a given upper 

bound on the possible angle of attack just prior to Mach 3 and some additional information about the vehicle (say � 

and ABCm
*, as in the previous examples), the remaining design space can be used to inform aeroshell design. For 

example, if the maximum allowable angle of attack which can be tolerated between Mach 3 and 2 is restricted to 9o 

(denoted by the white band in the left contour plot of Fig. 9), one could refer to information such as that presented in 

Fig. 9 to learn about the allowable values of �* and 	, which may be connected to the aeroshell geometry and make 
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design choices appropriately. In this example, it can be seen that for these conditions the response is not strongly 

dependent on �* and�	 must be approximately < 0.75 for all �* > 3o for the maximum angle of attack to not exceed 

9o. 

 This exercise can be performed in terms of a desired (or maximum allowable) equivalent Cmq response as well, 

as shown on the right of Fig. 9 where the highlighted band of Cmq=0.35 traces a line through �* and 	 space 

showing values which result in the specified response. 

 Knowledge about the parameters governing the dynamic model defined in this study can be useful in vehicle 

design in addition to providing further understanding of dynamic stability. However, means to obtain the 

information required to reduce the parameter space to a manageable size are not specified. The next section will 

examine the use of trajectory reconstruction techniques to estimate these parameters with a series of ballistic range 

shots. 

 

B. Trajectory Reconstruction Analysis for Experimental Validation of Proposed Model 

 Experimental validation of the proposed model via ballistic range testing would add confidence to the 

formulation of the problem. Once validated, this model could then be utilized in future studies to quantify the 

expected dynamic response of vehicles without the need to quantify the pitch damping sum. Such an experiment is 

outside the scope of this study. However, a simulated ballistic range test campaign was conducted to assess the 

Fig. 10. Representative simulated and reconstructed trajectories with residuals 
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f

easibility of such an effort. A set of ballistic range trajectories were simulated using the baseline (standard) 

equations of motion with a fixed set of parameters. The data (angle of attack versus time) from these simulations is 

known to match the true dynamics well when perfect knowledge of the dynamic derivatives exists.‡  Because 

ballistic range data is not a continuous data set, but instead comes from discrete observations using schlieren 

photography, the data from these simulations was discretized into 50 evenly spaced observations in time. Using the 

generated data set of 50 angles of attack observed at 50 corresponding times along the simulated ballistic range shots 

as a “truth”, a genetic algorithm (GA) was wrapped around the time lagged aftbody pitching moment model to 

explore the parameter space to find a set of parameters which result in a trajectory that best matches the simulated 

experimental data. A GA was utilized over gradient based methods because of the multi-modal nature of the 

parameter space.  

 The reconstruction was optimized in a least squares sense, with the sum of the square of the residuals at each of 

the 50 observation points in time as the objective function (see Fig. 10 and Eq. 19): 

 
 

(19)  

 The GA was used to identify the four parameters which best fit the simulated ballistic range data using the same 

MER ballistic range vehicle specified in Table 1 with various initial conditions (angle of attack and Mach number). 

The ranges of initial conditions which were explored represented those typical of ballistic range test campaigns and 

                                                           
‡ Recall that one of the primary motivations for the development of the model proposed in this study is the fact that 
quantifying these derivatives is difficult and has large uncertainties.�
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therefore focused on initial Mach numbers in the low to mid supersonic regime with low to moderate initial angles 

of attack. The terminal Mach number for all cases was 2.0. Four different scenarios with different sets of initial 

conditions were considered with an increasing number of points that filled in the initial condition space to different 

degrees (see Fig. 11). The two trajectory case (N=2) utilized only the two extremes of initial condition combinations 

to use for the parameter estimation. Points were added to the two remaining corners of the space for N=4 and at the 

midpoint of each edge as well as the center for the N=9 case. Finally, points were added within the interior of the 

space, equidistant from all other neighboring points in the fourth scenario (N=13). 

 

 

 

 

 

 

 

 

 

 

 

 In an attempt to ensure that the best fitting set of parameters was found for each case, the GA was run until 

convergence 32 times for each scenario, thus producing a statistically significant sample from which a mean could 

be taken. The means of all four parameters for each case are shown in Table 2. 

 

Table 2. Mean parameter values with 32 GA runs for each case 
Number of Trajectories 

Parameter 
N = 2 N = 4 N = 9 N = 13 

�� 8.365 8.016 7.976 7.321 
	� 0.763 0.746 0.727 0.736 

�* (o) 6.931 7.281 7.278 7.281 
ABCm

* x 103 6.137 5.759 5.592 5.704 
 

Fig. 11  Initial Mach numbers and angles of attack used for the four different test cases  
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 The estimated parameters seem to match up well 

with the limited literature that is available to anchor this 

analysis. The estimates for the time lag factor are very 

near to the value proposed by Teramoto et al of ��= 8.[4] 

This adds credibility to their theory of the dominating 

length scale being the approximate distance to the 

recompression shock and the characteristic velocity 

being approximately half of the freestream value. 

Additionally, it can be seen in Fig. 13 that although the 

magnitudes are larger, the shape of the aftbody moment 

coefficient curves defined by the N=13 case closely 

match the LAURA estimates found by Schoneneberger.[7] It also can be seen from Table 2 that for the MER vehicle 

in the range of conditions examined, the four parameters converge to quite similar values in all four scenarios. This 

poses the following question: how many trajectories within the given initial condition space are required to 

accurately identify the parameters which can represent trajectories for the entire space? To test this, the average 

error for each of the 50 observed data points was calculated using the parameters found with all four test campaign 

scenarios (N=[2,4,9,13]). The average errors were calculated by taking the set of parameters found with a given test 

case (N) and then comparing the resulting trajectories to the baseline case at all of the exterior points as well as the 

center point of the initial condition combinations (see Fig. 12). In general, the model can reconstruct the original 

trajectories very well, with an average error of less than 0.4o for almost all scenarios.  Fig. 12 demonstrates that the 

average error is reduced as the number of ballistic range shots increases, with a majority of the error removed when 

N>4.  

 Some sets of initial conditions produce higher average errors than others. This is expected, as the trajectories 

with higher average error are those that grow to larger oscillation amplitudes due to the initial conditions, so the 

absolute error also grows. The two exceptions are for the cases with an initial angle of attack of 5o and initial Mach 

numbers of 3.0 and 3.5. With �0 = 5o and M0 = 3.0, the error reduces significantly from N=2 to N=4, but then 

plateaus as N increases. For the most extreme case of the initial condition combinations (�0 = 5o, M0 = 3.5), the error 

actually grows with the number of trajectories. This is a result of the GA seeking to reduce the least square error for 

Fig. 12 MER aftbody moment coefficient versus 
angle of attack as estimated using N=13 and 

calculated using LAURA. [7][7] 
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the entire array of cases. As the number of shots increases, the GA begins to favor solutions which are most 

applicable to the entire space. As such, the influence of the most extreme case diminishes and thus the final solution 

performs poorly at that condition.  

 Results like those shown in Fig. 12 can be used to inform the design of a future experimental campaign. Fig. 12 

shows that a modest number of ballistic range shots are required to obtain reasonable parameter estimates. A 

ballistic range test campaign to identify these parameters would anchor the model proposed in this study and add 

fidelity to its definition of the problem and provide insight into the vehicle and flowfield characteristics which 

dominate dynamic stability. With this added confidence, this model could then be used without the need for ballistic 

range testing, but only a combination of CFD and less rigorous experiments to identify the parameters proposed in 

this study.  

 Eventually, the model proposed in this study (or one like it) should be capable of replacing the need for the use 

of the pitch damping sum in the description of blunt body dynamics entirely.  Once fully developed, this approach of 

characterizing the stability of an entry vehicle has the advantage of being based on intuitive and physical quantities, 

such as the characteristic size and velocity of the wake flow and the pitching moment curve for the aftbody. All of 

these parameters could possibly be directly measured or estimated computationally.  

Fig. 13 Average error versus number of trajectories used to estimate the parameters at various initial 
condition combinations

9�
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V.  Summary 

 For the blunt vehicles utilized for atmospheric entry applications, the phenomenon of dynamic stability remains 

among the least understood. The current description of the pitch dynamics relies on quantification of the pitch 

damping sum coefficient which is time-intensive, non-intuitive, and carries significant uncertainty. As an alternative, 

a new model is proposed in this study building on earlier work [5],[7] to describe the pitching motions of a blunt 

vehicle without reliance on this coefficient. The driving force for oscillation growth in this new model is the aftbody 

pitching moment contribution which lags behind flowfield changes at the forebody due to finite convection of 

pressure information in the wake and boundary layer. 

 The new model introduces four parameters which fully describe the magnitude, angle of attack dependence, and 

Mach number dependence of the aftbody moment coefficient, as well as the time delay of their application relative 

to changes at the forebody. This new description of the pitch dynamics has the advantage of being more intuitive, 

physically grounded, and less demanding experimentally (or computationally). With this model, parametric sweeps 

were conducted across the four dimensional space to assess whether the magnitude of oscillation growth seen in real 

entry vehicles could be attained with physically realistic values of the parameters. It was found that the model can 

indeed replicate the types of oscillation divergence which are common to blunt body vehicles in supersonic flow.  

 Isolating one parameter at discretized values by assuming some a priori knowledge, isosurfaces containing 

values of three remaining parameters were identified. These surfaces represent non-unique solutions producing the 

same dynamic response. Isosurfaces and contour slices through the design space yield significant insight into the 

interactions of the parameters established here and the governing physics which are responsible for dynamic 

stability. This insight was shown to be useful in not only understanding the physics of dynamic stability, but as a 

design and analysis tool which can aid in scenarios such as parachute staging requirements and the design of future 

experimental test campaigns aimed at gaining a better understanding of supersonic dynamic stability. 

 There is little existing literature investigating any of the parameters which are critical to the model proposed in 

this study.  As such, a ballistic range test campaign was simulated to help quantify the scale of such a test and the 

expected accuracy of the parameters which would be subsequently identified from the data. Parameter identification 

found evidence which supported the value for the time lag factor proposed by Teramoto et al[4] and the estimated 

aftbody moment curve was similar to one predicted computationally by Schonenberger.[7] If such a test were 

conducted to help validate the model, computational methods and simple experiments could be used to identify the 
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new governing parameters instead of (or as a complement to) ballistic range campaigns. If these methods were 

found to be more accurate and/or less exhaustive than those currently required for quantifying the pitch damping 

sum, the model proposed in this study may form the basis for replacing the standard formulation of the problem. 

 The results of this study have shed light onto the governing time scales of dynamic stability and the favorable 

and unfavorable aftbody pitching moment coefficients and then connected these observations to vehicle and mission 

design considerations. Further work comparing the results across a variety of vehicles with different known stability 

characteristics would better inform the model, eventually leading to an experimental campaign to quantify the 

parameters proposed in this study and unveil additional details behind the phenomenon of dynamic stability.  
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