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* The lifetime and GWP of CFC-11 are less than previously reported12 
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CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that 13 

is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature 14 

dependence of its UV absorption spectrum is a significant contributing factor to the overall15 

uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery 16 

and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a17 

range of wavelength (184.95–230 nm) and temperature (216–296 K).  We report a spectrum 18 

temperature dependence that is less than currently recommended for use in atmospheric models.19 

The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum 20 

parameterization developed in this work.  The calculated global annually averaged lifetime was 21 

58.1 ± 0.7 years (2� uncertainty due solely to the spectrum uncertainty). The lifetime is slightly 22 

reduced and the uncertainty significantly reduced from that obtained using current spectrum23 

recommendations.24 
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1.  Introduction26 

Accurate knowledge of the atmospheric lifetimes of ozone depleting substances (ODSs) 27 

is important to the understanding of their atmospheric abundance, emissions, and future 28 

environmental impacts as well as the calculation of ozone depleting (ODPs) and global warming 29 

potentials (GWPs).  CFCl3 (CFC-11) is a key long-lived man-made ODS that is also a potent 30 

greenhouse gas (GHG) [WMO, 2011] whose production was phased out under the Montreal 31 

Protocol and its subsequent amendments.  CFC-11 is of particular importance due to its 32 

atmospheric abundance and the fact that it is the reference substance to which ODPs for all other 33 

ODSs are scaled.  The atmospheric abundance of CFC-11 is presently decreasing [WMO, 2011]34 

from a maximum mixing ratio of ~270 ppt in the early 1990s to a present day value of ~240 ppt; 35 

CFC-11 accounts for 22% of the present day stratospheric chlorine.  CFC-11 is primarily 36 

removed in the stratosphere by UV photolysis at wavelengths between 190 and 230 nm and to a 37 

lesser extent by gas-phase reaction with O(1D) atoms.38 

���� ����� 	��
���	���� �� �����
	���� �
��	����� ������������ ��� ���-11 is reasonably 39 

well established, ±5%, over the wavelength range most critical to atmospheric photolysis (see 40 

Sander et al. [2011] and references therein).  However, the spectrum temperature dependence, 41 

which is key to determining its stratospheric photolysis rate, is less certain and the level of 42 

uncertainty contributes substantially to the uncertainty in determining the global lifetime of CFC-43 

11 [SPARC, 2013].  The CFC-11 absorption spectrum temperature dependence has been reported 44 

in studies by Bass and Ledford [1976] (186–230 nm, 222–298 K), Chou et al. [1977] (185–226 45 

nm, 213–296 K), Hubrich et al. [1977] (158–260 nm, 208 and 298 K), Simon et al. [1988] (174–46 

230 nm, 225–295 K), and Mérienne et al. [1990] (200–238 nm, 220–296 K) over the range of 47 

wavelengths and temperatures given in parentheses.  The absorption spectrum parameterization 48 

reported in the Simon et al. [1988] study is currently recommended for use in atmospheric 49 

models in Sander et al. [2011] due, in part, to the combined wavelength and temperature range 50 

coverage of the dataset.  Discrepancies among the available datasets, however, led the recent 51 

SPARC [2013] lifetime report to recommend a substantial uncertainty in the low-temperature 52 

spectrum, i.e., approximately a ±25% uncertainty in ������ K).53 

The SPARC [2013] lifetime report recommends a global steady-state (year 2000) lifetime 54 

for CFC-11 of 52 years with 2� uncertainties that lead to lifetimes in the range 43 to 67 years 55 

(see discussion in SPARC [2013]). The recommended lifetime and range are based on a 56 

combination of model calculations and derivations from atmospheric observations. The range in 57 

the recommended lifetime has several contributing factors due to uncertainties in both the model 58 

and observationally based lifetimes, including the uncertainty in the UV absorption spectrum 59 
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[Minschwaner et al., 2013; Rigby et al., 2013; SPARC, 2013]. The present level of CFC-11 60 

lifetime uncertainty is significant and directly impacts the ability to model climate change and 61 

climate-chemistry coupling scenarios.  An objective of the present work was to constrain the UV 62 

spectrum of CFC-11 further, particularly at temperatures most relevant to stratospheric 63 

photolysis, and, thus, its lifetime and uncertainty.64 

In this work the UV absorption spectrum of CFC-11 was measured at 216, 235, 254, 274, 65 

and 296 K at 24 discrete wavelengths between 184.950 and 230 nm.  The present results are 66 

compared with previous temperature dependent studies mentioned above and the discrepancies 67 

���� !�������!"� � #� 
�����	���$�	���� ��� ������� %��� !�&�'�
�!� ����� ���� %��(� ���� ���� ���68 

atmospheric models.  The NASA Goddard Space Flight Center (GSFC) 2-D coupled chemistry-69 

radiation-dynamics model [Fleming et al., 2011] was used to evaluate the atmospheric 70 

photolysis, local and global annually averaged lifetimes of CFC-11 as well as the range of 71 

lifetimes obtained based solely on the estimat�!������	���	)����������"72 

2.  Experimental Details73 

The apparatus used in this work was similar to that used in recent studies from this 74 

laboratory [e.g. Papadimitriou et al., 2013].  In brief, the apparatus consisted of a 30 W 75 

deuterium (D2) lamp, whose output was collimated through a 90.4 ± 0.3 cm long, jacketed 76 

absorption cell and directed onto the entrance slit of a 0.25 m monochromator with a 77 

photomultiplier tube detector.  The beam-path outside of the absorption cell and monochromator 78 

were purged with N2.  The monochromator wavelength was calibrated using atomic lamps to 79 

±0.1 nm and the resolution was ~1 nm (FWHM).  Additional measurements were made at 80 

184.950, 213.856, and 228.802 nm using Hg, Zn, and Cd atomic lamp light sources, respectively, 81 

with a photodiode detector coupled with narrow band-pass filters.  The absorption cell 82 

temperature was maintained by circulating fluid from a temperature-regulated reservoir through 83 

the cell jacket.  The gas temperature was measured using a thermocouple inserted at both ends of 84 

the absorption cell and was accurate to ~1 K over the temperature range of this study.85 

Absorption cross sections, �(�,T), were determined using the Beer’s law86 

A(�) = -ln[I(�)/I0 (�)] = �(�, T) × L × [CFC-11] (I)87 

where A is absorbance at wavelength �, I(�) and I0(�) are the measured light intensities in the 88 

presence and absence of sample, L is the pathlength of the absorption cell.  Measurements were 89 

performed under static conditions and [CFC-11] was determined from absolute pressure 90 

measurements using the ideal gas law.  Absorbance was measured for a range of concentrations,91 

at least 10 concentrations were used in each measurement, and cross sections were determined 92 

from a linear least-squares fit of A against [CFC-11]. Signals were stable to better than 0.5% and 93 
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I0����&�'����%�����������!��	� 	�����*�nning and end of an experiment agreed to within 0.5%, 94 

corresponding to an absorbance uncertainty of less than ~0.005.95 

CFC-11 (99.7%) samples were purified in freeze-pump-thaw cycles before use.  He 96 

(UHP, 99.999%) was used as supplied.  Gas mixtures, prepared manometrically in 12 L Pyrex 97 

bulbs, with 0.0022, 0.0218, and 0.1836 mixing ratios of CFC-11 in He (accurate to 1%) were 98 

used to introduce the sample into the absorption cell. Pressures were measured using calibrated 99 

10, 100, and 1000 Torr capacitance manometers.100 

3.  Results and Discussion101 

Gas-
����� �� �����
	���� ������ ���	������ ���,T), for CFC-11 were determined at 24102 

discrete wavelengths over the range 184.95–230 nm at 216, 235, 254, 274, and 296 K.  ���,T)103 

values are summarized in Tables S1 and S2 in the supplementary material and plotted in Figure 104 

1. ���,T) values shown in Figure 1 are average values when multiple measurements were 105 

performed. The CFC-11 UV absorption spectrum has continuous absorption from the shortest to 106 

the longest wavelength included in this study"�����,T) decreases toward longer wavelengths from 107 

a maximum at 184.950 nm with the decrease nearly exponential at wavelengths greater than 108 

~210 nm.  The true spectrum maximum lies at a wavelength shorter than included in this work; 109 

Simon et al. [1988] report a maximum near 176 nm. However, photolysis at wavelengths less 110 

than ~190 nm is relatively unimportant as an atmospheric loss process (Figure 2). The peak 111 

transition has been assigned to a (C–Cl)* +��'�	�����	����[Sandorfy, 1976].112 

A temperature dependence of the CFC-11 absorption spectrum, Figure 1, was observed 113 

across much of the absorption spectrum, but was weak near 196 nm.  At wavelengths greater 114 

than 196 nm, the cross sections decreased with decreasing temperature.  At wavelengths less than 115 

196 nm a weak increase in cross section was observed with decreasing temperature.  The 116 

strongest temperature dependence was observed at the longest wavelengths of this study, e.g. the 117 

cross section decreases by ~52% between 296 and 216 K at 230 nm.118 

The measurement precision was high over the wavelength range studied, typically less 119 

than 1% uncertainty. Replicate measurements were made in many cases that included using 120 

different sample mixing ratios and different ranges of absorbance as well as different 121 

experimental parameters (e.g. light intensity and optical filtering).  In each case, the measured 122 

absorption obeyed Beer’s law.  The measurement reliability was also tested by comparing data 123 

obtained with the monochromator at the wavelength of the atomic lamps.  The 296 K 124 

measurements at 213.95 nm (Zn line) agreed to better than 1%, while the difference at 228.802 125 

nm (Cd line) was ~4%, with the Cd lamp measurements being greater.126 
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���������	���	������
��	�!�������'��,-�������������	���
������������	�� Beer’s law fits to 127 

	���!�	�"�������&���''���������	���	)����'�!ing estimated systematic errors of the measurement is 128 

estimated to be 4% at all wavelengths included in this study.129 

3.1 CFC-11 UV spectrum parameterization. .��	������������	���
�����	������������������	���130 

a spectrum parameterization was developed using the empirical expression given in Table 1.  131 

The fit parameters are given in Table 1 and spectra calculated from this expression are included 132 

in Figure 1 for comparison with the experimental data.  The parameterization fits the 133 

experimental data to within 2% between 192–222 nm, lower panel in Figure 1.  The 134 

parameterization is valid over the wavelength range 190-230 nm (optimized for 192–230 nm) 135 

and over the temperature range (216-296K) of the experimental data.  Extrapolation outside the 136 

range of the experimental data may lead to systematic errors.137 

3.2 Comparison with previous studies. �������,296 K) results obtained in this work are in 138 

agreement with the recommended room temperature absorption cross section data given in 139 

Sander et al. [2011] to better than 7% between 190 and 230 nm.  Results from all previous 140 

temperature-dependent studies are compared with the present results in Figure 1.  The Simon et 141 

al. [1988] study is assumed to supersede the Vanlaethem-Meurée et al. [1978] study from the 142 

same group.  Overall, the agreement among the various temperature dependent studies is rather 143 

poor, with differences on the order of ±10–20%.  The present results are most consistent with the 144 

data of Chou et al. [1977], where the agreement is to within 5%, or better, over most of the 145 

wavelength range; the differences are somewhat greater for some of the longer wavelength data 146 

points, but still agree to within 10%.  The work of Mérienne et al. [1990] is in reasonable 147 

agreement (within 10%) with the present work, but systematic discrepancies are observed for 148 

wavelengths <215 nm.  The work of Simon et al. [1988], Hubrich et al. [1977], and Bass and 149 

Ledford [1976] show the largest disagreement with the parameterization developed in this work.  150 

In the case of Hubrich et al. [1977] and Bass and Ledford [1976], the disagreement is more 151 

random and most likely is due to the scatter in their experimental data. Simon et al. [1988] report 152 

a CFC-11 spectrum temperature dependence that is greater than any of the other studies.  (Note:153 

the Simon et al. CFC-11 cross section parameterization is currently recommended for use in 154 

atmospheric modeling in Sander et al. [2011].)  As discussed below, the stronger spectrum 155 

temperature dependence will lead to a longer atmospheric photolysis lifetime.  As shown in 156 

Figure 1, significant systematic differences are observed for the spectrum temperature 157 

dependence with differences of ~15% at 230 K and 210 nm (i.e., the most critical temperature 158 

and wavelength for the atmospheric photolysis of CFC-11).  The reasons for the disagreement 159 

are unknown.  It should also be noted that SPARC [2013] reports a systematic error in the 160 
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parameterization of the Simon et al. [1988] data as their reported spectrum parameterization does 161 

not reproduce their reported experimental data to within the quoted accuracy. 162 

4. Atmospheric implications163 

The GSFC 2-D model was used to quantify the atmospheric loss processes of CFC-11 164 

(photolysis and O(1D) reaction) and calculate its local and global annually averaged steady-state 165 

lifetimes for year 2000 conditions.  The photolytic loss of CFC-11 was evaluated in the 166 

following wavelength regions: Lyman-/��-�-"012������-1�–190, 190–230, and >230 nm.  A unit 167 

photolysis quantum yield at all wavelengths was assumed in the calculations.  The Lyman-/�168 

cross section, 9.8 � 10-17 cm2 molecule-1, and UV cross sections at wavelengths less than 190 nm 169 

and greater than 230 nm were taken from SPARC [2013].  Calculations were performed using 170 

three �������
�����	���$�	���s: (1) that developed in this work; (2) the parameterization given in 171 

SPARC 3� -45�� %����� ������	�� �� �)�	���	��� ������ ��� 	��� ������� 
�����	���$�	���� ��
��	�!� ���172 

Simon et al. [1988]; and (3) the parameterization given in the Sander et al. [2011] 173 

recommendation (also referred to as JPL10-6), i.e., the Simon et al. [1988] uncorrected cross 174 

section parameterization.  The O(1D) reactive rate coefficient was taken from SPARC [2013].175 

Other kinetic and photochemical parameters were taken from JPL10-6 unless updated in SPARC.176 

The lifetime was computed as the ratio of the annually averaged global atmospheric 177 

burden to the vertically integrated annually averaged total global loss rate [SPARC, 2013].  The 178 

total global lifetime can be separated by the troposphere (surface to the tropopause, seasonally 179 

and latitude-dependent), stratosphere, and mesosphere (<1 hPa) using the total global 180 

atmospheric burden and the loss rate integrated over the different atmospheric regions such that181 

�
����

=  �
�����

+ �
�	��
�

+ �
����

(II)182 

The 2-D model total global annually averaged lifetimes were calculated to be 58.1 ± 0.7 years for 183 

this work, 60.2 ± ~6 years for SPARC, and 58.6 ± 4 years for JPL10-6 (see lifetime summary in 184 

Table 2). ������*�������	���!��	�������	�����������	���	)����*�����	���
�����	�%��(����'��	��	���185 

smaller CFC-11 cross section uncertainty (±4%) compared to the SPARC (±25%) and JPL10-6186 

(±20%) recommendations.187 

We note that the absolute lifetimes computed here are somewhat greater than the 188 

recommended CFC-11 lifetime of 52 years reported in SPARC [2013].  The 52 year lifetime was 189 

based on a combination of: (1) derivations from various observational datasets, and (2) 190 

calculations from seven atmospheric models (including the GSFC 2-D model) which all used the 191 

JPL10-6 recommended kinetic and photochemical parameters.  Observationally based lifetimes 192 

are subject to a number of uncertainties, see e.g., Minschwaner et al. [2013] and Rigby et al.193 
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[2013].  The absolute lifetimes computed in models are also dependent on a number of factors 194 

and associated uncertainties, including the model transport rates and the UV absorption cross 195 

sections of O2, O3, as well as CFC-11.  The 2-D model lifetime computed using the JPL10-6196 

parameters (58.6 years) is somewhat greater than the multi-model mean (55.3 years) reported in 197 

SPARC [2013], but is very similar to the GEOSCCM 3-D model lifetime (58.3 years).  The 198 

'���	����� ���
�	�!� ����� ���� %�''� %�	���� 	��� ��� �����	���	)� ���*�� �64–67 years) reported in 199 

SPARC [2013], which is based on the combined effect of the observational and model 200 

uncertainties.  The CFC-11 lifetimes and uncertainties presented here illustrate the relative 201 

changes in these quantities as computed in one particular model due only to the different CFC-11202 

UV absorption cross sections (this work vs. SPARC vs. JPL10-6).203 

Figure 2 (left panel) shows the global annually averaged vertical profiles of the first-order 204 

photolysis and O(1D) reactive rate coefficients (local lifetimes).  CFC-11 is unreactive toward the 205 

OH radical with an estimated rate coefficient of <1 × 10-25 cm3 molecule-1 s-1 [SPARC, 2013],206 

and short wavelength UV radiation only penetrates weakly into the upper-troposphere such that207 

the tropospheric loss of CFC-11 is only a minor global loss process.  The tropospheric lifetime 208 

was calculated to be ~1550 years (this work), ~1720 years (SPARC), and ~1480 years (JPL10-6).209 

Photolysis in the 190–230 nm wavelength region is the dominant loss process in the 210 

stratosphere; photolysis in this wavelength region accounts for ~98% of CFC-11 global loss.  211 

Figure 2 (middle and right panels) shows the calculated CFC-11 molecular loss rate and mixing 212 

ratio vertical profiles. The maximum loss rate is at 22–23 km with significant loss occurring 213 

between 18 and 28 km corresponding to temperatures approximately in the range of 208 to 225 214 

K.  Photolysis at wavelengths >230 nm is a negligible loss process throughout the atmosphere,215 

while photolysis in the 169–190 nm range is a minor stratospheric loss process, ~0.1%. The 216 

O(1D) reaction is a minor loss process and accounts for ~2% of CFC-11 global loss. The 217 

calculated stratospheric lifetimes were 60.4 years (this work), 62.4 years (SPARC), and 61.0 218 

years (JPL10-6). The JPL10-6 lifetime differs from the SPARC value due to the correction in 219 

the Simon et al. [1988] cross section parameterization.  Fortuitously, the error in the Simon et al.220 

parameterization leads to reasonable agreement between the JPL10-6 lifetime and that reported 221 

in this work.222 

In the mesosphere, short wavelength UV and Lyman-� photolysis are important local 223 

loss processes (Figure 2, left panel).  At altitudes >65 km, local lifetimes are relatively short, 1 224 

day or less.225 

The uncertainty (range) in the calculated CFC-11 lifetime due to the uncertainty in the 226 

UV absorption cross section data, ������, and the O(1D) rate coefficient was evaluated using the 227 
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2-D model.  Model calculations were performed with ������� and the O(1D) rate coefficient 228 

increased to the maximum of their 2� uncertainty limits (fast case, shorter lifetime) and the 229 

minimum 2� limit (slow case, longer lifetime) with all other model input parameters remaining 230 

the same.  The uncertainties in ������ were taken from this work, SPARC, and JPL10-6, while 231 

the O(1D) rate coefficient uncertainty was taken from SPARC.  The calculated fast/slow 232 

molecular loss rates are included in Figure 2 (middle panel) for comparison with the base case 233 

calculation.234 

A comparison of the photolysis and O(1D) reaction uncertainty contributions to the 235 

overall local first-order loss rate uncertainty (2�) as a function of altitude is given in Figure 3 for 236 

this work and SPARC.  The horizontal shaded region in Figure 3 highlights the altitude range 237 

most critical to the atmospheric loss of CFC-11 and illustrates that UV photolysis in the 190–230238 

nm region dominates the uncertainty at these altitudes. Figure 3 also shows that the overall 239 

uncertainty in the photolytic loss of CFC-11 is significantly reduced in the present work.  The 2�240 

uncertainties (range) of the calculated global annually averaged lifetimes are ±0.7 years. This is 241 

greatly reduced from the uncertainty range obtained using the previous photochemical 242 

recommendations: ~ ±6 years (SPARC) and ~ ±4 years (JPL10-6).243 

The 2-D model calculations of  total ozone showed miniscule changes over most of the 244 

globe when using the CFC-11 cross sections presented here compared with those computed 245 

using SPARC [2013]. However, minor changes of a few Dobson units were simulated during the 246 

winter polar Southern Hemisphere. Further studies are needed to evaluate the impact of these 247 

small changes on the computed ODPs for ODSs since CFC-11 is used as a reference compound 248 

in these calculations. 249 

5.  Conclusions250 

This study reports accurate measurements of the UV absorption spectrum of CFCl3251 

(CFC-11) as a function of temperature between 184.95 and 230 nm. On the basis of 2-D model 252 

calculations, the CFC-11 cross section data presented here leads to a faster loss rate and a shorter 253 

global annually averaged lifetime (58.1 years) compared to calculations using the recommended 254 

cross section data using SPARC [2013] (60.2 years) and JPL10-6 [Sander et al., 2011] (58.6 255 

years) photochemical and kinetic recommendations.  Although these lifetimes are somewhat 256 

greater than the 52 year lifetime recommended in SPARC [2013], they are within the SPARC ���257 

uncertainty range (43–67 years), and illustrate the relative lifetime changes calculated using the 258 

different cross section parameterizations.259 

The present work results in a significant reduction in the CFC-11 photolysis rate 260 

2��uncertainty, 4%, compared to 25% in SPARC and 20% in JPL10-6. The reduction in the 2�261 
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lifetime uncertainty is also significant: ±0.7 years (this work), ±6 years (SPARC), and ±4 years 262 

(JPL10-6). The model simulated total ozone showed minor changes in the winter polar Southern 263 

Hemisphere as a result of the updated cross sections presented here, compared to SPARC264 

[2013], and these changes may impact the calculation of ozone depletion potentials for the 265 

ozone depleting substances. Also, a decrease in the CFC-11 lifetime will decrease its global 266 

warming potential (GWP). Although this work has reduced the uncertainties associated with the 267 

UV absorption spectrum of CFCl3 (CFC-11) considerably, substantial uncertainty still remains in 268 

its atmospheric lifetime due to other uncertainties in observationally derived and model 269 

calculated lifetimes as discussed in SPARC [2013]. 270 
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Table 1. CFCl3 (CFC-11) UV Absorption Spectrum Parameterization from This Work Valid Over the 303 

Wavelength Range 190 to 230 nm for Temperatures Between 216 and 296 K.304 

log����(�, T)� =  � ��(�� � 200)�

�

+ (T � 273) � ��(�� � 200)�

�

  

i Ai Bi

0 -18.1863 0.0002656

1 -0.0528 4.228 × 10-5

2 -0.001126 1.4027 × 10-6

3 -3.0552 × 10-5 6.44645 × 10-7

4 2.24126 × 10-6 -3.8038 × 10-8

5 -3.2064 × 10-8 5.99 × 10-10

305 
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Table 2. Summary of Global Annually Averaged Lifetimes and Uncertainties (Ranges) Calculated Using 306 

the GSFC 2-D Model (see text) with Input from This Work, SPARC [2013], and Sander et al. [2011].307 

Lifetime (years)

Sander et al. SPARC This Work

Total 58.6 ± 4 60.2 ± 6 58.1 ± 0.7

Tropospheric 1480 1720 1550

Stratospheric 61.0 62.4 60.4

Mesospheric >1 × 106 >1 × 106 >1 × 106

308 

309 
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Figure Captions:310 

Figure 1.  CFCl3 (CFC-11) UV absorption spectrum.  Top: Present measurements (symbols) and 311 

parameterized spectra (lines, see Table 1). Bottom: Ratio of measured values to 312 

parameterization. Results from previous studies are included for comparison (see legend).313 

Figure 2. CFCl3 (CFC-11) 2-D model results:  Left: Global annually averaged loss rate 314 

coefficient (local lifetime) and contributions (see legend).  Middle: Molecular loss rate and 315 

uncertainty limits; the slow and fast profiles were calculated using the 2� uncertainty estimates316 

in the CFC-11 UV absorption spectrum from this work.  Right:  CFC-11 concentration profile.317 

Figure 3. CFCl3 (CFC-11) loss process contribution to the overall local uncertainty (2�)318 

calculated using the 2-D model (see text). Left: Results obtained from this work.  Right:319 

Results obtained using model input from Sander et al. [2011] and updates in SPARC [2013].320 

321 
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