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From: http://hometown-pasadena.com 

Station Fire near JPL, Pasadena CA August-September 2010 



From: Prospero et al.,  
Earth & Planet. Sci. Lett. 1970 

Saharan Dust Plume Tracked Across the Atlantic 
05-12 June 1967  ESSA-5 Vidicon Imager 

Over Mauritania, Western Sahara,  
and the eastern Atlantic   

7 June 1967 



From: Husar et al., JGR 1997  

Global, Over-Ocean Column Aerosol Amount 
July 1989 - June 1991  NOAA AVHRR 
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Mars Dust Storm – Viking Orbiter 1976 



Martian Sky – Viking Lander 1, 1976 



SeaWiFS  – Sahara Dust over Canary Islands  06 March 1998 



MODIS – Fires in Alaska 01 July 2004 21:40 UTC 



Even DARF and Anthropogenic DARF  
are NOT Solved Problems (Yet) 

IPCC  AR3, 2001 
(Pre-EOS) 

IPCC  AR4, 2007 
(EOS + ~ 6 years) 



Wild et al., BAMS 2012 

Global Energy Flows (W/m2) 



Aerosol Contribution to Global Climate Forcing 

• Cloud-free, global, Over-ocean, vis, TOA DARF relative to zero aerosol: -5.5 ± 0.2 W/m2  
 

   This is a measurement-based value, with uncertainty based on diversity among estimates 
                                   (actual uncertainties are probably larger) 
 
• Taking 20% of aerosol to be anthropogenic, the human-induced component is: -1.1 ± 0.4 
W/m2  
 
 
• Global TOA anthropogenic total ARF relative to pre-industrial: -1.3 (-2.2 to -0.5) W/m2  
 

   This is a model-based value, with uncertainty defined as diversity among estimates; 
                          (actual uncertainties are probably much larger) 
 
• The models tend to agree on global AOD (as constrained by satellite & surface obs.),  
    but differ on regional-scale AOD, aerosol SSA, and vertical distribution  From: CCSP - SAP 2.3, 2009 

How Good is “Good Enough”?? 



Climate Sensitivity, Aerosols, and Climate Prediction 

• Models are constrained by historical global mean surface temperature (GMST) change 
• Forcing by LL greeenhouse gas increase since pre-industrial: ~ 2.6 W/m2 

• ∆GMST Expected: ~ 2.1 K;    ∆GMST Observed: ~ 0.8 K  
• Discrepancy dominated by Aerosol Forcing vs. S (disequilibrium, natural variation, etc. are less) 
• Model Aerosol Forcing choices compensate for Climate Sensitivity differences (Kiehl, GRL 2007) 
 

    Aerosol forcing uncertainty directly impacts confidence in model predictions 
       From a policy perspective, this bears upon the urgency of mitigation efforts  

Climate 
Sensitivity 

F × S =       ∆T 
Effective 
Forcing  

Response 

Schwartz et al., 2010 



• Aerosol SSA, Vert. Dist., and Surface Albedo critical, esp. for Surface Forcing 

From: Zhao et al., JGR 2005 

Direct Aerosol Radiative Forcing Efficiency per unit AOD 

AOD Alone is Not Enough –   
Even for Direct Aerosol Radiative Forcing 

• For Semi-direct Forcing, Aerosol SSA and Vertical Distribution are critical 



Constraining DARF – The Next Big Challenge 

Kinne et al., ACP 2006 Ae= AERONET;  S*= MISR-MODIS composite 

• Agreement among models is increasingly good for AOD,  
               given the combined AERONET, MISR, and MODIS constraints 

• The next big observational challenge:  
               Producing monthly, global maps of Aerosol Type                

How Good is Good Enough? 
 Instantaneous AOD & SSA uncertainty upper bounds for ~1 W/m2 TOA DARF accuracy: ~ 0.02 

CCSP - SAP 2.3, 2009 



• Aerosol Particle Size Matters 
-- Not easy for remote-sensing techniques to observe the smallest, most numerous CCN 
-- Deducing small-size CCN from larger-particle distribution depends sensitively on ambient RH 
 

• Aerosol Particle Composition Probably Matters Too 
-- Remote-sensing not very sensitive to particle chemistry (polarization should help) 
 

• Location, Location, Location 
-- Satellite remote-sensing cannot observe aerosol below most clouds;  
      difficult observing aerosol near clouds as well 
 

• Clouds, Ambient Meteorology Affect Aerosol Retrievals 

Haywood & Boucher, Rev. Geoph. 2000 

Aerosols “Indirect” Forcing of  Clouds 



The NASA Earth Observing System’s  
Terra Satellite 

ASTER 

First Light:  
February 24, 2000 

MODIS 

CERES 
MISR 

MOPITT 

Terra Project Office / NASA Goddard Space Flight Center 



• NASA, Terra & Aqua 
– launches 1999, 2001 
– 705 km polar orbits, descending 

(10:30 a.m.) & ascending (1:30 p.m.) 
• Sensor Characteristics 

– 36 spectral bands ranging from 0.41 
to 14.385 µm 

– cross-track scan mirror with 2330 
km swath width 

– Spatial resolutions: 
• 250 m (bands 1 - 2) 
• 500 m (bands 3 - 7) 
• 1000 m (bands 8 - 36) 

– 2% reflectance calibration accuracy 
– onboard solar diffuser & solar 

diffuser stability monitor 

MODerate-resolution Imaging 
Spectroradiometer [MODIS] 

MODIS Team, NASA/GSFC 

Improved over AVHRR:  
• Calibration  
• Spatial Resolution  
• Spectral Range & # Bands  



From: MODIS Team, NASA GSFC 

Global, Monthly Average MODIS Aerosol Products 
July 2010 

Mid-visible 
Aerosol Optical Depth 

Fine-mode Fraction, 
with AOD encoded 
as color saturation 



Multi-angle Imaging 
SpectroRadiometer 

• Nine CCD push-broom cameras 
 

• Nine view angles at Earth surface: 
   70.5º forward to 70.5º aft 
 

• Four spectral bands at each angle: 
   446, 558, 672, 866 nm 
 

• Studies Aerosols, Clouds, & Surface 

http://www-misr.jpl.nasa.gov 
http://eosweb.larc.nasa.gov 



Ten Years of Seasonally Averaged  
Mid-visible Aerosol Optical Depth from MISR 

…includes bright desert dust source regions MISR Team, JPL and GSFC 

2000 2004 2003 2002 2001 2005 2006 2007 
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Multi-year Annual Average Aerosol Optical Depth 
from Different Measurements + Synthesis (S*) 

From: Kinne et al. ACP 2006 



From: Petrenko et al., JGR 2012 

AOD (550nm) 

MODIS Fine-mode AOD (550 nm), August 18-30 2000 GoCART Inverse-Model-Retrieved Emissions (107 kg/day) 

Aerosol Source Characterization 
by Combining Measurements and Models 

From: Dubovik et al., ACP 2008 

MODIS July 2006 Siberian Smoke Plume Image + AOD, and 5 GoCART Forward-Model Simulations with different source strengths 



MISR Team, JPL and GSFC 

MISR-Derived Ash Plume Aerosol Amount & Properties 
Eyjafjalljökull Volcano  19 April 2010 



MISR Aerosol Type Distribution 
 

Spherical Non-Absorbing 

Spherical Absorbing 
Non-Spherical 

Kahn, Gaitley, Garay, et al., JGR 2010 
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Saharan Dust Source Plume 
Bodele Depression  Chad June 3, 2005  Orbit 29038 

MISR 

Dust is injected near-surface… 

MODIS 

Kahn et al., JGR 2007 
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Transported Dust Plume 
Atlantic, off Mauritania March 4, 2004  Orbit 22399 

MODIS 

MISR 

Kahn et al., JGR 2007 Transported dust finds elevated layer of relative stability…  



D. Nelson and the MISR Team, JPL and GSFC 
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MISR Stereo-Derived Plume Heights 
07 May 2010 Orbit 55238 Path 216 Blk 40 UT 12:39 
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From: Yu et al., JGR 2010 

CALIPSO Lidar Aerosol Layer Height “Curtains” 

From: CALIPSO Team, NASA Langley Research Center 

Transported Dust 

Polluted Continental Aerosol  

Clean maritime and maritime mixed with dust and pollution particles  

Dust 

Smoke + Pollution 

Seasonally aggregated dust & non-dust vertical extinction profiles over Eastern China for 2007 



Over-Land Aerosol Short-wave Radiative Forcing w/Consistent Data 

Y. Chen et al. JGR 2009 

The slope of:  
 
TOA albedo vs. AOD  
 
For data stratified by: 
 

Surface BHR  
 
 
 
Produces:  
 

Spectral aerosol  
radiative efficiency  

MISR AOD MISR SSA 

MISR ANG MISR Surf. BHR 

Bright surface 
+ dark aerosol 
= decreasing 
albedo w/AOD 

(dαTOA/dτmid-vis) 

Depends on aerosol microphysical properties relative to surface albedo 



Aerosol Material Fluxes: Atlantic Dust & Asian Pollution 

MODIS AOD & Type 
Low AOD, Fine BioBurn, Coarse Dust 

NCEP W Wind - MODIS AOD  
Correlation 2.6-5 km; May-October 

Dust Transport Estimate (Tg) 
May-October (Top) January-April (Bot) 

Yu et al., JGR 2008 

Kaufman et al., JGR 2005 

MODIS AOD & type, Field Campaign aerosol properties & vertical distribution, GEOS model winds; 
Compared with GOCART and GMI model Fine-particle mass fluxes 



Current MISR & MODIS Mid-Visible AOD Sensitivities 

• MISR: 0.05 or 20% * AOD overall; better over dark water  
                                                                                    [Kahn et al., 2005; 2010] 
 

• MODIS: 0.05 or 20% * AOD over land 
     0.03 or 5% * AOD over dark water  
                                                                 [Remer et al. 2005; 2008; Levy et al. 2010] 
 

   Based on AERONET coincidences (cloud screened by both sensors) 

 Direct Aerosol Radiative Forcing (DARF): Need AOD to <~ 0.02 

 Particle Properties are Categorical rather than continuous Quantities 



Satellites 

Model Validation 
• Parameterizations 
• Climate Sensitivity 
• Underlying mechanisms 

CURRENT STATE 
• Initial Conditions 
• Assimilation 

Remote-sensing Analysis 
      • Retrieval Validation 
      • Assumption Refinement 

frequent, global  
snapshots; 

aerosol amount &  
aerosol type maps,  

plume & layer heights 

space-time interpolation,  
DARF &  

Anthropogenic  
Component  

calculation and prediction 

Suborbital 

targeted chemical &  
microphysical detail 

point-location 
time series 

Regional Context  

Kahn, Survy. Geophys. 2012 

Aerosol-type 
Predictions 



Comparative Planetology  
and the Atmosphere of Earth 

1. Comparative Planetology – Discovering how planetary atmospheres are 
similar, and how they are different, expands our appreciation of Earth itself, 
by placing specific attributes of our planet into a larger context. 

                  -- Radiative and Dynamical Scaling Laws 
 

2. Subtle Earth Effects – Some phenomena in Earth’s atmosphere are of much 
greater physical importance in the atmospheres of other planets. 

                 -- Venus’ Greenhouse; Jupiter’s Magnetosphere 
 

3. Data Available Only from Other Planets – Data of comparable or higher 
quality relevant to Earth can sometimes be found in other places. 

               -- Inner solar system climate record from Mars (and the Moon?) 
 

4. New Ideas – Inspiration leading to a habit of out-of-the-box thinking… 

1989 
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