Assessing spectral evidence of aqueous activity in two putative martian paleolakes

Ted L. Roush a,∗, Giuseppe A. Marzo a,b,1, Sergio Fonti c, Vincenzo Orofinoc, Armando Blancoc, Christoph Grossd, Lorenz Wendtd

a NASA Ames Research Center, MS 245-3 Moffett Field, CA 94035-0001, United States
b Bay Area Environmental Research Institute, 560 Third St. West, Sonoma, CA 95476, United States
c Dipartimento di Fisica, Università del Salento, Via Arnesano, 73100 Lecce, Italy
d Freie Universität Berlin, Institute of Geological Sciences, Planetary Sciences and Remote Sensing, Malteserstr. 74-100 12449 Berlin, Germany

A R T I C L E I N F O

Article history:
Received 26 January 2011
Revised 20 April 2011
Accepted 21 April 2011
Available online 29 April 2011

A B S T R A C T

We evaluate the evidence for the presence of mineral spectral signatures indicative of the past presence of water at two putative paleolakes on Mars using observations by the Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Image Spectrometer for Mars (CRISM). CRISM spectra of both sites are consistent with laboratory spectra of Mg-rich phyllosilicates. Our analysis represents the first detailed evaluation of these locations. The spatial occurrence and association with topographic features within the craters is distinctly different for the two sites. The occurrence of these minerals supports the conclusion that water was once active in the areas sampled by these craters. The distribution of the phyllosilicates in Luqa does not provide distinctive evidence for the presence of a previous standing body of water and is consistent with either impact emplacement or post-impact alteration. For Cankuzo, the phyllosilicate distribution provides evidence of a layer in the crater wall indicative of aqueous activity, but does not require a paleolake.

Published by Elsevier Inc.

1. Introduction

1.1. Putative paleolakes on Mars

Putative paleolakes in martian impact craters have been the subject of local and regional studies as valuable targets for exploration (see Cabrol and Grin, 1999, 2005, and references therein). They have been suggested as landing sites for in situ and sample-return missions since they should provide information about the dynamics of the sedimentary processes and the climate under which they were formed, and also represent favorable environments for preserving biomarkers.

A basin is a topographic depression created by erosional, volcanic, tectonic, or impact processes. A closed basin has an input channel(s) and no outflow channel(s) (Forsythe and Blackwelder, 1998). Provided climatic and local hydrographic conditions permit (Cabrol and Grin, 1999), water enters the basin and without an outlet, it is lost via evaporation, sublimation, and/or percolation into the subsurface. If a standing lake is formed in a basin, then a greater time period is available for mineral alteration, and concentration of sediments and chemicals would occur as the water disappears. For episodic water flow there is less time for mineral alteration and any sediments or evaporites formed may be comparable to arid or semi-arid terrestrial environments (Cabrol and Grin, 1999 and references therein).

A relatively water-poor environment can result in formation of evaporites (Stockstill et al., 2005, 2007). The exact chemistry of the deposits depends upon the source materials and the Eh and pH conditions occurring during evaporation (Eugster and Hardie, 1978; Crowley, 1993; Crowley and Hook, 1996). Carbonate- and sulfate-bearing species have spectral features in the visible and near-infrared (v nir) (e.g. Gaffey, 1986, 1987; Calvin et al., 1994; Cloutis et al., 2008) that are likely to remain present under current martian atmospheric conditions (Cloutis et al., 2008). Mars orbital v nir spectral data provide evidence for sulfates (Bibring et al., 2006; Murchie et al., 2009 (Wray et al., 2011 and references therein) and carbonates (Ehlmann et al., 2008a; Palomba et al., 2009; Murchie et al., 2009; Michalski and Niles, 2010 and references in all) in some putative paleolakes.

Phyllosilicates are also materials indicative of aqueous alteration of materials. CRISM data has provided evidence for the presence of several types of phyllosilicates at many locations on Mars including numerous crater exposed deposits. The range of chemistry includes Al–to Fe–Mg-rich materials (Mustard et al., 2008; Ehlmann et al., 2008b; Murchie et al., 2009; Debouck et al., 2010; Milliken and Bish, 2010; Carter et al., 2009, 2010, 2011; Amsel et al., 2011).
Here we investigate CRISM observations of putative paleolakes on Mars to evaluate the evidence for the presence of mineral spectral signatures indicative of the past presence of water at these sites.

1.2. Site selection and background

As part of a larger study of putative paleolakes on Mars (Roush et al., 2009) initial analyses identified signatures of phyllosilicates in only Luqa and Cankuzo craters. Here we focus upon more detailed analyses of these craters. Luqa (∼17 km diameter, 18.23S, 131.81E) and Cankuzo (∼51 km diameter, 19.39S, 52.05E) craters are closed basins and were selected based upon morphologic features suggestive of the ancient presence of standing bodies of water, specifically the presence of an inlet channel(s) and no outlet channel(s) (Orofino et al., 2009). These craters have well-defined edges and do not appear to have undergone major modification by subsequent impacts.

The floor of Cankuzo is mapped as Hesperian, Hplm, representing one of the youngest units of the plateau sequence (Greeley and Guest, 1987). The basin wall and adjacent floor are mapped as Noachian, Npl1, corresponding to widespread cratered material in the southern highlands (Greeley and Guest, 1987). Luqa is mapped entirely as Npl1 by Greeley and Guest (1987).

Cankuzo and Luqa are not discussed in the studies of Bibring et al. (2006), Stockstill et al. (2005, 2007), Tirsch et al. (2011), Carter et al. (2009, 2010, 2011) or Wray et al. (2009), but are in regions where sheet silicates/high-Si glass may be present (Bandfield, 2002).

2. Data analysis

CRISM is a mapping spectrometer that from orbit provides 18–200 m/pixel spatial sampling (Murchie et al., 2007). The highest spatial resolution (FRT observations) has full spectral sampling of 545 wavelengths, but of limited locations on the martian surface. The lower spatial resolution (MSP observations) have only 70 wavelengths, but more extensive spatial coverage of Mars (Murchie et al., 2007).

The CRISM data are from the Planetary Data System and locations of observations are shown in Fig. 1a and e. The CRISM data were converted to apparent I/F (reflected/incident sunlight), then divided by the cosine of the incidence angle to correct for the...
Imager (CTX, Malin et al., 2007) images were used to evaluate the ages of regions at Cankuzo. Two Context using the established cratering chronology model for Mars (Hartman and Neukum, 2001; Ivanov, 2001). Each parameter map was visually evaluated using one, or more, threshold value(s) and when a spatially coherent pattern was identified, confirmation of the identification involved extraction of individual spectra. Once confirmed, the spatial distributions of the materials were evaluated.

High Resolution Imaging Science Experiment (HiRISE, McEwen et al., 2007) observations were coordinated with at least one CRISM FRT observation and the locations are shown in Fig. 1a and 1e. A High Resolution Stereo Camera (HRSC, Neukum et al., 2004) image was used to evaluate the ages of regions at Cankuzo. Two Context Imager (CTX, Malin et al., 2007) images were used to evaluate the ages at Luqa. The modeled age was calculated from the cumulative crater size-frequencies at a reference crater diameter of 1 km, using the established cratering chronology model for Mars (Hartmann and Neukum, 2001; Ivanov, 2001).

3. Results

Fig. 1 shows false color versions of the CRISM observations of Luqa (MSP_40A8, MSP_81C2, MSP_74C8, and FRT_112C9) and Cankuzo (MSP_3238, MSP_64DF, FRT_111D18 and FRT_1192C), illustrating spatially coherent patterns of OINDEX_2 (Salvatore et al., 2010, OLV2 hereafter), related to ferrous iron in minerals including Fe-bearing phyllosilicates (Murchie et al., 2009), and D2300, indicative of phyllosilicates.

Average spectra of Luqa and Cankuzo where a strong OLV2 value was detected (Fig. 2a) can be compared to laboratory reflectance spectra of olivines, low (LCP) and high calcium (HCP) pyroxenes (Fig. 2b). The minima near 1 μm and 2.0–2.5 μm in the CRISM spectra are consistent with HCP. The different minimum position in the 2–2.5 μm region suggests the HCP composition of Luqa is more Mg-rich than in Cankuzo. The width of the minimum near 1 μm suggests a contribution from olivine, although in Luqa the olivine is either less abundant, more Mg-rich, has a different grain size, or is masked by coatings, compared to the olivine in Cankuzo.

Average spectra of locations with high values of D2300 in Luqa and Cankuzo (Fig. 2c) can be compared to laboratory spectra of phyllosilicates (Fig. 2d). The spectra exhibit minima, near 1.92 and 2.32 μm (Luqa) and 2.305 μm (Cankuzo). The first is due to molecular water and the second to hydroxyl in minerals (e.g. Clark et al., 1990). The minima of Luqa and Cankuzo spectra are consistent with the laboratory spectra of saponite and pyrophylitte-talc, respectively, although a mixture of the minerals shown in Fig. 2d cannot be precluded.

Using crater statistics, Cankuzo has a base age of 3.79 ± 0.09 Ga and displays a clear resurfacing at 3.37 ± 0.04 Ga of the material filling the basin floor (Fig 3e). The base age determination relies upon two bins, containing 3 craters. Although this is relying upon statistics of small numbers, there is an abrupt transition of bins (Fig. 3e, black points) falling along the older chronology line that shifts to the younger chronology line. Such a transition is consistent with a resurfacing event (Michael and Neukum, 2010). The surface to the northwest of Cankuzo has an age of 3.40 ± 0.02 Ga (Fig 3c). The nearly contemporaneous age and presence of small and subdued dendritic channels discarging in direction of the Cankuzo observed in the HRSC image both suggest that the eroded surface to the west likely delivered the infilling material seen on Cankuzo's floor between 3.79 and 3.40 Ga. For Luqa, interior was too rough and
uneven to obtain a meaningful measurement of craters, as a result we used craters on the ejecta blanket. The cratering statistics yield an age of 2.93\(^{+0.32}_{-0.62}\) Ga for the ejecta external to Luqa. A resurfacing event, determined using the technique of Michael and Neukum (2010), occurred with an age of 245 ± 48 Ma (Fig. 3a).

4. Discussion

We interpret the CRISM spectra to show the presence of secondary minerals (Mg-bearing phyllosilicates) and a primary ferrous-bearing component (HCP and/or olivine) in both craters. The spatial distribution of the secondary minerals is significantly different in the two craters.

At Luqa, the secondary minerals chiefly occur near the central uplift with limited distribution elsewhere (Fig. 1a–c). During the impact, buried, pre-existing sediments can be emplaced in central peaks (e.g. Kenkmann et al., 2005) or dehydrated by transient temperatures (e.g. Marzo et al., 2010; Fairén et al., 2010). However, the areas with high D2300 values are along ridges and at tops of some cone shaped deposits, and are perpendicular to lineaments suggestive of bedding near the central peak. The observed distribution is consistent with alteration due to localized hydrothermal circulation along weak zones induced by the residual heat in the central peak from the impact (e.g. Marzo et al., 2010). Neither the impact exposure nor post-impact hydrothermal alteration scenarios require a standing body of water in Luqa, and selecting between these alternatives likely requires stereo imaging coverage, providing 3-D information.

The OLV2 distribution at Luqa is confined to the southwest crater floor and lower crater wall. CRISM observations (MSP_81C2, not shown here) exhibit a similar OLV2 unit ~60 km to the south but nothing in the intervening area suggesting that aeolian activity is not the emplacement mechanism for OLV2 at Luqa. This
The OLV2 unit is abundant in the region shown in panel b. The dune spacing increases to the west of the dune field shown in panel a. Comparison of this same area to Fig. 1d indicates that the OLV2 index is associated with the underlying and inter-dune regions.

hypothesis is further supported via a dune field within Luqa (Fig. 1d) where the border has a spatially coherent OLV2 pattern. Examination of the HiRISE image (Fig. 4a) shows that the region of the coherent OLV2 pattern has craters down to small sizes, while within the dune field evidence for craters is lacking. Additionally, to the west the dune spacing increases (Fig. 4b) and the contiguous OLV2 pattern becomes more clearly pronounced (compare Fig. 1d and 4b). This suggests the OLV2 unit lies below the dunes. Within the dune field the OLV2 pattern is patchy (Fig. 1d), suggesting the OLV2 unit either by exposing pre-existing material or emplacement of a melt sheet.

The distribution of minerals within Luqa suggests more than one geologic unit and the derived age is inconsistent with the Noachian associated with Npl1 of Greeley and Guest (1987), which suggests mapping of this area should be revisited.

The age of Cankuzo is consistent with the surrounding Noachian Npl1 unit of Greeley and Guest (1987). The OLV2 unit is abundant throughout the floor and the age is consistent with Hplm although its distribution within Cankuzo appears to extend closer to the base of the basin wall compared to the unit of Greeley and Guest (1987). CRISM MSP observations do not reveal a similar unit to the south or north of Cankuzo, suggesting the OLV2 unit is not of aeolian origin. Supporting this interpretation is the close temporal association with the resurfacing event, documented to the northwest (Fig. 3c), initiated by aqueous activity, whose age is consistent with an event that emplaced the material filling the crater floor (Fig. 3e, green points). The OLV2 unit defines a lineament suggesting a layer in the Southeast crater wall (Fig. 1f and g), and another concentration of the OLV2 unit is seen near the small crater outside the southeast rim (Fig. 1f–h). The OLV2 units along the crater wall, and near the small crater, are at best a few pixels in extent (Fig. 2g and f). We investigated 2 × 2 or 3 × 3 pixel averages from these spectra from several locations within the wall layer (Fig. 2c) suggest the materials are similar.

5. Conclusions

CRISM observations of postulated paleolakes Cankuzo and Luqa suggest either impact emplacement or post-impact alteration. In Cankuzo alteration of a layer may have occurred prior, or subsequent, to the crater formation. In neither case is a standing body of water required to explain the presence of phyllosilicates. Nonetheless, the phyllosilicates in both craters indicate they preserve evidence for aqueous activity and as a result may represent locations amenable for preservation of biomarkers.

Acknowledgments

This research was supported by NASA’s Mars Data Analysis Program. CG and LW were supported by the German Science Foundation (DFG) through research grant NE 212/11-1 and the Helmholtz Association through the research alliance Planetary Evolution and Life. Initial reviews by Jeffrey Moore and Nathalie Cabrol helped improve the original manuscript. We also thank two anonymous reviewers for their comments.

References

