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Abstract 
Two methods to estimate background error covariances for data assimilation are introduced.  While both share 
properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration 
of multiple model trajectories.  Instead, all the necessary covariance information is obtained from a single 
model integration.  The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because 
it estimates error covariances from the spatial distribution of model variables within a single state vector.  It can 
thus be thought of as sampling an ensemble in space.  The second method, named FAST (Flow Adaptive error 
Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory.  
The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase 
errors in space and/or time. 
 
Here, SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the 
Modular Ocean Model  (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE model 
developed at Los Alamos National Laboratory.  The results are validated against un-assimilated Argo salinity 
data.  They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used to 
produce the latest ocean analysis by the Global Modeling and Assimilation Office (GMAO).  Further, when 
only temperature data are assimilated, FAST is better able to improve the model salinity field than SAFE or 
EnOI.  
 
 
1. Introduction 
Following a seminal paper by Evensen (1994), the ensemble Kalman filter (EnKF) has become a widely used 
research tool and research topic.  At the time of writing, more than 400 papers have been published on the EnKF 
and many more on closely related ensemble data assimilation methods.  While they differ in terms of the 
approach used to update or resample the ensemble of model states, all ensemble data assimilation methods 
require an ad hoc number of concurrent model integrations to estimate the distribution of background errors.  
This approach (also known as sequential Monte Carlo) is essentially an O(n) procedure, where n is the size of 
the model state vector.  In contrast, the original Kalman (1960) filter algorithm propagates its background-error-
covariance estimates by means of matrix multiplications of O(n3).  Hence, ensemble methods are considered 
economical from a numerical standpoint, even though their cost can be seen as overwhelming in comparison to 
conventional data assimilation methods.  Because of this, nearly all implementations of ensemble assimilation 
methods must compromise between ensemble size and model resolution. 
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Because the analysis and error estimates depend on the state of each ensemble member, ensemble methods are 
considered flow-adaptive.  Another attractive property of these methods is that they provide estimates of the 
cross-field covariance between observed and unobserved model fields that are needed to update unobserved 
system variables.  For example, ocean sub-surface fields can be updated even if only surface observations are 
available.  In what follows we will use the term “multivariate” to refer to the ability to update fields of 
prognostic model variables other than the observed variable using estimates of the cross-field error covariances.  
Conversely, algorithms that update only a single observed model field will be referred to as “univariate”. 
 
The purpose of this paper is to introduce two data assimilation algorithms that, like the EnKF and other 
ensemble methods, are flow-adaptive and multivariate but, unlike ensemble methods, rely on only a single 
model trajectory to estimate all the necessary error-covariance information.  As such, these methods obviate the 
requirement to compromise between ensemble size and model resolution faced by all EnKF implementations 
for higher resolution numerical models.  The first algorithm (Space Adaptive Forecast-error Estimation: SAFE) 
is based on the concept of sampling an ensemble in space.  It estimates error covariances from the joint spatial 
distribution of model variables in a single background state.  The second algorithm (Flow Adaptive error 
Statistics from a Time series: FAST) estimates covariances from the distribution of an ensemble of high-pass 
filtered lagged instances of the model state vector sampled along the same trajectory.  Because they do not 
require multiple integrations of the numerical model, SAFE and FAST are overwhelmingly faster and 
considerably less resource hungry than the EnKF and other ensemble assimilation schemes. 
 
The underlying assumption on which SAFE and FAST are based is that errors in the forecasts used in 
assimilation are primarily phase errors in space and/or time.  For the ocean this assumption makes sense as the 
dominant source of error can be related to errors in surface forcing, i.e., the timing, intensity, or location of 
particular atmospheric synoptic events.  Thus, the forecast (or background) errors can be related to the timing or 
intensity in the propagation or advection of oceanic anomalies. 
 
The algorithms are outlined in Section 2 together with the Goddard Earth Observing System (GEOS) modeling 
and data assimilation system developed at the Global Modeling and Assimilation Office (GMAO).  The 
methodology is compared to conventional assimilation techniques in Section 3 where SAFE and FAST are 
applied to the assimilation of Argo temperature (T) profiles into the ocean component of the coupled modeling 
system.  Unassimilated Argo salinity (S) observations are used to validate the assimilation.  Conclusions follow 
in Section 4. 
 
 
2. Assimilation Algorithms 
2.1 Preamble 
Most sequential data assimilation algorithms are inspired by or derived from the Kalman filter (e.g., Analytical 
Sciences Corporation Technical Staff 1974) and involve the following steps, 
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where the subscript k refers to the kth of a sequence of assimilations, xf and xa denote the model forecast and 
analyzed states, M is the model operator, and fk-1 represents the forcing between times tk-1  and tk.  The 
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observations, yk, assimilated at time tk are related to the true system state, xt, at time tk by equation (1b) where 
Hk is the observation operator, E denotes the expectation operator and ��k, with covariance matrix Rk, is the 
observation error vector.  The Kalman gain matrix, Kk, dictates how the observations and model forecast are 
weighted in the analysis computation (equation 1d).  It depends on Hk, Rk and the background error covariance 
matrix, 
 

)2().)()(( Tf
k

tf
k

t
k E xxxxP ���  

 
Of course, since xt is unknown, Pk cannot be computed directly from equation (2) and must be estimated, either 
explicitly or implicitly, by some other means.  In fact, the procedure used to estimate Pk can be used to classify 
data assimilation methods. 
 
In the EnKF and most ensemble methods inspired from it, Pk is estimated from the statistical distribution of an 
ensemble of model forecasts,  
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started from an ensemble of n analyzed model states at time tk-1.  To filter spurious long-range covariances 
resulting from the finite ensemble size, nearly all ensemble data assimilation implementations follow 
Houtekamer and Mitchell (2001) and (dropping the k subscript) decompose P as  
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where Pe represents the background covariances estimated from the ensemble of model states, C is a compactly 
supported correlation matrix and � denotes the Schur (i.e., element by element) product of two matrices. 
 
In a class of methods known alternatively as ensemble optimal interpolation (EnOI: e.g., Borovikov et al. 2005; 
Oke et al. 2005, 2010; Wan et al. 2010; Vernieres et al. 2012) or asymptotic ensemble filters, the time 
dependency is neglected and P is estimated from the statistics of one or more model run histories or from 
combinations of model histories.  In many cases, EnOI methods are competitive with the EnKF because they 
make up for the performance degradation due to neglecting the forecast-error evolution by estimating error 
statistics from a much larger ensemble. 
 
Optimal interpolation (OI: Eliassen 1954) refers to an older class of data assimilation methods in which 
background-error covariances are modeled with Gaussian functions or other analytically or empirically derived 
functions.  Cross-field covariances are generally neglected in these methods and only the model field 
corresponding to the observed variable is updated. 
 
2.2 Space Adaptive Forecast error Estimation (SAFE) 
The SAFE algorithm attempts to combine the simplicity and cost effectiveness of OI with the large sample size 
of EnOI and the flow dependency of the EnKF.  It estimates background error covariances by sampling each 
model field in the neighborhood of every grid point and using the resulting sample as if it came from an 
ensemble of model states.  Because the size of the sampling neighborhood determines the covariance 
amplitudes, rescaling is necessary.  Note however that an error-covariance rescaling step is also implicitly 
present in most ensemble assimilation techniques where the background-error covariance amplitude is 
determined by parameters of a covariance inflation procedure. 
 



4 

While the concept of sampling errors from an ensemble in space is heuristically convenient, it is impractical in 
geophysical fluid models with complicated boundaries.  Instead, the procedure is approximated with the 
following algorithm.  For simplicity of notation, we assume that the model state can be split according to 
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where v is an observed model field and w is unobserved.  The generalization to more than two model fields is 
obvious.  We also assume that all the data assimilated correspond to the same model field.  In view of the above, 
the model update is split according to 

va = v f + PvvHT HPvvHT + R�� 	�
�1
y�H(v f )�� 	�

�v

P HH �H �HHHH� PHH H +H +H R�R �� �� y� H�H vH(v )�v ) . (6a)

wa =w f + PwvHT HPvvHT + R�� 	�
�1
y�H(v f )�� 	�, (6b)

=w f + Pwv Pvv( )�1
�v. (6c)

 

The application of equation (6c) is further simplified by assuming that the w background error in grid cell (i, j, 
k) is predominantly related to the v error in grid cell (i, j, k) and negligibly related to the v errors in other grid 
cells, thus neglecting the off diagonal elements of Pvv in (6c).  Instead the unobserved model field is updated 
according to 

wijk
a =wijk

f +
Pijk
wv

Pijk
vv �vijk, i =1, , I, j =1, , J, k =1, ,K, (6d) 

where I, J and K denote the number of grid cells along the x, y, and z space dimensions, respectively. 

The first step is to estimate the background-error variance of the observed field with 

 � )7(),)(()( 22 vvPσ ����� vv
vv diag  

where � is a local 3D averaging operator.  Several averaging operators were tested. For our implementation, 
repetitive application of a gridpoint (spatial) Laplacian smoother was found to be effective. 

The variance estimate is rescaled such that  

)8(,)()( 2 RHHP diagdiag tvv ��  

where the double vertical bar stands for an L2 vector norm.  The parameter � is prescribed.  It is a scalar 
representing the global mean (asymptotic) target ratio of background error variances to data error variances and 
its role is similar to that of multiplicative covariance inflation parameters used in many EnKF implementations.  
Note that this formulation assumes a steady state regime where the average global mean error variance increase 
between successive assimilations equals the mean error variance decrease resulting from each assimilation step. 
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After estimating the background error variances, the update of equation (6a) is applied.  This step corresponds 
to an OI analysis with the model background error variances calculated with equation (7).  Let �12 represent the 
covariance of the v background errors at locations 1 and 2.  It is estimated with 
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where �v1 and �v2 are estimated with equation (7), the  Ls are length scales, in units of the variable v and in the 
three space dimensions and c0 is the popular function given by equation (4.10) of Gaspari and Cohn (1999), or 
any other compactly supported correlation function.  The max function selects the largest of its arguments.  
Equation (9b) ensures that �12 is 0 if either v1 differs significantly from v2 or if locations 1 and 2 are very distant 
from each other.  The intent is that in the majority of cases, 
 

�12 =� v1� v2c0(( v1�v2 ) / Lv ),  
  
and the modulation of the background error covariances with the c0 function enforces error covariance 
localization in a state-dependent manner. 
 
The local cross-field covariances of the v and w errors in every grid cell are estimated with 
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They are used to update the fields of unobserved variables according to equation (6b). 
 
The size of the regions over which the ��smoothing operator is applied is generally of little consequence.  
Figure 1 illustrates this fact.  It shows time series of differences in RMS observation minus forecast (OMF) for  
Argo temperature (T) and salt (S) data when Argo T data are assimilated every five days into the coupled 
GEOS-5 system, using SAFE.  Each panel shows the RMS OMF reduction from the corresponding RMS OMF 
from a control run without data assimilation, such that negative numbers indicate that the analysis is closer to 
the data than the control.  Fig. 1a corresponds to the active (i.e., assimilated) T data and Fig. 1b to the passive 
(un-assimilated) S data. As in every other experiment discussed herein, the initial ocean state of each run 
(including the control run) is taken from the GMAO ocean analysis (Vernieres et al. 2012) and the experimental 
setup is as detailed in Section 3 and uses the model configuration discussed in Section 2.4.  In the three cases 
shown, the � operator consists in 5 (red), 10 (blue) and 20 (green) iterations of a diffusive filter.  While the case 
with 20 iterations produces somewhat better results for S (larger RMS S reduction), the differences from the 
other two cases are small.  In the SAFE run of Section 3, � involves 10 diffusion steps.     
 
2.3 Flow Adaptive error Statistics from a Time series (FAST) 
While SAFE is based on the idea of sampling an ensemble in space, FAST samples an ensemble in time.  The 
analyzed state at time tk is computed from n previous instances of the model state vector sampled from the 
recent history of the current model run, 
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where xk = x(tk ), xk�1 = x(tk�1 = tk ��),  etc., for a given time lag ��  Arguably, � should be such that xk-1 differs 
significantly from  xk while it still contains information that is useful at  tk.  Hence, it seems reasonable to set L 
to the assimilation interval, as is done in Section 3.   
 
 
While one could be tempted to compute the analysis from Xk without further preprocessing as though it were 
made of the current state of the ensemble of model trajectories from an EnKF run, the resulting error covariance 
estimates would be dominated by the instances furthest away from the center of the time window since )(kx  is 
the simple moving average of length n estimated at time .2/nkt �  To prevent this from occurring and improve the 
assimilation performance, the lagged state instances are first high-pass filtered, 
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where the sequence of 0

kx  is obtained by low-pass filtering the model history.  One simple way to do this is with 
an exponential moving average (EMA), 
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where .10 ���   A good choice to filter out time scales longer than half the time window is ).2/(4 ��� n  A 
simple moving average can be used, as in (11b), at the expense of more bookkeeping.  The case with � = 0.5 is 
essentially equivalent to forming the ensemble of first order differences over the time window.   
 
Finally, the kX �  ensemble is resampled. (This step removes sequential ordering information but it is not strictly 
necessary.) The resulting ensemble mean is removed,  
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where the �ij are drawn from a uniform random distribution. 
 
The FAST procedure makes the same calculations to estimate background error covariances and compute 
assimilation increments with the ensemble of equation (14b) as the EnKF makes with its ensemble of model 
states at time tk (e.g., equation 2b-f of Keppenne et al. 2008).  One notable difference is that FAST calculates 
only one increment.  Because a single model integration is involved, the ensemble size can be increased at a 
very minimal cost. 
 
Figure 2 illustrates the importance of time-filtering and resampling the lagged ensemble of background states.   
It shows the reduction in RMS OMF for both T and S with respect to the corresponding RMS OMF statistics 
from the control run in experiments assimilating Argo T every five days.  Five cases are shown.  The green lines 
correspond to the full FAST methodology (equations 11-14) with n=20 and �=0.18 (period 10 EMA).  The four 
other cases shown correspond to (1) the deviations from their ensemble mean of the most recent 20 unfiltered 
background states sampled every five days (magenta), (2 and 3) the deviations from their ensemble mean of the 
most recent 20 first order time differences (cyan) and second-order time differences (blue) of background states 
sampled every five days and (4) the EnOI with the static ensemble of 20 error EOFs used to produce the GMAO 
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analysis (see Section 2.4.2: red).  The latter is estimated from a 186-member static ensemble according to the 
procedure detailed in Vernieres et al. (2012). 
 
Clearly, computing covariances from unfiltered background states, a procedure which corresponds to using 
signal covariances, results in the poorest performance for the passive S data but draws the model state closest to 
the active T data (possible overfitting).  The performance obtained with the dynamic ensembles of most recent 
first and second order time differences is close to that obtained with the static ensemble of leading EOFs.  
Among the five cases shown, FAST with 50-day high-pass filtering (period-10 EMA removal from a time series 
with L = 5 days) performs best for salt and achieves a good compromise for temperature.  Presumably, the 50-
day filtering retains pertinent information and avoids aliasing to the lower frequencies but it is possible that 
better results could be obtained with a different FAST configuration.  The results of Figure 2 are for the entire 
water column, but it is shown in Section 3 that the better FAST performance is most noticeable above the 
thermocline. 
 
2.4 GEOS-5 Modeling and Ocean Data Assimilation System 
2.4.1 GEOS-5 atmosphere-ocean general circulation model 
The SAFE and FAST algorithms are tested in Section 3 in the context of assimilating Argo temperature data into 
the GFDL MOM4.1 ocean model coupled to the NASA GEOS-5 AGCM and to the Los Alamos CICE ice 
model (all of which comprise the GEOS-5 AOGCM).  The model configuration is the same as that used for the 
GMAO ocean analysis (Vernieres et al. 2012).  In summary, the OGCM is run with a geopotential vertical 
coordinate on a ½° grid with a gradual meridional refinement to ¼° at the Equator and with 40 vertical levels.  
The grid is Cartesian south of 60°N and tripolar northward thereof.  The AGCM grid is 1° × 1.25° with 72 
levels.  The CICE model is run on the same horizontal grid as the OGCM.  The AGCM is constrained by 
replaying the Modern-Era Retrospective analysis for Research and Applications (MERRA: Rienecker et al. 
2011) while the ocean observations are assimilated.  The replay procedure replaces the AGCM state with the 
state of the analysis every six hours. 
 
2.4.2 GEOS integrated ocean data assimilation system (iODAS) 
The components of the GEOS-5 AOGCM are connected to each other and to the GEOS integrated ocean data 
assimilation system (iODAS) with the Earth System Modeling Framework (ESMF).  Besides SAFE and FAST, 
two other assimilation algorithms available in iODAS are an EnOI utilizing EOFs of short-term forecast errors 
(Vernieres et al. 2012) and a univariate OI (UOI) algorithm with adaptive error covariance localization.  They 
are both used in Section 3 as comparison benchmarks.  The parallel implementation of iODAS follows 
Keppenne and Rienecker (2003). 
 
The procedure used to compute the short-term forecast-error empirical orthogonal functions (EOFs) used by the 
EnOI involves a 186-member ensemble of forecast error estimates.  It is detailed in Vernieres et al. (2012). 
 
The covariance model used by the UOI assumes that the forecast errors have a compactly supported distribution 
with variance equal to the variance of the ensemble of error estimates from which the EOFs used with EnOI are 
computed.  This corresponds to equation 9 with �v1 and �v2 corresponding to the cumulative EOF standard 
deviation at locations 1 and 2. 
 
In the SAFE, FAST, EnOI and UOI experiments discussed in Section 3, background-error covariances are 
localized according to equation (4) where the element of C corresponding to the ith and jth model state variables 
at space-time locations (xi, yi, zi, ti) and (xj, yj, zj, tj), is given by 
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where ri and rj are the adaptive localization variable at locations i and j and the r field is chosen to correspond to 
the observed variable.  Note the similarity with equation (9b), except for the appearance of the temporal term, 

).( 1
0 ji

tL ttc �  The latter results from differences between the measurement times and the analysis time.  The 

application of equation (15) to modulate the background-error covariances enforces a state-dependent error-
covariance localization, even when the raw covariances are time-independent, as is the case with EnOI and 
UOI. 
 
 
3 Application 
To validate the SAFE and FAST algorithms and to evaluate their usefulness as alternatives to the EnOI, we ran 
four AOGCM experiments assimilating T profiles from the broad-scale global array of temperature/salinity 
profiling floats (Argo: Gould et al. 2004).  In three of these runs, namely in the SAFE, FAST and EnOI runs, 
both T and S ocean model fields are updated.  In the fourth run, referred to as UOI run, only the T field is 
updated.  [Note that the UOI is included for completeness, even though it has been known for some time that 
assimilation that does not update salinity carefully can give a poor analysis (e.g., Sun et al. 2007).] Besides the 
active Argo T data, passive Argo S data are also processed.  The passive qualifier means that these data are not 
assimilated.  Their only use is to quantify the effect of the assimilation on the unassimilated S variable.  A 
control run in which all the T and S data are processed passively was also run. 
 
The runs cover a two-year period starting January 1, 2010.  The ocean initial conditions are the same for all runs 
and come from the GMAO ocean analysis (Vernieres et al. 2012).  The GEOS-5 replay procedure constrains the 
atmosphere to MERRA over the period of the runs.  Every five days, data from a 5-day time window centered 
about the analysis time are processed.  The observational error model is Gaussian in the horizontal and vertical.  
The observational error variance varies as a function of depth according to the magnitude of the vertical 
gradient.  Details are provided in Vernieres et al. (2012).  The assimilation increments are applied incrementally 
over a five-\day period, as in the incremental analysis update procedure of Bloom et al. (1996), but without 
rewinding the model clock (Keppenne et al. 2008). 
 
The SAFE run estimates its background-error covariances from equations (7) and (10) where the � operator 
consists of 10 diffusion steps.  To improve the performance in the low latitudes, SAFE error covariances are 
explicitly disabled when they involve a grid cell within the 10°N-10°S latitude band and another grid cell 
outside of it.  This step is exclusively applied in the SAFE run to prevent the state variables at grid cells outside 
the waveguide from participating in the estimation of the background error variance (� operator) at grid cells 
inside the waveguide.  The FAST run applies equations (11-14) with a five-day lag, n=20 and �=0.18.  Only 20 
lags are used to facilitate comparison with the EnOI, since the latter uses a static ensemble of 20 leading EOFs 
(Section 2.4.2).  The UOI run takes its background temperature error variance estimate from the EnOI run 
(weighted sum of squared EOFs).  The error-covariance localization scales are the same in all runs and are 
identical to those used in Vernieres et al. (2012).  For each assimilation cycle, SSTs are assimilated first, 
followed by the in situ data. 
 
To illustrate the SAFE and FAST error covariance models, Figure 3 shows time sequences of zonal vertical 
cross sections at the Equator through the SAFE (Fig. 3 a-d) and FAST (Fig. 3 e-h) background error standard 
deviation estimates for the model’s ocean temperature. The succession is shown with a 3-month interval.  The 
FAST and SAFE sections are qualitatively similar.  Yet, the SAFE estimates are noticeably smoother because 
the number of grid cells participating in the SAFE spatial averaging is larger than the number of lagged state 
instances used in the FAST computations.  Also note the general resemblance to the corresponding section 
through the time-independent background error standard deviation field used by both the EnOI and UOI runs of 
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Section 3 (Fig. 3i).  The differences between the equatorial sections are largest in the Indian and Atlantic Ocean. 
 
The processing time of each run with data assimilation expressed in terms of the time taken by the control run 
on 30 Intel Altix Sandy Bridge nodes (360 2.8 GHz cores) is shown in Figure 4.  UOI takes 70% longer than the 
control run while FAST and EnOI both take about twice as long as UOI and SAFE takes nearly 50% longer than 
UOI.  For comparison, the best case scenario for a 20-member EnKF run in which ensemble members are run 
sequentially is also shown.  Running ensemble members in parallel, while possible with the GEOS iODAS 
would require many more compute nodes. 
 
Figure 5 illustrates the background-error covariance models used in each run by showing marginal T and S 
assimilation increments corresponding to the impact of a unit T innovation at (0ºN, 140ºW, 180m) at the end of 
the runs (January 1, 2012).  The top row of panels (a), (e) and (i) shows zonal sections through the 
corresponding marginal T increments in the SAFE (left), FAST (middle) and EnOI (right) runs.  The 2nd row of 
panels (b), (f) and (j) shows corresponding meridional T sections.  Panels (c), (g) and (k) (3rd row) and the 
bottom row of panels (d), (h) and (l) show zonal and meridional sections through the corresponding marginal S 
increments. 
 
The differences apparent in Figure 5 result primarily from differences in covariance modeling approach (static 
ensemble in EnOI, time-lagged ensemble in FAST, spatial pseudo ensemble in SAFE). However, differences 
also arise from differences in the state adaptive error-localization of equation (15) since the differences between 
the respective background states have increased over time (particularly evident in Figure 6).  The amplitude 
differences between the SAFE, FAST and EnOI marginal gains reflect differences in the background error 
estimates at the observation location.  In this example, there is more correspondence between the shapes of the 
marginal T and S increments from the EnOI (panels (i) and (k) and panels (j) and (l)) than those from SAFE or 
FAST.  The amplitude of the T marginal increment is also largest in the EnOI run.  Yet, the amplitude of the S 
marginal increment is relatively small in the EnOI run, reflecting lower covariance between the T and S error 
estimates at this particular observation location. 
 
To further illustrate how the SAFE, FAST and EnOI error-covariance models differ, Figure 6 shows the time 
evolution (sampled every three months) of zonal sections through the marginal S increment corresponding to a 
unit T innovation at the same Equatorial location considered in Figure 5.  Not surprisingly since the EnOI 
estimates background covariances from a static ensemble, its marginal S gain at this location displays the least 
temporal variation.  The latter result from how the background T field (r in equation (15)) changes with time.  
Conversely, the FAST marginal S gain varies the most with time as one could have expected because the 
corresponding background error covariances are high pass filtered by design and represent errors/uncertainties 
at periods shorter than 50 days in this case. Clearly, the FAST covariances are influenced by tropical instability 
waves which mostly occur between July and November and have wavelengths of 1000-2000 km and periods of 
20-40 days (e.g., Willett et al., 2006). While the spatial ensemble involved in the SAFE background error 
covariance calculations also varies with the background fields, the resulting covariances only capture variability 
in space, not in time. 
 
Figure 7 quantifies the improvement (negative values) or worsening (positive values) over the control by 
showing to what extent the RMS OMF statistics differ from the corresponding statistics from the control run.  
RMS OMF differences are shown in each panel for the SAFE (blue), FAST (red), EnOI (green) and UOI 
(magenta) runs.  Figure 7a corresponds to the active Argo T data, while Figs. 7b and 7c correspond to the 
passive Argo S data above and below 300 meters.  While the four data assimilation methods perform similarly 
for T, FAST stands out for its better performance in terms of S, especially in the upper ocean (Fig. 7b).  On the 
other hand, the underperformance of UOI, which degrades the model salt field compared to the control run, is 
especially striking in the thermocline (Fig. 7c).          
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The global RMS observation minus forecast (OMF) differences corresponding to the active T data are 
comparable in the four runs with T data assimilation (SAFE: 0.76 ºC, FAST: 0.88 ºC, EnOI: 0.76 ºC, UOI: 0.87 
ºC), as they each explain approximately the same fraction of the T innovation variance of the control run (1.272 
ºC2).  This result is as expected given that each run sets �=1 in equation (8) to facilitate the comparison.  Figure 
8 further illustrates the respective performance of each run with T assimilation. The difference of the RMS 
OMF (horizontally and over time) in the data assimilation runs from that in the control is shown as a function of 
depth for 2011 (blue: SAFE, red: FAST, green: EnOI, magenta: UOI).  Negative numbers mean that the data 
assimilation brings the (5-day lead) forecast state closer to the data than the control and should be the norm if 
the data are unbiased.  Fig. 8a corresponds to the active T data and Fig. 8b to the passive S data.  For T, the level 
of improvement over the control is similar for all runs and is largest near a depth of 100 meters.  For S, the 
results are markedly different.  UOI is worse than the control over the entire water column and while SAFE, 
FAST and EnOI all improve upon the control over the entire column, FAST produces the largest improvement 
over the entire depth range.    
 
The horizontal distributions of the differences in RMS S OMF from those of the control during 2011 for each of 
the SAFE, FAST, EnOI and UOI runs are shown in Figure 9 for the upper 300 meters and in Figure 10 for 
depths greater than 300 meters.  In the upper ocean, SAFE, EnOI and UOI all show significant degradations 
from the control in the Western Equatorial South Pacific (red areas in Figs. 9a, 9c, and 9d).  FAST does better in 
the same area and performs best overall (Fig. 7b).   Since the upper ocean salt content is heavily influenced by 
precipitation and evaporation and the corresponding fluxes are constrained to the MERRA forcing in all runs, 
including the control, it is not surprising that the analyses (which all assimilate T only) do not outperform the 
control at the surface and in the mixed layer above the halocline.   Positive impacts on the model salinity from 
the T data assimilation are most likely to manifest themselves further away from the surface.  Accordingly, the 
positive impact of the S field correction in the SAFE, FAST and EnOI runs is more apparent below 300 meters, 
especially in the Northern Atlantic, Gulf Stream and Kuroshio areas and in the area of the West Australian and 
Leeuwin currents in the Southeast Indian Ocean.  While FAST performs best overall, it under-performs the 
control in the Indian sector of the Southern Ocean.  A similar but less-pronounced underperformance in the 
same area is also noticeable for SAFE (Fig. 10a), but not for EnOI.  Since the comparison is restricted to 2011, 
these regional comments are not definitive.     
 
4. Conclusions 
When ensemble data assimilation schemes are applied to complex numerical models, the ensemble size is 
always a limiting factor or the object of compromise.  The methodologies introduced here are designed to 
possess the main advantages of ensemble data assimilation methods such as the EnKF, namely the ability to 
update state variables even if unobserved (or not directly assimilated) and to estimate the spatial distribution of 
background errors, without incurring the cost of ensemble integrations.  In EnKF implementations, the 
amplitude of ensemble perturbations is often the result of manually tuned covariance inflation.  The approach 
used in SAFE and in FAST whereby the global ratio of the traces of the background error and observation error 
covariance matrices is specified at runtime achieves essentially the same purpose.   
 
FAST more closely resembles the EnKF since it is essentially an EnKF with a high-pass filtered proxy ensemble 
sampled from the model’s recent history.  The spatial background error covariance representation of SAFE is a 
more radical departure from mainstream ensemble data assimilation methods.  While SAFE is nearly as 
economical as conventional OI, our results hint that it is not as effective as FAST or EnOI in updating fields of 
un-observed variables.  The better performance of FAST in this respect may stem from its error covariance 
model ability to capture sub-seasonal variability.  
 
While more work is required to fully evaluate the potential of the new methods, our initial results suggest that 
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SAFE may hold promise for high-resolution data assimilation where numerical efficiency is critical.  In 
complex production systems where running an EnKF implementation requires that the ensemble size or model 
resolution be severely limited, FAST seems like a viable alternative. 
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Figure captions 

Figure 1. Reduction of RMS OMF over the corresponding RMS OMF from a control run without data 
assimilation for (a) active Argo T and (b) passive (i.e., unassimilated) Argo S data in SAFE runs assimilating the 
Argo T data.  The three cases shown correspond to SAFE runs in which the background-error covariance 
estimation involves 5 (red), 10 (blue) and 20 (green) steps of a diffusive (Laplacian) filter. 
 
Figure 2. Reduction of RMS OMF over the corresponding RMS OMF from a control run without data 
assimilation for (a) active Argo T and (b) passive (i.e., unassimilated) Argo S data in runs assimilating the Argo 
T data every five days and in which the background error covariances are estimated with each of the following 
five approaches (see text for details): EnOI using a static ensemble of 20 leading error EOFs (EnOI: red), a 
lagged ensemble of the 20 most recent unfiltered background states (0 order: magenta), an ensemble of the 20 
most recent first-order time differences (1st order: cyan), an ensemble of the 20 most recent second-order time 
differences (2nd order: blue), and FAST with 20 lags and 50-day high pass filtering [i.e., removal of a 10-period 
exponential moving average in equation (12)] (FAST: green).  Negative (vs. positive) values correspond to 
improvements (vs. worsening) over the control.  

Figure 3. Temperature background error standard deviation estimates along the Equator in the SAFE, FAST and 
UOI runs of Section 3 and corresponding from top to bottom to March 31, 2011 (a: SAFE, e: FAST), June 30, 
2011 (b: SAFE, f: FAST), September 30, 2011 (c: SAFE, g: FAST) and December 31, 2011 (d: SAFE, h: FAST) 
Panel (i) shows the time independent background error standard deviation estimate used by both the EnOI and 
UOI runs.  The color scale shown to the right of panel (i) is applicable for all panels. 
 
Figure 4. Processing time per month of model simulation expressed in units of the corresponding processing 
time from the control run.  Note the logarithmic scale.  The EnKF case corresponds to a best case scenario for a 
20-member EnKF run in which ensemble members are run sequentially. 
 
Figure 5. Zonal and meridional sections through the marginal contribution to the T and S assimilation 
increments in PSU corresponding to a unit T innovation at (0ºN, 140ºW, 180m) in the SAFE (a-d), FAST (e-h) 
and EnOI (i-l) runs on January 1, 2012.  Zonal (meridional) sections are labeled W-E (S-N).  (a), (e), (i) 
correspond to T zonal sections,  (b), (f), (j) to T meridional sections, (c), (g), (k) to S zonal sections and (d), (h), 
(l) to S meridional sections.  The top color bar applies to all the panels in the top two rows.  The bottom color 
bar applies to the bottom two rows. 
 
Figure 6. Zonal sections through the marginal contribution to the S assimilation increment in PSU 
corresponding to a unit T innovation at (0ºN, 140ºW, 180m) in the SAFE (a-e), FAST (f-j) and EnOI (k-o) runs 
on (from top to bottom) January 1, 2010, April 1, 2010, July 1, 2010, October 1, 2010 and January 1, 2011.  The 
color bar to the right applies to all the panels. 
 
Figure 7. (a) RMS OMF difference with RMS OMF from a control run without data assimilation started from 
the same initial condition for (a) active Argo T data, (b) passive Argo S data in the upper 300 meters and (c) 
passive Argo S data below 3000 meters.  RMS OMF differences quantify the improvement (negative values) or 
worsening (positive values) over the control and are shown in each panel for the SAFE (blue), FAST (red), 
EnOI (green) and UOI (magenta) runs. 
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Figure 8.  Global average of RMS OMF change over the control as a function of depth for (a) active T data and 
(b) passive S data in the second year (2011) of the SAFE (blue), FAST (red), EnOI (green) and UOI (magenta) 
runs.  Negative (positive) numbers indicate a reduction (increase) in RMS OMS statistics over the control run.     
 
Figure 9.  Horizontal distribution of RMS T OMF differences during 2011 with the corresponding RMS T OMF 
from the control run.  The data are binned over 0-300-meter deep by 1º zonal by 1º meridional boxes.  Negative 
values identify areas where the analysis is closer to the Argo observations than the corresponding state from the 
control run and vice versa.  The four panels correspond to the SAFE (a), FAST (b), EnOI (C) and UOI (d) runs. 
 
Figure 10.  Same as Figure 9 for the passive Argo S observations below 300 meters. 
 
 
 


