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[1] Rainfall varies in space and time in a highly irregular manner and is described naturally
in terms of a stochastic process. A characteristic feature of rainfall statistics is that they
depend strongly on the space-time scales over which rain data are averaged. A spectral
model of precipitation has been developed based on a stochastic differential equation of
fractional order for the point rain rate, which allows a concise description of the second
moment statistics of rain at any prescribed space-time averaging scale. The model is thus
capable of providing a unified description of the statistics of both radar and rain gauge data.
The underlying dynamical equation can be expressed in terms of space-time derivatives of
fractional orders that are adjusted together with other model parameters to fit the data. The
form of the resulting spectrum gives the model adequate flexibility to capture the subtle
interplay between the spatial and temporal scales of variability of rain but strongly
constrains the predicted statistical behavior as a function of the averaging length and time
scales. We test the model with radar and gauge data collected contemporaneously at the
NASA TRMM ground validation sites located near Melbourne, Florida and on the
Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by
tuning them to fit the second moment statistics of radar data at the smaller spatiotemporal
scales. The model predictions are then found to fit the second moment statistics of the gauge
data reasonably well at these scales without any further adjustment.
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1. Introduction

[2] Because of its irregular nature, rain is both difficult to
measure accurately and predict from a physical model.
Models of rain statistics provide a simple and conceptually
economical way to capture the space-time variability of
precipitation in terms of a small number of adjustable para-
meters. They can be relatively easily validated from a large
space-time data set, and once the parameters are tuned to
data, the model provides a rather efficient method of des-
cribing various statistical properties of precipitation over
areas of similar rain climatologies.
[3] In practice, rainfall is generally measured as a

(nearly) instantaneous area-averaged quantity in radar
measurements or as a time-averaged quantity at a point in
rain gauge measurements. In theoretical models, they are

conveniently represented as suitable space and/or time ave-
rages of a continuous stochastic field. This continuum appro-
ximation is valid at the space-time resolution of the usual
measurement methods under normal rainy conditions in
which the inherent discreteness of rain at the scale of individ-
ual drops is smoothed out. In this paper we develop a phe-
nomenological model of space-time statistics of rain in
terms of a random field R(x, t) denoting the instantaneous
point rain rate. It should be emphasized that R(x, t) is not
directly observable, but when suitably area- or time-averaged,
corresponds to measured quantities.
[4] Radar scans yield area averages at an instant of time

with horizontal spatial resolution of order 1 km. Rain gauge
and disdrometer observations, on the other hand, lead to
time-averaged point rain rate estimates with temporal
resolution of order 1min. These data can then be further
“coarse-grained” by aggregating them to any desired larger
space-time scale. Although rainfall varies in an apparently
irregular manner, the underlying physical processes take
place over an extended space-time region that causes the rain
rate field to be correlated in space and time. Moreover, the
statistics of rainfall depend on the space-time averaging
scales in a nontrivial manner. In fact, it is well-known that
[see, e.g., Bell, 1987] there is a subtle interplay between
the space-time scales associated with the decay of the corre-
lation function and the averaging scale that is reminiscent of
fluid turbulence. Like the velocity field of a turbulent fluid,
the rain rate field R(x, t) has the property that the larger the
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averaging area, the longer the field remains temporally corre-
lated. Similarly, the longer the period of time averaging, the
greater the distance over which the spatial correlation per-
sists. This property of the space-time correlation of rain is
most easily captured in terms of the Fourier spectrum of the
field. A spectral model of precipitation statistics was devel-
oped in a number of earlier papers [Bell and Kundu, 1996]
(hereinafter BK96) and [Kundu and Bell, 2003] (hereinafter
KB03) that incorporates these features in a qualitative man-
ner. The spectrum is generated from a Langevin-type stochas-
tic differential equation for the spatial Fourier amplitudes
of R(x, t) that is suggested by analogy with Brownian mo-
tion. The model spectrum in turn directly determines the
complete second moment statistics of the rain field averaged
to any desired space-time scale and is thus in principle capa-
ble of fitting both radar and rain gauge data. Thus, if the
parameters of the model are tuned to fit the statistics of
area-averaged rain rate using radar rainfall data, the model
is then expected to describe, without any further adjustment,
the statistics of time-averaged point rain rate data from a
gauge network within the same space-time domain. We
refer the reader to BK96 and KB03 for a more complete
account of various aspects of the model and the relevant
literature on other modeling approaches.
[5] With the availability of large precipitation data sets in

recent years, it has become feasible to validate the model
quantitatively over a large range of space-time scales. Large
multiyear data sets have now been produced from ongoing
radar and rain gauge measurements collected as part of the
ground validation (GV) program pursued by NASA during
the Tropical Rainfall Measuring Mission (TRMM) [Wolff
et al., 2005]. In particular, a large amount of space-time
colocated data is available from radar and gauge observations
at several TRMM GV sites. We sought to test the spectral
model described in BK96 and KB03 with the TRMM GV
data. During this effort, it became clear that the model in
its original form broadly captures the general features of
the space-time statistics of radar-derived precipitation data
but does not accurately fit the details. Moreover, if the
model parameters are estimated by fitting the radar data,
the predicted statistics of the accompanying rain gauge
data depart substantially from the observed statistics.
Alternatively, the parameters estimated independently from
the radar and gauge observations belong to qualitatively
distinct model regimes. The inevitable conclusion was that
the originally proposed model spectrum needed to be gener-
alized for it to describe both radar and gauge observations.
[6] Our present work stems from an attempt to find such a

generalization. With the integration of radar and gauge obser-
vations, a larger range of space-time scales becomes experi-
mentally accessible. In order to achieve greater flexibility in
fitting all the available data, we extend the model framework
by generalizing the underlying stochastic dynamical equation
from an ordinary differential equation in time to a differential
equation of a suitable noninteger order. The new model is
able to fit the second moment statistics of both radar and
gauge data more closely than the original model over the ac-
cessible range of space-time scales. It should be emphasized
that the model describes only the second moment statistics of
R(x, t), not the full probability distribution which is also
known to depend on the space-time averaging scale [Kedem
and Chiu, 1987; Bell, 1987; Kundu and Siddani, 2007].

[7] The stochastic equation introduced in this paper to
describe the precipitation process involves a mathematical
framework generally referred to as fractional calculus.
Broadly speaking, fractional calculus constitutes an exten-
sion of the notion of derivatives and integrals of ordinary
calculus to derivatives and integrals of fractional order [Miller
and Ross, 1993; Oldham and Spanier, 2006; Samko et al.,
1993]. West et al. [2003] has given a thought-provoking
account of how such fractional operators can arise in the
description of a wide variety of macroscopic physical pro-
cesses. While these fractional differential operators can be
mathematically formulated in several different ways, their
representation, as certain integral operators with a power
law kernel known as Riemann-Liouville operators, lends it-
self to the clearest physical interpretation. The new model
generalizes the “old” spectral model of BK96 and KB03 by
replacing the ordinary time derivative in the underlying sto-
chastic dynamical equation by a fractional derivative opera-
tor. Because of the postulated power law dependence of the
relaxation time of the Fourier modes in BK96 and KB03, the
fluctuations of the rain field were already implicitly nonlocal
in space. Now the nonlocality in time evolution implied by
the power law kernel of the fractional time derivative operator
also reflects the presence of a memory [Beran, 1994].
[8] One noticeable shortcoming of the original BK96

model with the time evolution governed by a first-order time
derivative was that the model did not fit the lagged autocorre-
lation function of the area-averaged rain rate very well. The
falloff rate of the lagged autocorrelation with lag τ predicted
by the model was found to differ markedly from what was
actually observed, especially for small τ, and it was suggested
in BK96 that this indicated the need for introducing higher
order autoregressive processes. The introduction of a frac-
tional-order time derivative allows us to control the shape at
small τ effectively in a parsimonious manner and thereby ob-
tain much better fit to the observed lagged autocorrelation in
this regime.
[9] We have tested the validity of our model using two radar

data sets belonging to TRMM standard product 2A-53 that
were generated as part of the TRMM GV program: (i) a
spatially gridded set of images generated from scans by a
National Weather Service radar (hereafter called MELB)
located near Melbourne, Florida and also (ii) a similar data
set from the radar (hereafter called KWAJ) located on the
Kwajalein Atoll, Republic of Marshall Islands in the Pacific
Ocean. The MELB radar has the advantage that the portion
of its field of view (FOV) that is over land contains a dense
network of rain gauges. However, its coastal location creates
a somewhat complicated precipitation climatology. On the
other hand, the KWAJ radar FOV has the advantage of being
in a predominantly oceanic environment. However, the few
gauges that are available in the area are rather sparsely distri-
buted. The gauge data used in this paper are part of TRMM
standard product 2A-56.
[10] The remainder of the paper is organized as follows. In

section 2, we give an account of the basic mathematical
framework of the new stochastic model. In section 3, we first
describe the radar data analysis. We then discuss the process
of estimating the model parameters by fitting the model
predictions to the observed second moment statistics of the
MELB and KWAJ radar data. Finally, we test the model with
the rain gauge data by examining how well the model tuned
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to the radar data reproduces the second moment statistics
of rain data derived from a cluster of gauges located within
the radar FOV. Section 4 is devoted to a discussion of the re-
sults along with the various caveats. The paper is concluded
in section 5 with a summary of the findings and some direc-
tions for future work. In Appendix A we give a brief account
of fractional calculus. Appendix B presents some details of
the mathematical derivations of the necessary formulas and
will be frequently referred to in the main text.

2. The Model Framework

[11] The Fourier spectrum of the precipitation field provides
a convenient way to characterize the various aspects of its
space-time variability in a succinct manner. In this section
we first construct a stochastic dynamical model for the local
rain rate field that naturally leads to such a spectrum. We then
relate the space-time covariance statistics of the area- and time-
averaged rain rate to the spectrum through the Fourier trans-
form representation. The resulting formulas are derived in
Appendix B. In the last two subsections, we examine the be-
havior of the model in the limit of vanishingly small space-
time scales.

2.1. The Basic Equations

[12] In this subsection we describe the basic theoretical
framework of the spectral model. A central quantity of
interest is the space-time covariance of the point rain rate
field R(x, t) at points x, x′ in a two-dimensional Euclidean
plane (neglecting the Earth’s curvature) and at times t, t′

c x; t; x′; t′ð Þ ≡ R′ x; tð ÞR′ x′; t′ð Þh i; (1)

where R′(x, t) =R(x, t)� 〈R〉 is the deviation of the rain rate
from the mean and the angle brackets 〈…〉 denote ensemble
average over similar rain climatologies. In our model it is
determined from the Fourier spectrum of the rain field.
[13] As in BK96 and KB03, we assume the rain statistics to

be spatially homogeneous, isotropic, and temporally station-
ary, (for brevity collectively referred to as being space-time
stationary). The homogeneity and stationarity assumptions im-
ply that c x; t; x′; t′ð Þ depends only on the difference between
the space and time arguments, i.e., the spatial separation vector
ρ =x – x′ and the lag τ = t� t′. Isotropy further restricts the
dependence to the form

c x; t; x′; t′ð Þ ¼ c ρ; τð Þ; (2)

where ρ= |ρ|. We should note that in the present paper the
stationarity property refers only to the second moment statis-
tics rather than the full underlying probability distribution.
The spatial Fourier amplitudes

a k; tð Þ ¼ 2πð Þ�1∫d2x e�ik:xR′ x; tð Þ (3)

are, in general, complex but constrained to satisfy the condi-
tion a* k; tð Þ¼a �k; tð Þ (where asterisk denotes complex
conjugation), which follows from the fact that R′(x, t) is real.
We assume that the a k; tð Þ evolve in time according to the
generalized Langevin equation

�∞D
β
t a k; tð Þ ¼ �τ�β

k a k; tð Þ þ f k; tð Þ: (4)

Here �∞D
β
t denotes the Liouville-Weyl fractional derivative

operator of order β with respect to the argument t, which can
be regarded as a shorthand for the operator defined in
equation (A2) with the lower limit of integration tending to
�∞. See Appendix A for a brief account of some basic results
from the calculus of fractional derivatives. From the definition,
it is clear that equation (4) is actually an integro-differential
equation and therefore represents nonlocal time evolution.
Also, in equation (4), f (k, t) represents a white-noise forcing
term with zero mean and δ-function covariance

h f k; tð Þ f * k′; t′ð Þi ¼ 2πð Þ3=2F0δ k � k′ð Þδ τð Þ; (5)

and

τk ¼ τ0 1þ k2L20
� ��α=2

(6)

is the relaxation time for the Fourier mode k depending only
on the wave number k = |k| by virtue of spatial isotropy. [Note
the incorrect normalization in KB03 equation (5).] In the
frequency domain, equation (5) is equivalent to

h f k;ωð Þ f * k′;ω′ð Þi ¼ 2πð Þ3=2F0δ k � k′ð Þδ ω� ω′ð Þ; (7)

f (k,ω) being the temporal Fourier transform of f (k, t). (We
will occasionally denote a function and its Fourier transform
by the same symbol when there is no possibility of confu-
sion). Here F0 is a strength parameter, and τ0 and L0 are char-
acteristic time and length scale parameters, respectively. The
characteristic length scale L0 effectively separates the rain field
fluctuations into two regimes: a short wavelength (large k)
scaling regime in which τk tends to zero according to a
power law k� α and a long wavelength (small k) regime in
which τk approaches τ0. Physically, τ0 represents the duration
of an average rain event. Equations (4)–(6) are the basic
equations of the model. The three quantities F0, τ0, and L0
together with the two dimensionless exponents α and β define
the full set of model parameters. Selection of the lower limit of
time integration as –∞ is dictated by the condition that wewant
the model to describe stationary temporal statistics, where
there is no preferred choice of the initial time. Choosing any
finite value would correspond to choosing a particular time
at which the initial condition for the stochastic equation has
to be set, thus leading to loss of stationarity. The rain rate field
R′(x, t) itself defined by the inverse spatial Fourier transform of
(3) satisfies a stochastic field equation involving fractional
spatial and temporal derivative operators. The spatial deriva-
tive operator that results from a spatial Fourier transform of
equation (4) with τk given by equation (6) can be formally
represented as the familiar Helmholtz operator �∇2þL�2

0

� �
raised to the power αβ/2.
[14] The “old” spectral model of BK96 and KB03 is recov-

ered in the special case β = 1, in which the derivative operator

�∞D
β
t
¼1

reduces to the ordinary time derivative d/dt. Equation
(3) then simply becomes an ordinary first-order stochastic
differential equation with exponential relaxation. For a gen-
eral noninteger order, the power law kernel of the fractional
derivative operator is indicative of an underlying random
process that is non-Markovian. The process is now character-
ized by a nonexponential relaxation. The response by the
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precipitation process to a unit impulse is determined by the
Green’s function G k; t � t′ð Þ , which is the solution to the
inhomogeneous equation

�∞D
β
t þ τ�β

k

�
G k; t � t′ð Þ ¼ δ t � t′ð Þ:

�
(8)

[15] The Fourier amplitudes a(k, t) have zero mean and
lagged covariance of the form

ha k; tð Þ a* k′; t′ð Þi ¼ 2πc k; τð Þδ k � k′ð Þ; (9)

where, as a consequence of spatial isotropy, we can write
c k; τð Þ¼ c k; τð Þ for the spatial Fourier transform of c(ρ,τ).
In the frequency domain, equation (9) corresponds to

ha k;ωð Þ a* k′;ω′ð Þi ¼ 2πð Þ3=2S k;ωð Þδ k � k′ð Þδ ω� ω′ð Þ; (10)

where we have introduced the power spectrum of the rain
field fluctuations S(k,ω) as the temporal Fourier transform
of c(k,τ). From the correspondence �∞D

β
t ⇔ �iωð Þβ under

the action of the Fourier transform (see Appendix A), it
follows that

S k;ωð Þ ¼ F0

�iωð Þβ þ τ�β
k

��� ���2 ;
which can be simplified to the form

S k;ωð Þ ¼ F0 ωj j2β þ 2 cos βπ=2ð Þ ωj jβτ�β
k þ τ�2β

k

h i�1
: (11)

The principal branch of the multivalued function in the denom-
inator is assumed to be in the range � π<Arg ω ≤ π.
[16] The spectrum S(k,ω) given by equation (11) yields the

full set of second moment statistics of the rain rate field. The
point covariance function c( ρ,τ) is the space-time Fourier
transform of the spectrum, i.e.,

c ρ; τð Þ ¼ 2πð Þ�3=2∫∞�∞dω∫d2k ei k•ρ�ωτð ÞS k;ωð Þ: (12)

It can be evaluated in two steps. First, consider the temporal
Fourier transform of S(k, ω):

c k; τð Þ ¼ 2πð Þ�1=2∫∞�∞dω e�iωτS k;ωð Þ:

From the explicit form (11) of the spectrum, it follows,
by a simple scaling argument, that c(k,τ) has the func-
tional form

c k; τð Þ ¼ g βð ÞF0τ
2β�1
k h τj j=τkð Þ; (13)

where h(x) is a certain transcendental function defined in
Appendix B and g(β) is a normalization factor adjusted
so that h(0) = 1. When β = 1, h(x) is simply exp(�x).
Unfortunately in the β ≠ 1 case, it does not appear possible
to express h(x) in terms of familiar analytical functions.
The forms of the function h(x) for some typical values
of β obtained by numerical integration are shown in
Appendix B (see Figure B1).

[17] The space-time covariance c(ρ,τ) is given by the spa-
tial Fourier transform of c(k,τ). Spatial isotropy allows one
to carry out the angular integration in the k-plane. This yields

c ρ; τð Þ ¼ ∫∞0 dk kJ 0 kρð Þc k; τð Þ; (14)

where J0(x) is the usual Bessel function of order zero. The
analytical form (13) implies that the space-time covariance
function c(ρ,τ) given by (14) is in general not factorizable
into spatial and temporal dependence. Upon setting τ = 0,
we obtain the spatial covariance function c(ρ, 0) in the form
of an integral that is identical with the one encountered in
the β = 1 case. It can be similarly evaluated with the result

c ρ; 0ð Þ ¼ γ0Cν ρ=L0ð Þ; (15)

provided we now identify the index ν through the formula

α 2β � 1ð Þ ¼ 2 1þ νð Þ; (16)

where, as in BK96 and KB03, we introduce

Cν zð Þ ¼ z=2ð ÞνKν zð Þ; (17)

Kν(z) being the modified Bessel function of order ν. For a
purely spatial random process, a class of covariance func-
tions of the form (15) was originally introduced by Matérn
[1960,1986]. The factor γ0 is now a slightly more compli-
cated quantity with the dimension of [rain rate]2 that is
expressible in terms of the basic model parameters:

γ0 ¼
g βð ÞF0τ

2 β�1
0

L20Γ 1þ νð Þ ; (18)

where Γ(z) denotes the Euler gamma function. The temporal
covariance of the rain rate field can be obtained by simply
setting ρ= 0 in equation (14):

c 0; τð Þ ¼ ∫∞0 dk kc k; τð Þ:

[18] The point variance c 0; 0ð Þ≡ σ20 is evaluated by letting
ρ→ 0, τ→ 0 in equation (14) and making use of equation
(13). In terms of the dimensionless variable y ¼ 1þ k2L20 ,
it takes the form

σ20 ¼ 1=2ð Þγ0Γ 1þ νð Þ∫∞1 dy y� 1þνð Þ: (19)

The integral converges when ν> 0, i.e., when α(2β� 1)> 2
yielding σ20 ¼ γ0Γ νð Þ=2 , but diverges when ν ≤ 0 causing
σ20 to be infinite. As was already discussed in BK96 and
KB03, when ν< 0, the spatial covariance c(ρ,0) has a power
law singularity at ρ= 0: c(ρ,0) ~ (ρ/L0)� 2|ν|, which weakens
to logarithmic when ν= 0 [North and Nakamoto, 1989].
Later in section 3, as we examine the statistical properties
of precipitation data sets, it will become clear that the model
fit to data strongly favors the ν< 0 case.
[19] While the point rain statistics themselves cannot be

directly measured, they determine the covariance statistics
of the space- or time-averaged rain rate data that can be mea-
sured. The next two subsections summarize their properties.
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2.2. Covariance Statistics of Area-Averaged Rain Rate

[20] Now we consider the space-time covariance of spa-
tially averaged radar rainfall data. A gridded radar precipita-
tion data set consists of a sequence of images, each image
being an array of L × L square grid boxes in which the aver-
age (near-instantaneous) rain rate is specified. Let

rA tð Þ ¼ 1=L2
� �∫

A
d2x R x; tð Þ (20)

denote the average rain rate in an L×L square A at time t. The
space-time covariance between the rain rates in two squares A
and A′ of equal area L2, whose centers are separated by a dis-
tance vector s at two different times t and t+ τ, is defined as

ΓAA′ s; τð Þ ¼ hr′A tð Þr′A′ t þ τð Þi; (21)

where, as before, the prime on the rain rate variables indicate
deviation from the mean. It can be written as a double area-
integral over the space-time covariance function of the point
rain rate:

ΓAA′ s; τð Þ ¼ 1=L4
� �∫

A
d2x ∫

A′

d2x′ c sþ x′� x; τð Þ: (22)

Evaluating equation (22) for s= 0, τ = 0, one obtains the var-
iance of area-averaged rain rate σ2A ≡ hr ′2Ai. The spatial corre-
lation between two boxes A and A′ separated by s is then
given by ΦAA′ sð Þ ¼ ΓAA′ s; 0ð Þ=σ2A.
[21] The time dependence of the lagged autocorrelation

functionΦAA τð Þ ¼ ΓAA 0; τð Þ=σ2A defines a characteristic time-
scale, the integral correlation time for area-averaged rain rate

τA ¼ ∫∞0 dτ ΦAA τð Þ: (23)

For an exponentially decaying correlation, τA is simply the
(1/e)-folding time. However, our model-predicted correlation
functions are markedly nonexponential.
[22] Explicit formulas for the various second moment sta-

tistics including σ2A and τA are given in Appendix B.

2.3. Covariance Statistics of Time-Averaged Rain Rate

[23] Next we examine how the model represents the sta-
tistics of rain gauge data. While the actual quantity mea-
sured depends on the specific type of instrument, the data
is usually converted into a form that can be idealized as
the time-averaged rain rate at a point, i.e.,

rT xð Þ ¼ 1=Tð Þ∫T0 dt R x; tð Þ: (24)

In general, one could consider the space-time covarianceΓTT ′

ρ; τð Þ between rain rates at two points separated by a distance
ρ, time-averaged over two intervals T and T′ whose mid-
points are separated by a lag τ (see Appendix B). For conve-
nience we restrict ourselves to the zero-lag case, namely the
spatial covariance of the rain rate averaged over a time inter-
val [0,T] at two points with separation ρ

ΓTT ρ; 0ð Þ ¼ hr′T xð Þr′T x′ð Þi

¼ 1=T2
� �∫T0 dt ∫T0 dt′ c ρ; t � t′ð Þ;

which can be reduced to a single integral

ΓTT ρ; 0ð Þ ¼ 2=Tð Þ∫T0 dτ 1� τ=Tð Þ c ρ; τð Þ: (25)

The limit ρ→ 0 yields the variance of time-averaged rain rate

σ2T ≡hr′2T i ¼ 2=Tð Þ∫T0 dτ 1� τ=Tð Þ c 0; τð Þ: (26)

[24] From equations (25) and (26) we can compute the spa-
tial correlation function of gauge pairs as a function of sepa-
ration: ΨTT ρð Þ¼ ΓTT ρ; 0ð Þ=σ2T . For explicit evaluation of
these quantities, it is again convenient to go over to the
Fourier representation. The resulting formulas are given in
Appendix B.

2.4. The Power Law Scaling Regime in the Case ν< 0

[25] As already noted, the space-time covariance c(ρ,τ)
predicted by the model becomes singular in the limit of small
ρ and τ when ν ≤ 0 but approaches a well-defined finite value
when ν> 0. In the case ν< 0, which is of greater interest to
us, this singular behavior at small space-time separations ρ,
τ indicates the presence of a “scaling regime” in which the
model exhibits approximate scale-invariance under a space-
time scaling ρ→ λρ, τ→ λατ. This is elucidated by examining
the limiting form of the spectrum S(k,ω) in the limit of large k
andω, which we denote by S(∞)(k,ω). We find that S(∞)(k,ω) is
invariant (up to an overall multiplicative factor) under a scale
transformation in the Fourier space k→ λ� 1k,ω→ λ� αω:

S ∞ð Þ λ�1k; λ�αω
� � ¼ λ2αβS ∞ð Þ k;ωð Þ: (27)

Its Fourier transform c(∞)(ρ,τ), which is the asymptotic form
of the exact space-time covariance c(ρ,τ), satisfies

c ∞ð Þ λρ; λατð Þ ¼ λ�2 νj jc ∞ð Þ ρ; τð Þ: (28)

As the scale factor λ→ 0, one attains larger and larger values
of k and ω corresponding to smaller and smaller space-time
scales. Choosing the scale factor to be λ= 1/ρ*, we immedi-
ately conclude from equation (28) that c(∞)(ρ,τ) must have
the functional form

c ∞ð Þ ρ; τð Þ ¼ γ0ρ�
�2 νj jφ τ�=ρα�; α; β

� �
; (29)

where, for convenience, we have introduced the dimension-
less variables ρ* = ρ/L0, τ* = τ/τ0. The type of combined
space-time scaling property expressed by equation (28) is
frequently referred to as dynamic scaling, α being the corre-
sponding scaling exponent. The scaling function φ(ξ; α, β)
also depends explicitly on both α and β. The limiting
behavior of c(∞)(ρ, τ) as ρ*, τ* → 0 is nonuniform, i.e.,
dependent on the direction from which the space-time
origin is approached. The double limit is characterized by
the functional dependence of φ(ξ; α, β) on the scaling vari-
able ξ ¼ τ�=ρα� . In particular, the behavior of c(∞)(ρ, τ = 0)
as ρ*→ 0 is determined by the asymptotic behavior of φ(ξ;α, β)
near ξ =0. Similarly, the behavior of c(∞)(ρ=0, τ) as τ*→ 0 is
determined by the asymptotic behavior of φ(ξ; α, β) as
ξ→∞. From the exact result for the spatial covariance
c(ρ, τ = 0) = γ0Cν (ρ*) [see equation (15)], making use of
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the asymptotic behavior of Cν(z) as z→ 0 when ν< 0, we
get the limit

φ 0; α; βð Þ ¼ 2� 1þ2 νj jð ÞΓ νj jð Þ: (30)

[26] Unlike the β = 1 case studied in BK96 and KB03,
c(ρ= 0, τ) likely cannot in general be expressed in closed form.
However, scaling arguments like the one above can also be in-
voked to obtain the asymptotic τ-dependence of c(∞)(ρ=0, τ) as
τ→ 0. Setting ρ=0 and choosing the scale factor λ ¼ τ�1=α

� in
equation (28), we get the asymptotic form

c ∞ð Þ ρ ¼ 0; τð Þ e γ0Kτ�2 νj j=α
� (31)

as τ*→ 0, where K is a dimensionless constant. This is
compatible with the general form of equation (29) if and only
if φ(ξ; α, β) has the falloff

φ ξ; α; βð Þ→
ξ→∞

Kξ�2 νj j=α: (32)

The asymptotic behavior of the area and time-averaged
statistics can be deduced by replacing the exact space-time

correlation c(ρ,τ) by its scaling approximation c(∞)(ρ,τ) in the
area/time integrals. The details are relegated to Appendix B.
[27] The scaling properties of the space-time covariance in

the β = 1 case were explored in greater detail by Kundu and
Bell [2006].

2.5. Effect of a Short Distance Cut-Off

[28] As will be found later, a problem arises when we
examine the spectral model predictions in light of the data.
We find that the growth property of the space-time covari-
ance at small space-time scales in the ν< 0 case predicted
by the spectral model is broadly consistent with data, but
only up to a certain point. The spatial variance σ2A estimated
from radar data does appear to follow the predicted power
law behavior [see equation (B22)] within the accessible
range of spatial scales. But rain gauge data, which allows
one to access much smaller space-time scales, exhibit a more
complicated behavior. The scale dependence of the temporal
variance σ2T follows the model prediction up to a certain
minimum averaging time T of about 30min, but increasingly
deviates from it at shorter time scales. As T→ 0, instead of
growing in accordance with the predicted power law growth,
σ2T appears to gradually approach a finite asymptotic valueσ20,
the point variance, indicating a steeper decrease of the

Figure 1. Map showing the locations of the MELB radar and the tipping bucket rain gauges in Florida
operated as part of the TRMM ground validation program. Also shown are the radial distance contours
of the radar FOV and the position of the 128 km area from which statistics is collected.
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characteristic time scale τk than the model-predicted k� α

falloff at large k. On the other hand, the ν> 0 case of the
model, which would have accounted for this effect, does
not generally fit the radar statistics. A simple way to incor-
porate the desired modification at short length and time
scales is to assume that instead of equation (6), τk is given
by the relation

τk ¼ τ0 1þ k2L20
� ��α=2

; k < 1=Λ

0 ; k > 1=Λ

(
(33)

where Λ is a short distance (“ultraviolet”) cut-off. Physically
this means that the spatial Fourier modes of the precipitation
field a k; tð Þ of wavelength shorter than 2πΛ are damped out
instantly. Accordingly, the spectrum S(k, ω) and its tempo-
ral Fourier transform c(k,τ) also vanish for wave numbers
k> 1/Λ. In a more realistic model that describes the small-
scale behavior of rain, the sharp cut-off introduced in
equation (33) may have to be appropriately modified based
on empirical evidence. The possibility of a steep decrease
of the spectrum beyond the scaling regime is reminiscent
of a similar phenomenon in fluid turbulence, namely break-
down of the famous Kolmogorov scaling of the energy
spectrum beyond the inertial range [Frisch, 1995]. In order

to obtain an estimate of Λ, we return to equation (19) for the
point variance. Explicit evaluation of the integral with
equation (33) leads to the simple analytic result:

σ20 ¼
1

2
γ0 Γ νð Þj j� 1þ L20=Λ

2
� � νj j � 1
h i

: (34)

The spatial cut-off Λ is easily obtained from equation (34) if a
reasonable value of σ20 can be estimated by extrapolation from
the gauge data.

3. Comparison Between the Model
and Observations

3.1. Radar Data Analysis

[29] The parameters of the model can be conveniently esti-
mated from a gridded radar precipitation data set. We have fit
the model to the data sets (TRMM standard product 2A-53)
constructed from radar images collected from the KWAJ and
MELB radars located respectively at (8.718°N, 167.733°E)
and (28.113°N, 80.654°W) (Figure 1). Next we summarize
some relevant features of these data sets.
[30] For both the KWAJ and MELB radars, the FOV con-

sists of a circular area of diameter 300 km. The data was
gridded at a 2 km× 2 km spatial resolution. In order to reduce

Table 1. Model Parameters and Related Quantities for the Spectral Model

Radar Season (R) (mmh�1) α β ν γ0 (mm2 h�2) L0 (km) τ0 (min) σ0
2 (mm2 h�2) Λ (km)

KWAJ MAM 2001 0.098 0.99 1.18 �0.327 0.019 281 775 2.5 0.48
KWAJ JJA 2001 0.232 0.93 1.28 �0.279 0.060 438 770 7 0.36
KWAJ SON 2001 0.357 0.99 1.24 �0.265 0.213 136 381 13 0.27
KWAJ DJF 2002 0.114 1.40 1.00 �0.298 0.067 72.1 524 3.5 0.32
MELB DJF 2001 0.028 1.17 1.18 �0.202 0.030 69.0 196 1.2 0.07
MELB MAM 2001 0.104 1.17 1.26 �0.113 0.348 73.2 197 6 0.09
MELB JJA 2001 0.214 1.14 1.26 �0.130 1.078 33.9 98.8 13 0.19
MELB SON 2001 0.183 1.12 1.20 �0.218 0.337 51.5 209 10 0.18

Figure 2. Plot of the variance of area average rain rate σ2A ≡ σ2(L) as a function of the spatial
averaging scale L estimated from (left) the Melbourne radar data for the four seasons Winter
(December 2000–February 2001), Spring (March–May 2001), Summer (June–August 2001), and
Autumn (September–November 2001) and from (right) the KWAJ radar for the four seasons
Spring (March–May 2001), Summer (June–August 2001) and Autumn (September–November 2001),
and Winter (December 2001–February 2002) superimposed on the curves predicted from the model
formula (B7) with the parameters listed in Table 1.
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the uncertainties in rain retrieval due to radar attenuation with
distance, statistics were computed from a 128 km× 128 km
area centered at the radar location by aggregating the data
at spatial scales L= 2, 4, 8, … , 128 km. Only those grid
boxes within the selected area that had at least 95% valid
pixels were included in the sample. This helped eliminate
boxes at the smaller scales 4, 8, and 16 km located near the
center, which occasionally suffered from data dropout be-
cause of ground clutter.
[31] The temporal sampling pattern of the radar has an im-

portant effect on the estimation of rain statistics. The MELB
radar scans were carried out at different speeds during the
quiet and the active periods of rainfall. Rainfall images were
available from it every 5min during the active periods and ev-
ery 10min during the quiet periods. Images from the KWAJ
radar, which was operated at a single speed, are spaced in
a somewhat more irregular manner: the temporal spacing
between the consecutive images predominantly alternated
between 5 and 7min long gaps.
[32] The various space-time statistics of the TRMM 2A-53

data needed for the analysis (the variance and covariance
functions) were computed using routines provided in the R
statistical software package. For the spatial analysis we com-
puted the variances σ2A for various box sizes L between 2 and
128 km and the spatial autocorrelation function ΦAA′ sð Þ for

pairs of L= 2 km radar pixels. For simplicity the measured
spatial correlation function is regarded as a function of the
separation s= |s| in accordance with our spatial isotropy as-
sumption. Since all the available pairs within the 128 km area
are included in the computation of ΦAA′ sð Þ, our data analysis
automatically averages over all pair locations within the box
and allows us to assume spatial homogeneity. The direction
dependence was implicitly averaged over two mutually per-
pendicular directions in this step by pooling together all pairs
with the same separation s.
[33] One effect of the uneven temporal sampling of different

portions of a data set like that of the MELB radar is that it in-
troduces a systematic bias into the usual estimates of many sta-
tistics. In particular, the “simple” estimates of the elementary
statistics at a spatial scale L, such as the unconditional mean
〈R〉 and the probability of nonzero rain p(L) = Pr[rA> 0]
obtained by summing the corresponding data and dividing
by the actual number of samples N(L), are biased high. One
can obtain “improved” estimates of these statistics that reduce
this bias as follows. We assume that the temporal spacing
between two successive images Δt2 during a quiet period
(labeled 2), which is mostly dry, is larger than the spacing
Δt1 during an active period (labeled 1) when rain occurs more
frequently. Suppose Δt2 =wΔt1; in the case of the MELB
radar,w=2. For each stretch of the time series of radar images

Figure 3. Comparison of the spatial correlations of 2 km radar pixels as a function of the separation s as
estimated from the Melbourne radar data (the + symbols) and the spectral model (the solid curve) with the
parameters listed in Table 1 for four seasons spanning the period December 2000 to November 2001 as in
Figure 2.
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during a quiet period, we augment it by padding each gap
successively with a segment consisting of (w� 1) additional
copies of the initial point spaced so that the new series has a
constant time step Δt1.
[34] We can get a rough estimate of the bias from uneven

sampling in the following way. Let us write N =N1 +N2,
where N1 and N2 are the actual number of samples during
the active and the quiet periods, respectively. For the nonzero
rain probability p, instead of the naive estimate

p ¼ Nr>0
1 þ Nr>0

2

N1 þ N2
; (35)

we now have the adjusted estimate

p′ ¼ Nr>0
1 þ wNr>0

2

N1 þ wN2
¼ Npþ w� 1ð ÞNr>0

2

� �
=N ′; (36)

whereNr>0
1 andNr>0

2 are the number of rainy samples during
the active and quiet periods, respectively, and N′=N1 +wN2

is the total number of samples in the augmented series. If
the number of rainy samples occurring during the quiet
period is small, i.e., Nr>0

2 <<N ′, then we get the approximate
result p′ ≈ (N/N′)p. The same correction factor (N/N′) approx-
imately applies to the unconditional mean 〈R〉 and the vari-
ous unconditional moments Mq Lð Þ≡ hrqL

	
under the similar

condition that the contribution from rain occurring during
the quiet periods can be neglected.

[35] The lagged autocorrelation ΦAA(τ) was computed for
several averaging scales L between 2 and 128 km and for var-
ious lags τ from the sequence of radar images. As expected, it
was found that observed autocorrelation in general exhibits
fluctuation due to sampling uncertainty, which becomes large
especially at those τ values where one has relatively few sam-
ples. For our purpose, however, only those lags for which
the sampling error is small enough to be negligible were
considered. In order to reduce the effect of the sampling er-
ror, we had to restrict ourselves to lags for which the number
of available samples exceeds a judiciously chosen value.
The estimates at the smaller scales L= 2, 4, 8,…, 64 km were
obtained by partitioning the 128 km area into nonoverlapping
subareas of size L×L and averaging over the computed lagged
autocorrelation for each subarea. Pooling together samples of
area-pairs for a fixed lag τ for the temporal autocovariance also
presumes temporal stationarity of the statistics.

3.2. Fitting the Model to Radar Rainfall Statistics

[36] Estimation of the model parameters presented a diffi-
cult problem even in the simpler β = 1 case considered in
BK96. Not surprisingly, the general β case proves to be even
more challenging. Since the parameters appear directly in the
spectrum, one’s first thought might be to perform a spectral
analysis of the pixel data and estimate the spectrum of the
point rain rate from it. One could then fit the observed spec-
trum to equation (11) and estimate the model parameters.

Figure 4. Same as in Figure 3 but for the KWAJ radar data (the + symbols) and the spectral model (the
solid curve) for the four seasons spanning the period March 2001 to February 2002.
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However, as was noted in BK96, this approach has the disad-
vantage that the spectral estimates often suffer from distor-
tions at spatial scales comparable to the size of the area
considered (L= 128 km in our case) that are artifacts of the
periodic boundary condition imposed by the analysis method-
ology. This is an important issue for us since an intended appli-
cation of the model is to perform a statistical intercomparison
of rain rate data from ground radar and a rain gauge network
located within the radar FOV.While there are smoothing tech-
niques for the numerically evaluated spectrum that reduce
these distortions somewhat [Jenkins and Watts, 1968], it is
not clear to what extent the choice of a particular smoothing
prescription would affect our results. Moreover, the radar data
was not uniformly spaced in time, which would therefore ne-
cessitate further interpolation. To circumvent these difficulties
we choose to follow the approach adopted in BK96 and deter-
mine the parameters by directly fitting the statistics of the area
averages to the model predictions. Our fitting process is in
effect suitably weighted so that the model faithfully represents
the observed statistics at spatiotemporal scales of interest to us.
[37] Our parameter estimation method takes advantage of

the mathematical structure of the model and proceeds in
two stages. First, the parameters γ0, L0, and ν are estimated
from the spatial statistics. The parameters ν and L0 are
obtained from a suitably weighted least squares fit to the spa-
tial correlation functionΦpix sð Þ ≡ΦAA′ sð Þ for 2 km pixels sep-
arated by a distance s = |s|. For simplicity, the slight direction

dependence ofΦpix sð Þ expected from the model at small sep-
arations is neglected. From the gridded radar images, we first
compute the (Pearson) sample correlation coefficients ρm for
all pairs of pixels with spatial separation vectors sm of length
sm (m= 1, 2, … , M) as the estimate of the theoretical spatial
correlation Φpix smð Þ for a set of M = 66 selected values of sm
ranging from the minimum value of 2 km up to about 160 km
(slightly less than the length of the diagonal of a 128 km box).
The vectors sm are chosen so that all directions are more or
less uniformly represented and there are a substantial number
(in the range 200–23,000) of pairsNm. We then seek to obtain
estimates of ν and L0 by minimizing the quantity

J ν;L0ð Þ ¼∑M

m¼1wm ρm � Φpix smð Þ� �2
; (37)

where wm are a set of weights inversely proportional to the
variances Σm2 of the sample spatial correlation ρm. If the sam-
ples entering into the computation of ρm are independent, then
Σm2 ∝ 1/Nm and consequently the weights are expected to be
proportional to the number of samples, i.e., wm ∝ Nm. In real-
ity, there is data dependency caused by the space-time corre-
lation of the rain field, thus reducing the effective number of
independent samples. The overall effect of this dependency
for our estimation problem is somewhat difficult to assess
and will not be taken into consideration here. Evaluation of
the model spatial correlations Φpix smð Þ is carried out from

Figure 5. Comparison of the lagged autocorrelation at four different spatial scales (L= 2, 8, 32, and
128 km) as a function of the separation s as estimated from the MELB radar data (the symbols) and the
spectral model (the solid curve) with the parameters listed in Table 1 for the same period as in Figure 3.
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equation (B5) using the software Mathematica, version 9,
from Wolfram, Inc. The minimum of J(ν, L0) is sought by
employing the numerical implementation of the Nelder-
Mead Simplex Algorithm [Nelder and Mead, 1965; Press
et al, 1992; Lagarias et al, 1998] in Mathematica. A starting
value for the index ν can be obtained by fitting the asymp-
totic form equation (B22) to the variance σ2A for small L.
The computation of the spatial parameters ν and L0 for each
data set was quite efficient and took only a few minutes on
a desktop computer equipped with two Quad-core Intel
Xeon processors. The normalization constant γ0 is fixed by
a least squares fit of the model prediction (using the exact for-
mula (B7)) to the observed variances σ2A . The Nelder-Mead
Algorithm, despite its heuristic nature, is our preferred choice
for an optimization method primarily because of its simplic-
ity and speed of execution. For a test run on a KWAJ radar
data set, the Differential Evolution Method [Storn and
Price, 1997], a global optimization method available within
Mathematica, gave results for ν and L0 that are substantially
identical with those from the Nelder-Mead Method but took
much longer (about 28 times) to converge.
[38] The next step is to estimate the temporal parameters

τ0, β (and therefore α). They can be determined by fitting
the lagged autocorrelation function ΦAA(τ) for a particular
box size L. We calculated the model values ΦAA(τj) using
equations (B6) and (B7) and fit them to the observed values
ρ̂j for a 16 km box and a set of time lags τ = τj (j = 1, 2,…, n)

up to a certain reasonably large τ. Values of β and τ0 are
estimated by minimizing the quantity

Ĵ β; τ0ð Þ ¼∑n

j¼1ŵj ρ̂j � ΦAA τj
� �h i2

(38)

using the Nelder-Mead Simplex Algorithm in Mathematica.
The weights ŵj can now be taken to be 1 (the ordinary least
squares case) since the numbers of samples are roughly equal
for all lags in the range considered. The observed lagged
autocorrelation was found to exhibit large systematic depar-
ture from the model-predicted form for larger values of τ.
We therefore had to restrict the range of τ over which the
fit was carried out (about 400min for KWAJ and 200min
for MELB).
[39] Unfortunately, evaluation of the quantities ΦAA(τj) in-

volves computing (2 + 1) dimensional integrals in the Fourier
space of k and ωmaking the optimization problem computa-
tionally rather onerous. The Nelder-Mead Algorithm took a
long time to converge. The execution time depended on the
number of lag values employed to define the sum of squares
Ĵ β; τ0ð Þ; for each data set it typically took about 1 h per value
of j on a workstation equipped with an Intel i7 870 processor.
We should note that in estimating these parameters, the short
distance cut-off parameter Λ is implicitly set to zero with the
anticipation that it is sufficiently small compared to the
smallest spatial scale accessible to radar measurements. Its

Figure 6. Same as in Figure 5 but for the KWAJ radar data (the symbols) and the spectral model (the solid
curve) for the same period as in Figure 4.
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value can only be meaningfully estimated from the gauge
data at very short time scales.
[40] We divided the 2A-53 annual radar precipitation data

sets from the KWAJ and MELB radars into four 3 month
long seasons—Winter (December–February, or DJF), Spring
(March–May, or MAM), Summer (June–August, or JJA)
and Autumn (September–November, or SON), and carried
out the estimation of the model parameters for each. In doing
so, we implicitly regard the statistics of each season as station-
ary in the wide sense. Here we present results of parameter
estimation for four seasons for each of these two radars. For
the MELB radar, we selected the 2001 DJF, MAM, JJA, and
SON seasons. For the KWAJ radar, DJF 2001 data had to be
excluded from the analysis because of the highly erratic behav-
ior of the temporal correlation, and sowe considered DJF 2002
instead as a representative example.
[41] The model parameters are listed in Table 1. The spatial

index ν lies in the range �0.27 to �0.33 for the KWAJ radar
and�0.11 to�0.22 for the MELB radar. The temporal index
β is found to be substantially greater than 1, in fact lying in
the narrow range 1.2–1.3, in all cases except one, namely
the KWAJ DJF 2002 season. The characteristic length and
time scales L0 and τ0 are generally longer for the KWAJ data
sets than the MELB data sets, which is presumably attribut-
able to the purely oceanic environment of the former. The

constant γ0 varies widely from one data set to another and ap-
pears to be related to the mean rain rate. Figure 2 shows a
comparison of the variances σ2A deduced from the data (sym-
bols) and those computed from the model (solid curve) for
various box sizes L. The fits to the spatial correlation function
ΦAA′ sð Þ for the L= 2 km radar pixels as a function of the sep-
aration s are shown in Figures 3 and 4 for the MELB and
KWAJ radars, respectively. The quality of the fits for the
temporal statistics is illustrated in Figure 5 (for the MELB
radar) and Figure 6 (for the KWAJ radar) by the plots of
ΦAA(τ) at several other spatial scales. It is seen that the model
fits the observation reasonably well for spatial scales L
between 2 and 32 km, but the fit becomes worse at larger
scales. By allowing the order of the time derivative β to be
an adjustable noninteger parameter, a closer fit at small τ is
achieved for the temporal statistics compared to the β = 1 case
of the model, as illustrated in Appendix B (Figure B2) for the
KWAJ JJA 2001 season.

3.3. Validating the Model with Rain Gauge Data

[42] In this section we compare the model predictions
for the statistics of time-averaged point rain rate outlined
in section 2.4 with the statistics of rain gauge observa-
tions. The temporal statistics were obtained from a rain
gauge data set (TRMM standard product 2A-56) for the

Figure 7. Plot of the variance of time-averaged point rain rate σT2 as a function of the averaging scale T
for precipitation data from the TB gauges located within the MELB radar FOV. The panels exhibit results
for the same time period December 2000 to November 2001 divided into four seasons as in Figure 2. The
open circles denote the observed variance and the solid curve represents the model results.
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same time period over which the spectral model parame-
ters were obtained in section 3. The data consists of
estimates of 1 min rain rate derived from rainfall accumula-
tions in the tipping bucket (TB) gauges located within the
same central 128 km area within the radar field-of-view
(FOV) that was used to extract the radar statistics during a
particular period of observation (Figure 1). For the KWAJ
radar FOV, there were only seven gauge locations, each
equipped with paired TB gauges and, moreover, not all of
them were available for every season. For the MELB radar,
there were about 50–60 gauges available within the central
128 km box.
[43] We computed an estimate of the observed temporal

variance σ2T for T in the range 1–7200min by taking the
average over a moving window of length T for each gauge
along the time series and computing the variance for the full
set of gauges for the entire season. The variances for the indi-
vidual gauges were averaged together to estimate σ2T . The
spatial correlation of the gauge pairs ΨTT(ρ) was also com-
puted for daily averaged rain rates (T= 1440min). For the
MELB data set, the average spatial correlations between
gauge pairs were estimated by binning them into spatial

separation bins. The average over each bin was estimated
as follows. A Fisher z-transform z = tanh� 1Ψ, which maps
the interval (�1, 1) onto the real line, was applied to the cor-
relation estimates for each gauge pair. It is well-known that
[Hawkins, 1989] for a fairly large class of probability distri-
butions of the correlation estimates Ψ, the variable z is nearly
normal and consequently, the standard estimates of the
confidence intervals apply. The inverse transform Ψ= tanh z
is then applied to the statistics obtained from the normal
theory to determine the average correlation and the corre-
sponding 95% confidence intervals for each separation
bin. In practice, the histograms of the z-transformed values
turned out to be slightly non-normal. We therefore checked
the accuracy of our results by constructing a bootstrap
distribution from 10,000 replicas of a random sample drawn
from the underlying empirical distribution and constructing
bootstrap confidence intervals [Efron, 1981]. The resulting
bias of the bootstrap estimate of the mean was found to be
negligibly small and the estimated confidence intervals
agreed well with the normal statistics estimates. For the
KWAJ data, the gauge distribution was very sparse, and with
the small number of rain gauges that were available in the area,

Figure 8. Plot of the spatial correlationΨTT(ρ) of the daily averaged gauge data as a function of the gauge
separation ρ for the same data set as in Figure 7. The panels exhibit results for the same time period
December 2000 to November 2001 divided into four seasons as in Figure 2. The + symbols denote the ob-
served correlation for each gauge pair. The open circles denote the observed correlation averaged over all
gauge pairs in each distance bin interpolated by the solid curve. The error bars are estimated according to
the method described in the text. The dashed curve represents the results computed from the model.
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only a few appeared to give reliable results. As a result, each
pair was considered individually even though the resulting spa-
tial correlation estimates were much noisier. Moreover, it was
decided to leave out of the analysis certain gauges that showed
anomalously small cross correlation with their duplicates and
other nearby gauges.
[44] It should be noted that the TB estimates at small T

(less than about 7–10min) are known to be somewhat
unreliable [Habib et al., 2001]. This is because the TB gauge
data consist of a sequence of tip times of a bucket of a certain
fixed capacity. The interpolation scheme based on a cubic
spline algorithm [Wang et al., 2008] used to generate the 1
min time series of rain rates, leads to approximations when
isolated single and double tips occur at low rain rates. The
statistics of rain rates at small time scales T can thus be
potentially distorted by the artifacts of this algorithm.
[45] Using the parameters extracted from the fit to the 2A-53

radar data, we compute the statistics of time-averaged point
rain rate from the model using equations (B18) and (B19)
and compare them with the corresponding observed quantities
computed from the 2A-56 rain gauge data. This comparison
provides a powerful validation of the model. Figure 7 exhibits
our results for the observed and the model-predicted variance
σ2T as a function of T for the MELB DJF-SON 2001 data in
the range 1–7200min. A comparison of the corresponding
spatial autocorrelation ΨTT(ρ) of the daily averages as a

function of gauge separation ρ for the MELB data is shown
in Figure 8 along with a scatter-plot of the correlation for the
individual pairs. Figure 9 displays plots for the variance and
the spatial correlation for the KWAJ gauges for the JJA
2001 andDJF 2002 seasons as illustration of the kind of results
obtained. Since it includes only nine gauges, we display the
correlation for the individual pairs without attempting to group
them into spatial separation bins. Rough estimates of the point
varianceσ20 and the corresponding values of the spectral cut-off
Λ inferred from them using equation (34) are also included in
the last two columns of Table 1.

4. Discussion

4.1. Radar Statistics

[46] As already noted above, the complex behavior of the
space-time statistics especially at the larger spatial scales
limits the extent to which one can expect quantitative agree-
ment between the radar data and our model. One limiting fac-
tor is that the spectral model assumes space-time stationarity
of the statistics at the outset. These assumptions greatly facil-
itate the formulation of a statistical model in a parsimonious
manner with a relatively small number of adjustable parame-
ters. However, they also preclude application of the model to
physical situations where local meteorological effects can, in
general, lead to nonstationary statistics. The assumption of

Figure 9. Plot of the (left) variance σT2 as a function of the averaging scale T and the (right) spatial cor-
relation ΨTT(ρ) of the daily averaged gauge data as a function of the gauge separation ρ for the Summer
(June–August) 2001 season KWAJ gauge data.
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spatial isotropy can be relaxed by introducing a form of τk in
equation (6) that depends on both the magnitude and direc-
tion of k. Such a model will necessarily contain more param-
eters and will be more difficult to fit to data.
[47] For both the MELB and the KWAJ data sets, the

model is able to fit the spatial statistics fairly well at small
spatial scales. The observed scatter in the plots of the spatial
correlation functionΦAA′ sð Þat large s (Figures 3 and 4) in part
reflects the fluctuation resulting from increasingly smaller
sample sizes. However, the model has difficulty fitting the
observed spatial correlation at larger separations where a
small nonzero tail appears to linger. This is also reflected
by the fact that the model prediction for the variance σ2A as
a function of box size L in general agrees well with the
observed value for spatial scales up 32 km but falls short at
the larger scales (see Figure 2). This is appropriate for an
application of the model to problems that involve statistical
comparisons between precipitation data from ground radar
and a dense network of rain gauges located within the radar
FOV. This is in contrast to BK96 where the fitting process
was weighted so as to fit the larger scales better, since there,
the intended application was to faithfully capture the statis-
tics of large-area averages measured from satellites.
[48] However, fitting the temporal statistics proved to be a

rather challenging task. Quality of the fit for the temporal au-
tocorrelation varies from one data set to another. Overall, the
fit was better for the KWAJ data set than the MELB data set.
The observed ΦAA(τ) often deviates from the model behavior
at large spatial and temporal scales as evidenced by the pres-
ence of heavy tails in Figures 5 and 6. Consequently, the fit
had to be restricted to a limited range of space-time scales.
[49] For the MELB radar, the complication arises in part

due to the fact that it is located close to the Atlantic coast,
and the 128 km box centered at the radar lies partly over land
and partly over the open ocean. Thus, strictly speaking, the
key assumption of spatiotemporally stationary statistics,
which is at the heart of the theoretical foundation of the
model, is violated here. This probably explains why the
MELB data fits are in general the poorer of the two radar data
sets. We have already noted that the lagged autocorrelation
ΦAA(τ) exhibits oscillatory tail behavior at large lags that be-
come more pronounced for the larger spatial averaging scales.
Our spectral model also predicts a similar behavior in the case
β> 1 (see Figure B1) that is, however, too small to match the
observations. This makes it rather difficult to find a set of tem-
poral parameters that fit ΦAA(τ) uniformly well over the entire
range of scales. Although we are unable to fully explain this
discrepancy, we suspect that it is partly attributable to the inter-
action between a strong local diurnal cycle and the land-sea
contrast in the coastal region. Because of these oscillations, it
is difficult to obtain a stable estimate of the integral correlation
time τA from the data that could be reliably compared with the
model prediction, as was done in KB03 for radar rainfall data
over the open oceans to fit the model in the β =1 case. For the
KWAJ radar, the purely oceanic environment makes the as-
sumption of spatial homogeneity a reasonable one. However,
deviation from temporally stationary behavior is fairly com-
mon even in an oceanic environment. This generally manifests
itself in the form of a time-dependent mean and variance. In
this case different subsets of a season, say different months,
will have unequal rain rate variance. Fitting the model to data
that is inherently heteroscedastic forces one to restrict the

space-time size of the sample. Thus, there is an inevitable com-
promise: too large a sample may strongly violate the model as-
sumption of space-time stationarity, but too small a sample
may yield noisy and unreliable statistics. Partitioning the data
into seasons is merely a practical way to cope with the situa-
tion, the working assumption being that the statistics remain
stationary in the course of a particular season. Seasonal depen-
dence of the model parameters accounts for variation of the
statistics from one season to another. This may not always
work as the KWAJ DJF 2001 data illustrates, where isolated
events cause substantial deviation from stationarity. Because
of temporally nonstationary behavior, the statistics can defy
description in terms of a spectral model like one described in
this paper. The DJF 2002 results presented here were relatively
well-behaved. Nonstationary statistics caused by local meteo-
rological effects, such as land-sea contrast and orography, are
rather difficult to quantify. A model like ours has no effective
way of dealing with it and thus the prospect of a good agree-
ment is somewhat tempered in many cases.
[50] Clearly, the radar data does not currently have adequate

spatial resolution to be able to reveal substantial departure
from the power law singular nature of the spatial statistics
predicted by the model. In fact, the singularity of σ2A is weak
enough to be still consistent with its observed growth rate at
the smallest length scales probed by the radar. Consequently,
there is no need for postulating the spectral cut-off Λ discussed
in section 2.5 purely on the basis of the radar statistics alone.
However, the need for a small distance cut-off becomes appar-
ent when one considers the statistics of gauge data, which can
access a broader range of space-time scales.

4.2. Gauge Statistics

[51] Wang et al [2008] recommend that while comparing
the model prediction with the observed gauge statistics, one
should exclude the values of time averaging scale T less than
4–7min so that the TB gauge estimates can be considered to
be reasonably accurate. In Figure 7 we note that the model
substantially underestimates (by a factor of about 1.5 to 2)
the observed values of σ2T obtained by averaging over all
the available gauges in the MELB radar FOV. In Figure 8
the spatial correlation ΨTT(ρ) for individual gauge pairs
exhibits a rather large scatter for all the four 2001 seasons
examined, perhaps indicating substantial spatial anisotropy
of the rain statistics in the MELB radar area. The model repro-
duces the binned average of the observed values of ΨTT(ρ)
reasonably well for small separations. The anomalous
behavior of the observed values appearing at longer distance
scales is presumably caused by large-scale phenomena similar
to those in the radar data, and like the latter, it is difficult to
associate it with local meteorology. The large scatter in the
values of the spatial correlation for the individual gauge pairs
in the vicinity of the MELB radar (Figure 8) is similar to what
was seen in [Ciach et al., 1997] for daily averages near
Darwin, Australia. Agreement between the observed and the
model-generated statistics for the gauges is considered
adequate given the limitation that the gauges only sample the
land portion of the 128 km box. For the KWAJ data
(Figure 9), far fewer data points are available, but the situation
appears to be generally similar. The observed values of σ2T
agree fairly well with the model prediction, but the extent of
agreement is less clear for the spatial correlation ΨTT(ρ).
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[52] For averaging time scales T less than about 30min, the
observed σ2T does not increase as steeply as predicted by the
spectral model, for which the asymptotic behavior (B26)
suggests a power law divergence. Rather, it appears to flatten
out to a finite value σ20 as we consider smaller and smaller
values of T. While this may in part be due to a possible distor-
tion of the TB gauge statistics at small T, we suspect that this
effect alone is not enough to account for the observed modi-
fied behavior. In fact a similar flattening trend is noticeable
also for the variance of the rain rate as measured by an optical
disdrometer (courtesy Dr. Ali Tokay, not shown), which does
not suffer from the kind of error that plagues the TB
estimates. It appears reasonable to conclude that σ2T actually
tends to a finite value σ20 as T→ 0 indicating the need of a
short distance cut-off Λ. As expected, the values of Λ inferred
from the rough estimates of σ20 listed in Table 1 are much
smaller than the smallest radar spatial scale, 2 km, thus
providing an a posteriori justification for neglecting it during
parameter estimation from radar data.

5. Summary and Conclusion

[53] In this paper we have presented a spectral model of
precipitation that describes the second moment statistics of
rain rate from both radar and rain gauge data within a unified
framework. The model is based on a linear stochastic differ-
ential equation involving a fractional-order time derivative
that generalizes a simpler predecessor based on an equation
that was first order in time. The parameters of the model spec-
trum are estimated by fitting the radar data. Our parameter es-
timation can be thought of as being a “skewed fit” since the
optimization procedure we adopted is designed to better esti-
mate the smaller scale property of the precipitation field.
With two adjustable spectral indices, the model fits the ob-
served statistics of radar rainfall fairly well at smaller spatial
and temporal scales. The model is tested by comparing its
predictions against the observed statistics of rain rate data
taken from a set of gauges located within the radar FOV.
With the radar parameters, the model appears to reproduce
the scale dependence of the gauge statistics reasonably well.
The difficulties experienced by the model at larger scales vary
from site to site and from one season to another. They are pre-
sumably attributed to the statistically nonstationary nature of
the data that is intrinsic to the rainfall phenomenon itself.
[54] The spectral model provides a useful tool for estimation

of the sampling error for various radar-gauge intercomparison
scenarios [Bell and Kundu, 2003]. Radar at a GV site that is
equipped with a dense rain gauge network can be conveniently
calibrated using the model as a framework for data fitting. We
plan to explore this problem further in a future paper.

Appendix A: Fractional Calculus—A Brief Outline

[55] The notion of a derivative or integral of fractional order
has a long history that is almost as old as calculus itself going
back to Leibniz, who mentioned a quantity that in modern ter-
minology would be equivalent to derivative of order 1/2. The
concept was first systematically formulated by Liouville with
important subsequent contributions by Riemann, Grünwald,
Krug, Sonine, Weyl, Riesz, and many other mathematicians.
See, e.g., Samko et al. [1993] for a detailed account of the

historical developments. For a noninteger order β (which
can in general even be complex), the usual integral and deriv-
ative operators are generalized into one-parameter families of
operators aI

β
t and aD

β
t labeled by a real variable a, sometimes

collectively referred to as fractional differintegral operators
[Oldham and Spanier, 2006]. An integral of fractional-order
α is defined by the formula

aI
α
t f tð Þ ¼ 1

Γ αð Þ ∫
t

adu f uð Þ t � uð Þα�1 α > 0ð Þ: (A1)

In the case α= n> 0, a positive integer, it correctly reduces to

a I
n
t f tð Þ ¼ ∫ tadu1∫

u1

a du2 … ∫
un�1

a dun f unð Þ

¼ 1

n� 1ð Þ! ∫
t

adu f uð Þ t � uð Þn�1;

which is the unique solution to the differential equation

y nð Þ tð Þ ¼ f tð Þ; y að Þ ¼ y′ að Þ ¼ y″ að Þ ¼ … ¼ y n�1ð Þ að Þ ¼ 0:

The derivative operator aD
β
t is then defined through

aD
β
t f tð Þ ¼

1

Γ �βð Þ ∫
t

a

duf uð Þ
t � uð Þ1þβ ; Re β < 0

d

dt


 �n

aI
n�β
t f tð Þ; n� 1 < Re β < n; n > 0:

8>>><>>>: (A2)

[56] There is a reciprocal relationship between the frac-
tional integral and derivative operators that is suggested by
analogy with traditional calculus. It is usual practice to con-
solidate the notation by writing aI

β
t ¼ aD

�β
t thus formally

extending the fractional derivative operators to all orders in
a way that clarifies the inverse relation between the two sets
of operators introduced separately.
[57] We now list some of the basic properties:

1. aIαt �aIβt f tð Þ ¼ aI
αþβ
t f tð Þ ¼ aI

β
t �aIαt f tð Þ;

2. aI0t f tð Þ ¼ f tð Þ; aI�n
t f tð Þ ¼ dn

dtn f tð Þ ≡ f nð Þ tð Þ;
3. aDα

t f tð Þ ¼ d
dt aI

1�α
t f tð Þ ¼ aI1�α

t f ′ tð Þþ f að Þ
Γ 1�αð Þ t�að Þ�α:

The last relation indicates that the operators d/dt and a

I1�α
t do not commute.
[58] Two cases can be distinguished. In the case when a is

finite, one can choose a= 0 without loss of generality. The
derivative operator 0D

β
t is the so-called Riemann-Liouville

derivative, which acts on classes of functions defined on the
half line [0, ∞) and naturally appears in the context of an
initial value problem like Brownian motion. The other
case arises when one lets a→�∞. The derivative �∞D

β
t ,

which we shall call the Liouville-Weyl derivative, emerges
as the relevant fractional derivative operator when one is in-
terested in classes of functions that reside on the entire real
line (�∞, ∞). (Weyl’s name is attached to it because he
introduced a class of fractional operators that coincides with

�∞D
β
t for the class of periodic functions). Now the initial

condition refers to the infinitely distant past and the temporal
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evolution is time translation invariant. It is the latter case
that is of greater interest to us, since it allows one to describe
temporally stationary stochastic processes.
[59] The Liouville-Weyl derivative has the important

property that under the operation of Fourier transform
defined by the representation

a k; tð Þ ¼ 2πð Þ�1=2∫∞�∞dω e�iωta k;ωð Þ;

the usual correspondence d/dt ⇔� iω for ordinary de-
rivatives holds for the fractional derivative as well; that is

to say, if f(t) and F(ω) are Fourier transforms of each other,

then �∞D
β
t f tð Þ and (�iω)βF(ω) are Fourier transforms of

each other as well.

Appendix B: Derivation of Some Spectral
Model Formulas

[60] In this Appendix we describe some of the details of the
analytical steps in the derivation of the various covariance
statistics of precipitation data that are derived from our frac-
tional dynamics model. Most of the steps are very similar to
those in the β = 1 case of the present model described in
BK96 and KB03 and we will be brief about them.
[61] First, we examine the lagged covariance of the Fourier

components of the precipitation field c(k, τ) given by equa-
tion (13), which is the basic building block of the various
temporal statistics of interest. The function h(η) is defined
by the integral representation

h ηð Þ ¼ 2

π


 �1=2 1

g βð Þ∫
∞

0 dξ
cos ξηð Þ

ξ2β þ 2 cos βπ=2ð Þξβ þ 1
(B1)

with h(0) = 1. An explicit formula for the normalization factor
g(β) is obtained by setting η=0 and evaluating the ξ-integral.
When �2< β< 2, it has the explicit form

g βð Þ ¼ �
ffiffiffiffiffi
2π

p

β
cot βπ=2ð Þ
sin π=βð Þ ; (B2)

which can be shown to be positive despite its appearance.

Plots of h(η) are shown in Figure B1 for several values of β
between ½ and 2. The case β = 1 is elementary: the function
h(η) is simply exp(�η). When β< 1, h(η) decreases mono-
tonically and rapidly approaches zero for large η. When
β> 1, h(η) exhibits damped oscillatory behavior around
zero as η increases.
[62] Next we turn to the statistics of area-averaged rain

rate. We start with the definition of the lagged rain rate
covariance of two areas

ΓAA′ s; τð Þ ¼ 1=L4
� �∫

A
d2x ∫

A′

d2x′ c sþ x′ � x; τð Þ; (B3)

which can also be expressed in terms of a Fourier integral
representation

ΓAA′ s; τð Þ¼ 2=πð Þ∫∞0 dk1∫
∞

0 dk2 e
ik•s sinc2 k1L=2ð Þsinc2 k2L=2ð Þc k; τð Þ;

(B4)

where sinc(x) = sin(x)/x and k ¼ k21 þ k22
� �1=2

. In the case of
zero lag, i.e., τ = 0, following the steps detailed in BK96,
we obtain the spatial covariance function

ΓAA′ s; 0ð Þ¼γ0∫
1

�1dξ1∫
1

�1dξ2 1� ξ1j jð Þ 1� ξ2j jð ÞCν ξþ s=Lj j L=L0ð Þð Þ:
(B5)

For zero separation (s= 0), we get the temporal
autocovariance of an area A:

ΓAA 0; τð Þ ¼ 2=πð Þ∫∞0 dk1∫
∞

0 dk2 sinc
2 k1L=2ð Þsinc2 k2L=2ð Þc k; τð Þ:

(B6)

Figure B2 illustrates the improvement in the fit to the lagged
autocorrelation functionΦAA(0,τ) over the β = 1 case in BK96
achieved by letting β be an adjustable parameter.
[63] The variance of area-averaged rain rate ΓAA 0; 0ð Þ

¼ σ2A can be expressed in two alternative ways, as a spatial in-
tegral obtained by setting the separation s= 0, in equation
(B3) and as a Fourier integral by setting τ = 0 in equation
(B4). The first approach yields the formula

σ2A ≡ hr′2Ai ¼ 4γ0G ν;L=L0ð Þ; (B7)

where we have defined the function

G ν; zð Þ ¼ ∫10 dξ1∫
1

0 dξ2 1� ξ1ð Þ 1� ξ2ð ÞCν z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ ξ22

q
 �
 �
:

(B8)

As pointed out in KB03, upon equating the two formulas in
the case β = 1, one obtains the useful identity:

∫∞0 dκ1∫
∞

0 dκ2I κ1; κ2;L=L0; λð Þ ¼ 2π
Γ 1þ λð ÞG λ;L=L0ð Þ; (B9)

where, for brevity, we have defined

I κ1; κ2; L=L0; λð Þ ¼ sinc2 κ1L=2L0ð Þsinc2 κ2L=2L0ð Þ
1þ κ21 þ κ22
� �1þλ : (B10)

Figure B1. Plot of the function h(η) versus η for several
values of the parameter β.
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[64] Next we evaluate the characteristic time scale τA
defined by equation (23) as follows. In KB03 the following
identity was proved:

τAσ2A ¼
ffiffiffiffiffiffiffiffi
π=2

p eΓAA ω ¼ 0ð Þ; (B11)

where eΓAA ωð Þ is the Fourier transform of ΓAA(0,τ). In
view of the Fourier representation (B6), eΓAA ωð Þ can be
expressed in a similar form

eΓAA ωð Þ ¼ 2=πð Þ∫∞0 dk1∫
∞

0 dk2 sinc
2 k1L=2ð Þsinc2 k2L=2ð ÞS k;ωð Þ;

(B12)

where S(k,ω) is the model spectrum. Evaluating the right hand
side of (B11) with the explicit form of the spectrum and using
the relation (18) between the constants F0 and γ0, we get

eΓAA ω ¼ 0ð Þ ¼ 2γ0Γ 1þ νð Þ
πg βð Þ ∫∞0 dκ1∫

∞

0 dκ2I κ1; κ2;L=L0; αβ � 1ð Þ:

With the help of the identity (B9) this can be recast in the
form

eΓAA ω ¼ 0ð Þ ¼ 4γ0τ0Γ 1þ νð Þ
Γ 2þ 2ν ′ð Þg βð ÞG 1þ 2ν ′; L=L0ð Þ:

Then equation (B11) yields

τAσ2A ¼ 2
ffiffiffiffiffi
2π

p
γ0τ0Γ 1þ νð Þ

Γ 2þ 2ν ′ð Þg βð Þ G 1þ 2ν ′;L=L0ð Þ; (B13)

where we have now introduced a new parameter ν′ through
the relation

αβ ¼ 2 1þ ν ′ð Þ: (B14)

Note that ν′= ν in the “old” spectral model with β = 1. From
equations (16) and (B14) we have the general relation

2� 1

β
¼ 1þ ν

1þ ν ′
: (B15)

From equation (B15) it follows immediately that ν′> ν and
ν′< ν v correspond respectively to the cases β> 1 and β< 1.
Combining equation (B13) and the expression (B7) for σ2A ,
we get an explicit formula for τA:

τA ¼
ffiffiffi
π
2

r
τ0

g βð Þ
Γ 1þ νð Þ
Γ 2þ 2ν ′ð Þ

G 1þ 2ν ′; L=L0ð Þ
G ν;L=L0ð Þ : (B16)

[65] Next we outline the computation of the temporal sta-
tistics σ2T and ΨTT(ρ) needed to describe the gauge data.
The space-time covariance of rain rate averaged over two
time intervals of length T lagged by time τ measured at two
points x and x′ separated by a distance ρ, namely,

ΓTT ′ ρ; τð Þ≡h 1=Tð Þ∫T0 dtR ′ x; tð Þ� 1=Tð Þ∫T0 dt ′R ′ x′; t ′ þ τð Þi

¼ 1=T2
� �∫T0 dt ∫T0 dt ′c ρ; t � t ′ þ τð Þ

can be evaluated as follows. First, as usual, we convert the
double integral into a single integral yielding the expression

ΓTT ′ ρ; τð Þ ¼ 1=Tð Þ ∫
T

�T
dτ ′ 1� τ ′j j

T


 �
c ρ; τ ′ � τð Þ

¼ 1=Tð Þ∫
T

0
dτ ′ 1� τ′

T


 �
c ρ; τ ′ � τð Þ þ c ρ; τ ′ þ τð Þ½ �:

Next we introduce the space-time Fourier transform repre-
sentation of c(ρ,τ) via equation (11). After performing the
τ′-integration explicitly and some further simplification, we
obtain the formula

ΓTT ′ ρ; τð Þ¼
ffiffiffiffiffiffiffiffi
2=π

p ∫∞0 dω cos ωτð Þsinc2 ωT=2ð Þ∫∞0 dk kJ 0 kρð ÞS k;ωð Þ:
(B17)

At zero lag this reduces to the spatial covariance of time-aver-
aged rain rate:

ΓTT ρ; 0ð Þ ¼
ffiffiffiffiffiffiffiffi
2=π

p ∫∞0 dω sinc2 ωT=2ð Þ∫∞0 dk kJ 0 kρð ÞS k;ωð Þ:
(B18)

The varianceσ2T is obtained by specializing equation (B18) to
the case ρ= 0:

σ2T ¼
ffiffiffiffiffiffiffiffi
2=π

p ∫∞0 dω sinc2 ωT=2ð Þ∫∞0 dk kS k;ωð Þ: (B19)

[66] Finally, we investigate the asymptotic behavior of the
area and time-averaged statistics by isolating the leading sin-
gularity in the area/time integrals in which c(ρ, τ) is replaced
by its scaling approximation c(∞)(ρ, τ). It is convenient to ex-
press the singular term in terms of the dimensionless variables

Figure B2. Sample plots of the observed temporal autocor-
relation ΦAA(τ) for a 128 km box (open circles) compared
with its model prediction corresponding to the best fit values
of β and τ0 (β = 1.33, τ0 = 750min) for the same spatial scale
(solid curve) and in the case β = 1 with best fit value τ0 = 2460
min (dashed curve).

10,294

KUNDU AND TRAVIS: A SPECTRAL MODEL OF RAIN STATISTICS



ρ*, τ*,L* =L/L0 and T* =T/τ0. In the scaling limit τ*,L*→ 0,
the lagged autocovariance of area-averaged rain rate has the
singularity structure

ΓAA 0; τð Þ ∼ γ0L
�2 νj j
� φ1 τ�=Lα�; α; β

� �
; (B20)

where the scaling function φ1(u;α, β) is defined as

φ1 u; α; βð Þ¼4∫10∫
1

0dz1dz2 1�z1ð Þ 1�z2ð Þ z21þz22
� �� νj j

φ u z21þz22
� ��α=2

; α; β
� �

:

(B21)

In particular, as was shown in KB03, the variance σ2A ≡
ΓAA 0; 0ð Þ has the limiting behavior

σ2A ∼ Aþ BL�2 νj j
� (B22)

plus terms that vanish as L*→ 0. This result continues to hold
in the more general β ≠ 1 case, where A and B are constants
given by

A ¼ 1

2
γ0Γ � νj jð Þ;

B ¼ 21þ2 νj jγ0Γ νj jð Þ∫10 dξ1∫
1

0 dξ2 1� ξ1ð Þ 1� ξ2ð Þ ξ21 þ ξ22
� �ν

:

(B23)

[67] The integral correlation timescale τA given by equation
(B12) has the power law dependence τA e L2 νj j

� as L*→0.
Similarly, in the scaling limit ρ*,T*→0 the spatial covariance
of time-averaged rain rate has the singularity structure

ΓTT ρ; 0ð Þ ∼ γ0ρ�2 νj j
� φ2 T�=ρα�; α; β

� �
; (B24)

where we have introduced a second scaling function

φ2 s; α; βð Þ ¼ 2∫10 dz 1� zð Þφ zs; α; βð Þ: (B25)

The asymptotic behavior of the variance of time-averaged
rain rateσ2T ≡ ΓTT 0; 0ð Þ for small T* is inferred from equations
(B24) and (B25) by making use of the limit (32):

σ2T ∼ 1� νj j=αð Þ�1 1� 2 νj j=αð Þ�1γ0KT
�2 νj j=α
� : (B26)
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