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ABSTRACT

It is well known that a complete description of the solar wind requires a kinetic description and that, particularly at
sub-proton scales, kinetic effects cannot be ignored. It is nevertheless usually assumed that at scales significantly
larger than the proton gyroscale rL, magnetohydrodynamics or its extensions, such as Hall-MHD and two-fluid
models with isotropic pressures, provide a satisfactory description of the solar wind. Here we calculate the
polarization and magnetic compressibility of oblique kinetic Alfvén waves and show that, compared with linear
kinetic theory, the isotropic two-fluid description is very compressible, with the largest discrepancy occurring at
scales larger than the proton gyroscale. In contrast, introducing anisotropic pressure fluctuations with the usual
double-adiabatic (or CGL) equations of state yields compressibility values which are unrealistically low. We also
show that both of these classes of fluid models incorrectly describe the electric field polarization. To incorporate
linear kinetic effects, we use two versions of the Landau fluid model that include linear Landau damping and
finite Larmor radius (FLR) corrections. We show that Landau damping is crucial for correct modeling of magnetic
compressibility, and that the anisotropy of pressure fluctuations should not be introduced without taking into account
the Landau damping through appropriate heat flux equations. We also show that FLR corrections to all the retained
fluid moments appear to be necessary to yield the correct polarization. We conclude that kinetic effects cannot be
ignored even for krL � 1.
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1. INTRODUCTION

Magnetohydrodynamics (MHD) has been used for many
years to describe solar wind turbulence theoretically and to
interpret observational data (see reviews by Goldstein et al.
1995; Tu & Marsch 1995; Bruno & Carbone 2005; Horbury et al.
2005). It is generally accepted that at scales large compared with
the proton gyroscale (i.e., krL � 1) in the inertial range of the
turbulence spectrum, MHD provides a satisfactory description
of the physical properties of the (almost) collisionless solar
wind.

Recent observational studies have spanned spatial scales
smaller than the proton gyroscale, and in some cases even down
to electron scales (see, e.g., Alexandrova et al. 2009; Sahraoui
et al. 2009, 2010; Perri et al. 2012). Some of these studies
support the idea that at sub-proton scales the turbulent cascade
is dominated by nonlinearly interacting kinetic Alfvén waves
(KAWs; Bale et al. 2005; Sahraoui et al. 2009, 2010; Salem
et al. 2012). Other studies maintain that the most relevant mode
is the whistler wave (see, e.g., Gary & Smith 2009; Podesta et al.
2010; Gary et al. 2012) or that none of the modes alone can
explain the observations (Narita et al. 2011; Smith et al. 2012).
A correct understanding of the physical properties of KAWs is
critically important and, as was shown recently by Sahraoui et al.
(2012), these properties still need to be explored. Furthermore,
any fluid model that purports to describe the large-scale solar
wind should capture the correct linear properties of KAWs. A
main issue addressed in this paper concerns the need of retaining
low-frequency kinetic effects within a fluid description, even at
large scales.

Even though extensions of MHD such as Hall-MHD and
two-fluid models provide additional physics by including the

Hall-term and introducing anisotropic pressure fluctuations for
protons and electrons, one of the biggest deficiencies is the
unphysical description of damping in the collisionless regime.
By and large, fluid models either mimic the Navier–Stokes
approach of employing Laplacians to control damping (or use
hyperresistivity and hyperviscosity) or rely on sophisticated
numerical schemes to avoid the development of unphysical
gradients or numerical instabilities. To address this issue, a new
class of the so-called Landau fluid models has been developed
that incorporate kinetic effects, such as linear Landau damping.
In that way, collisionless wave damping is introduced into
the fluid description. The simplest Landau fluid closures are
parallel propagating slab models (Hammett & Perkins 1990).
The associated equations were numerically explored by Jayanti
et al. (1998) in an investigation of the parametric decay of Alfvén
waves.

The first Landau fluid model to account for different parallel
and perpendicular pressures and heat fluxes and, therefore,
to incorporate linear Landau damping (by both protons and
electrons) into a fully three-dimensional (3D) geometry was
presented by Snyder et al. (1997). This model was derived
from the drift kinetic equation. By construction, this approach
neglects the Hall-term and non-gyrotropic contributions such as
finite Larmor radius (FLR) corrections because the drift kinetic
ordering sets the proton gyroradius, rL, to zero. We refer to
it as the large-scale(LS)-Landau fluid where, in the following,
we retain the Hall effect as it introduces dispersive effects. A
LS-Landau fluid model of Snyder et al. (1997) was used by
Chandran et al. (2011) to develop a 1D turbulence transport
solar wind model.

Over the last decade, the Landau fluid approach was recon-
sidered and refined to its present form by Passot & Sulem (2003,
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Figure 1. Polarization of KAWs with respect to length scale. Solid lines are kinetic solutions, and crosses are solutions of the FLR-Landau fluid model. Left: β = 0.01,
θ = 82◦ (red) and 85◦ (blue). Center: β = 0.1, θ = 70◦ (red) and 75◦ (blue). Right: β = 2.0, θ = 0◦ (red), 25◦ (green), 35◦ (blue), 42.◦5 (magenta), 45◦ (cyan), 50◦
(black), and 89◦ (yellow).

(A color version of this figure is available in the online journal.)

2004), Goswami et al. (2005), Passot & Sulem (2006, 2007),
and Passot et al. (2012). Their approach begins directly from the
Vlasov equation and is therefore able to incorporate kinetic ef-
fects including a non-zero Larmor radius. In these Landau fluid
models, FLR corrections to all the retained fluid moments can
be evaluated in two different ways. One choice is to employ a
scale separation expansion of the pressure and heat flux tensor
equations in both space and time. The alternative approach is
to evaluate the FLR contributions directly from linear kinetic
theory in the low-frequency limit (Passot & Sulem 2007; Passot
et al. 2012). To prevent confusion between models with different
FLR corrections, Passot et al. (2012) suggested that the former
class of models be referred to as meso-scale (MS) Landau fluids
and the latter class as FLR-Landau fluids.

We will adopt those definitions in this paper (we note
that the model used by Hunana et al. 2011 for the first
3D Landau-fluid simulations of turbulence should have been
called MS-Landau fluid instead of FLR-Landau fluid). Here
we use the FLR-Landau fluid model and the LS-Landau
fluid model to explore the importance of kinetic effects in
understanding KAWs (for simplicity, the MS-Landau fluid
model is not considered here). The exact equations of the LS-
Landau fluid model are written down in Appendix A, where the
FLR-Landau fluid model is also briefly described by referring
to equations of Passot et al. (2012).

In the isotropic two-fluid model that does not contain any
kinetic effects, but still contains the Hall-term, the (isotropic)
proton and electron pressures are prescribed as pr = ργr .
Here we adopt the usual values of the proton polytropic index
γp = 5/3 and the electron index γe = 1. To introduce the
anisotropy of pressure fluctuations, we use the usual CGL
equation of state (Chew et al. 1956) for both particle species
and we call this model “CGL protons + CGL electrons.”
We also briefly consider model where the protons obey the
CGL condition and the electrons are isotropic, we call this
model “CGL protons + Iso electrons.” All these usual fluid
models are derived with the assumption of vanishing heat
fluxes. Differently, the Landau fluid models involve dynamical
equations for the gyrotropic heat fluxes of the ions and electrons.
Both Landau fluid models used here are closed at the level
of the fourth-rank fluid moments (evaluated in a quasi-static
approximation) and contain both proton and electron Landau
damping. Electron inertia is neglected in all the fluid models
since we concentrate on frequencies that are much smaller than
the electron cyclotron frequency. The initial mean parallel and
perpendicular pressures are taken equal, i.e., there is no mean
temperature anisotropy present for both particle species. The
mean electron temperature is taken equal to the mean proton

temperature. Kinetic solutions require knowing the ratio of the
proton thermal speed vth to the speed of light c, which we take
to be vth/c = 10−4.

For each fluid model, the equations were linearized and the
dispersion relation ω(k) calculated numerically for a given set of
plasma parameters. Both Landau fluid models considered here
consist of 15 dynamical equations in 15 variables and, together
with the divergence free constraint for the magnetic field, yield
14 different waves. Some of these solutions are very highly
damped and are not analogous to the usual MHD waves. This is
consistent with kinetic theory, which yields an infinite number of
highly damped solutions. For each wavenumber, the frequency
is substituted back into the equations to (numerically) obtain the
eigenvector. We used the WHAMP code (Rönnmark 1982) to
find the solutions of the full linear kinetic theory. Comparison
of mode properties in a two-fluid models and kinetic theory
was also performed by Krauss-Varban et al. (1994) and Howes
(2009).

2. NUMERICAL RESULTS

We first briefly explore how KAW polarization changes with θ
(defined as angle between wavevector k and mean magnetic field
B0 ẑ), focusing on the large scales (krL < 1). It is known that for
sufficiently large θ , the oblique KAW is right-hand polarized
(see, Gary 1986; Belmont & Rezeau 1987; Hollweg 1999;
Sahraoui et al. 2012). Figure 1 illustrates the angular transition of
KAW polarization from left-hand to right-hand polarized wave
as the proton plasma beta increases from β = 0.01 (Figure 1,
left) to β = 0.1 (Figure 1, center) to β = 2.0 (Figure 1, right).
Kinetic solutions are represented by solid lines and solutions
of the FLR-Landau fluid model are represented by crosses. The
polarization is defined as P = Arg(Ey/Ex)/π (left hand/right
hand are negative/positive, respectively). In general, |Ex | �=
|Ey |, so polarization P = ±0.5 does not necessarily imply that
the wave is circularly polarized. For β = 0.01 (Figure 1, left) the
KAW propagating at θ = 82◦ is a left-hand polarized wave with
P = −0.5, while at θ = 85◦ the KAW is right-hand polarized
with P = +0.5. The KAW completely changes polarization
from −0.5 to +0.5 over a span of only 3◦. For β = 0.1
(Figure 1, center), the complete change of polarization occurs
between θ = 70◦ and θ = 75◦. Finally, for β = 2.0 (Figure 1,
right), the only left-hand polarized KAW with P = −0.5 is the
wave propagating at θ = 0◦ (red line). Then, as θ increases,
the KAW smoothly changes its polarization from negative to
positive values and becomes right-hand polarized. In this case,
we also searched for an approximate value of θ for which the
KAW is linearly polarized (P = 0) and found that this occurs
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Figure 2. Magnetic compressibility χ (k⊥rL) of highly oblique KAWs with propagation angle θ = 89.◦99 for the isotropic two-fluid model (top left), CGL protons +
CGL electrons model (top right), large-scale Landau fluid model (bottom left), and FLR-Landau fluid model (bottom right). Solid lines represent kinetic theory and
crosses represent solutions of the corresponding fluid models. The proton plasma beta is 0.1 (red), 0.5 (green), 1.0 (blue), 2.0 (magenta), 4.0 (cyan), and 10.0 (black).

(A color version of this figure is available in the online journal.)

at θ = 42.◦5 (magenta line). Therefore, it is worth emphasizing
that for typical (high) values of plasma beta in the solar wind
(β � 1), the KAW does not have to be highly oblique to be
right-hand polarized. Solutions of the FLR-Landau fluid model
are plotted only for three angles of propagation θ = 35◦ (blue
crosses, left-hand polarized KAW), θ = 42.◦5 (magenta crosses,
linearly polarized KAW), and θ = 45◦ (cyan crosses, right-
hand polarized KAW). In all three β cases, the FLR-Landau
fluid model accurately captures the angular transition of the
KAW polarization at large scales. It is interesting to note that,
while for lower beta the angular polarization transition occurs
over only a few degrees, for higher beta this transition occurs
over a much larger range in θ .

Recent studies of the evolution of magnetofluid turbulence in
the solar wind have emphasized the importance of understanding
the physical properties of highly oblique KAWs (k⊥ � k‖), i.e.,
fluctuations with 80◦ � θ < 90◦. This range of parameters was
recently examined using the WHAMP code by Sahraoui et al.
(2012) who showed that for KAWs to reach the electron scale
and be sufficiently undamped, the (linear) wave had to propagate
at extremely large values of θ , e.g., as much as 89.◦99. This value
of θ was used by Sahraoui et al. (2009) to interpret the power
spectrum of magnetic fluctuations at very small spatial scales
(of the order of and less than the electron Larmor scale).

The gyrokinetic description (Howes et al. 2006, 2008;
Schekochihin et al. 2009) is also derived in the limit k⊥ � k‖.
At these extreme angles and spatial scales of order the elec-
tron Larmor radius, the only relevant wave particle resonance

is electron Landau damping and even that interaction requires
very fast particles from the strahl component of the solar wind
electron distribution. Another implication of such large values
of θ is the challenge of knowing the background magnetic field
with sufficient precision so that θ can be accurately defined. In
the discussion here we will use such extreme angles to explore
kinetic effects in comparison to fluid predictions and will de-
fer any discussion of their observational reality to another study.
The angle θ = 89.◦99 was also chosen for convenience to be able
to plot all β parameters up to the same wavenumber k⊥rL = 10.

In Figure 2, we compare magnetic compressibility calcu-
lated from the four fluid models (crosses) and kinetic the-
ory (solid lines) over scales ranging from k⊥rL = 0.01 to
k⊥rL = 10. The proton plasma beta is taken to be β = 0.1
(red), 0.5 (green), 1.0 (blue), 2.0 (magenta), 4.0 (cyan), and
10.0 (black). The magnetic compressibility, χ , is defined as
χ (k⊥rL) = |Bz(k⊥rL)|2/|B(k⊥rL)|2, where Bz(k⊥rL) is the par-
allel component of the total magnetic field B (in Fourier space).
The compressibility predicted by the isotropic two-fluid model
(Figure 2, top left) is very large when compared to the kinetic
calculation and the discrepancy increases with β. The only ex-
ception comes at small β (cf., β = 0.1 in Figure 2). The dis-
crepancy is most visible in the range k⊥rL = [0.1, 1] (note that
in Figure 2 the y-axis is plotted using a linear scale). In Figure 3,
the y-axis is plotted on a log scale and the large overestimate of
χ is evident even for k⊥rL = [0.01, 0.1].

The top right panel of Figure 2 compares the compressibility
of the CGL protons + CGL electrons model with kinetic theory.
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Figure 3. Similar to Figure 2 but with a logarithmic scale for compressibility χ , which emphasizes the large scales. The models are directly compared side by side,
separately for each plasma β. The models are kinetic theory (red line), isotropic two-fluid (red crosses), CGL protons + Iso electrons (green crosses), CGL protons
+ CGL electrons (cyan crosses), LS-Landau fluid (blue crosses), and FLR-Landau fluid (black crosses). The proton plasma beta is 0.1 (top left), 0.5 (top right),
1.0 (center left), 2.0 (center right), 4.0 (bottom left), and 10.0 (bottom right).

(A color version of this figure is available in the online journal.)

It is shown that anisotropy of pressure fluctuations unrealisti-
cally reduces compressibility χ for all values of β. The excep-
tions are solutions for β = {0.5, 1.0} at very small scales, where
the χ is enhanced. An interesting observation is that at small
scales for β � 0.5, the compressibility decreases with β. This
is in strong contrast with both the isotropic two-fluid and ki-
netic theory, where at small scales the compressibility increases
with β.

The bottom left panel of Figure 2 compares the compress-
ibility from the LS-Landau fluid model with kinetic theory.
Landau damping corrects the large errors in compressibility
χ introduced by the anisotropy of pressure fluctuations and
the solutions for β � 2 are somewhat precise, even though
slightly overestimated. However, the match with kinetic theory

is not perfect and compressibility computed from this model for
β = 4 and β = 10 is underestimated. Figure 2 (bottom right)
compares the compressibility of FLR-Landau fluid model with
the kinetic theory. The match with kinetic theory is quite precise
on all scales and for all values of β. Evidently, FLR contribu-
tions are required in fluid models to reproduce accurately the
compressibility χ of KAWs as computed from kinetic theory.

To further explore the compressibility at large scales, in
Figure 3 we plot the χ in a logarithmic scale. The solutions
are rearranged and all the models are compared side by side,
separately for each plasma β. One new model is considered and
that is the CGL protons + Iso electrons model. It is shown that for
low β = 0.1, all the fluid models behave essentially in the same
way and the compressibility χ is described quite accurately.
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Figure 4. Polarization P of highly oblique KAWs. As in Figure 2, solid lines represent kinetic theory and the proton plasma beta is 0.1 (red), 0.5 (green), 1.0 (blue),
2.0 (magenta), 4.0 (cyan), and 10.0 (black).

(A color version of this figure is available in the online journal.)

The following generalizations therefore only concern the solu-
tions with β � 0.5. The isotropic two-fluid is very compressible
in comparison to kinetic theory for all values of β and for β � 1
it is the most compressible model, surpassed only for β = 0.5
by the CGL protons + Iso electrons model. The discrepancy
between the isotropic two-fluid and the kinetic theory increases
with β and for β = 10 the isotropic two-fluid overestimates the
compressibility χ at large scales by two orders of magnitude.
Considering only large scales k⊥rL < 1, the CGL protons +
CGL electrons model is the model with the lowest amount of
compressibility from all the fluid models and the compressibil-
ity is very far from the results of kinetic theory. For example,
for β = 0.5 at scales around k⊥rL = 0.6, the compressibility is
underestimated by well over four orders in magnitude. In con-
trast, the LS-Landau fluid model yields quite good values of
compressibility χ for all range of β and all range of scales. The
results demonstrate that the anisotropy of pressure fluctuations
should not be introduced without an appropriate form of Lan-
dau damping. The compressibility χ for the FLR-Landau fluid
model is extremely well reproduced for all ranges of scales and
β. The results for CGL protons + Iso electrons are not conclu-
sive and while for β � 1 the χ is reproduced quite accurately
at large scales, at small scales for β = {1.0, 2.0} the compress-
ibility χ is very off and for β = 0.5 it is the most compressible
model at large scales.

The polarization is also sensitive to the approximations used.
In the top-left panel of Figure 4, we compare P calculated
from the isotropic two-fluid model and kinetic theory. The
polarization P = +0.5 is obtained for all β when calculated
from the isotropic two-fluid model (note that the solutions are

plotted over each other and only the last plotted solution with
β = 10 is visible). The isotropic two-fluid model correctly
describes highly oblique KAW as being right-hand polarized
waves. However, the model completely misses the sensitive
dependence ofP on β and also does not describe the dependence
of P on k⊥rL.

Anisotropic pressure fluctuations in the CGL protons +
CGL electrons model (Figure 4, top right) do not introduce
almost any variation in P and all considered solutions with
β = {0.1, 1.0, 2.0, 4.0, 10.0} are right-hand polarized waves
with P = +0.5. However, for β = 0.5 this model yields a
KAW wave which is left-hand polarized at large scales with
P = −0.5 and only at smaller scales the KAW becomes right-
hand polarized with P = +0.5.

Landau damping in the LS-Landau fluid model (Figure 4,
bottom left) introduces some variation in P with β and k⊥rL,
but, even though all the solutions are right-hand polarized waves,
the solutions do not match the kinetic calculations. The only
solution that is reproduced accurately is for low β = 0.1.

In contrast, the FLR-Landau fluid model (Figure 4, bottom
right) correctly captures polarization for all values of β and
all spatial scales. Obviously, the FLR corrections and non-
gyrotropic corrections to the fourth-rank cumulants are crucial
for a correct reproduction of KAW polarization. In fact, it is
not surprising that the FLR-Landau fluid model correctly repro-
duces the linear kinetic theory in quasi-transverse directions,
as the only approximation at the linear level is the replacement
of the plasma response function by a Padé approximant. Note
that the discrepancy between the two-fluid and FLR-Landau
fluid models is still very evident at scales larger than the proton
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Figure 5. Real frequency of highly oblique KAWs; all parameters are the same as in Figure 2.

(A color version of this figure is available in the online journal.)

gyroscale. This is unexpected because it is usually assumed that
FLR corrections become important only at sub-proton scales
(k⊥rL > 1). Here we find that FLR corrections cannot be ig-
nored, even at scales that are as large as k⊥rL = 0.01.

Figure 5 compares the real frequency ωr of these four
different fluid models with kinetic theory. The frequency is
normalized with respect to the proton cyclotron frequency Ωp.
It is shown that the isotropic two-fluid (Figure 5, top left)
describes the real frequency quite accurately for all range of
scales and all range of β. In contrast, the CGL protons +
CGL electrons model (Figure 5, top right) is very inaccurate
in modeling the frequency at sub-proton scales k⊥rL > 1 for
β = {0.5, 1.0, 2.0, 4.0}. Again, the introduction of Landau
damping corrects the deficiencies introduced by the anisotropic
pressure fluctuations and the solutions for the LS-Landau fluid
model (Figure 5, bottom left) are quite precise. The solutions
for the FLR-Landau fluid model (Figure 5, bottom right) are
very precise.

To further verify these results, we calculated the KAW
polarization and compressibility for the propagation angle
θ = 60◦ at even larger scales (k⊥rL = [10−3, 10−1]) as shown
in Figures 6 and 7. The colors are identical to those in Figure 2.
All conclusions that hold for θ = 89.◦99 are also valid for
moderately oblique KAW propagation (θ = 60◦).

Figure 6 (top left) shows that the isotropic two-fluid model
is unrealistically compressible in the inertial range k⊥rL � 1.
The logarithmic scale reveals that for high values of β, com-
pressibility can be overestimated by as much as two orders
of magnitude when compared with kinetic theory. Figure 6 (top
right) shows that incorporating anisotropic pressure fluctuations

significantly reduces compressibility at very large scales. How-
ever, the system behaves quite strangely and while for β = 0.5
the compressibility χ is overestimated, in fact, already at
β = 1.0, χ is very underestimated. Solutions for the LS-Landau
fluid model are shown in Figure 6 (bottom left). Even though
the compressibility is not captured completely accurately, the
addition of Landau damping brings the fluid solutions much
closer to kinetic theory. Finally, the FLR-Landau fluid (Figure 6,
bottom right) does describe the compressibility χ with excellent
accuracy.

The polarization P for KAWs propagating at θ = 60◦
is shown in Figure 7. The isotropic two-fluid model does
not correctly describe polarization P (Figure 7, top left) and
examples with β � 0.5 have P = +0.5 regardless of plasma
β. The anisotropic pressure fluctuations in the CGL protons +
CGL electrons model (Figure 7, top right) do not introduce any
changes for β � 1 and all examples have P = +0.5. However,
the solution with β = 0.5 has P = −0.5 for all ranges of
considered scales and the solution is very inaccurate. Landau
damping in the LS-Landau fluid model (Figure 7, bottom left)
partially cures this problem and the solution with β = 0.5 has
P = +0.34 and is quite accurate (the solution is overdrawn
by the solution with β = 1.0 which has the same P value).
Landau damping alone however is inadequate to remove the
large discrepancies in P and the solutions deviate significantly
from the kinetic calculations. Finally, the FLR-Landau fluid
model (Figure 7, bottom right) does describe P of KAWs with
good accuracy.

The effect of Landau damping is perhaps most easily demon-
strated by calculating the dispersion relations and plotting the
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damping rate (which is zero in the usual two-fluid models). The
damping rates of KAWs for θ = 89.◦99 are shown in Figure 8
and for θ = 60◦ in Figure 9. Figure 8 (left) shows that while
for β = 0.1 the LS-Landau fluid model describes the damping
rate quite accurately, for β = 0.5 the damping rate is under-
estimated at large scales and for β = 10.0 the damping rate is
overestimated at large scales. The same observation holds for
θ = 60◦ (Figure 9, left), where for β = 0.5 the damping rate is
underestimated and for β = 10.0 the damping rate is overesti-
mated. In contrast, it is shown (Figures 8 and 9, right) that the
FLR-Landau fluid model accurately describes damping of
KAWs for the range of θ , β, and spatial scales discussed in
this paper. The damping rate increases with wavenumber so that
KAWs become increasingly damped at smaller scales. Conse-
quently, the effects of Landau damping become increasingly
important at sub-proton scales (k⊥rL > 1), which is to be ex-
pected.

At this stage it is important to mention that for typical
solar wind parameters, electron Landau damping counts as a
significant part of the global damping of KAWs even at scales
comparable to the proton gyroradius. To demonstrate this, we
used the FLR-Landau fluid model and prescribed the electrons
to be isothermal (isotropic with γe = 1), which eliminates the
electron Landau damping and only the proton Landau damping
is present. We call this model “FLR-Landau fluid + isothermal
electrons.” Real and imaginary frequencies calculated from this
model for highly oblique KAWs with θ = 89.◦99 are shown

in Figure 10. It is shown that the real frequencies (Figure 10,
left) are not influenced by the lack of electron Landau damping
and the solutions reproduce kinetic results with a very good
accuracy for all ranges of scales and values of β considered
here. The damping rate (Figure 10, right) is also reproduced very
accurately at scales larger than the proton gyroscale k⊥rL < 1
for all solutions with β � 0.5. However, at scales comparable to
the proton gyroscale k⊥rL ∼ 1, the damping rate is noticeably
reduced and the reduction is further emphasized at sub-proton
scales k⊥rl > 1. The special case is the solution for low β = 0.1,
for which the damping rate is underestimated at large scales and
somewhere between k⊥rL = 2 and k⊥rL = 4 the damping
rate is actually positive (the KAW becomes unstable and the
damping rate is out of the range in the logarithmic graph).
These results demonstrate that the electron Landau damping is
important already at scales comparable to the proton gyroscale,
a fact that might impact the use of hybrid models with isothermal
electrons at these scales.

3. DISCUSSION AND CONCLUSIONS

The effect of Landau damping in fully nonlinear 3D sim-
ulation of turbulence was explored by Hunana et al. (2011),
who compared simulations of a simple MS-Landau fluid model
to simulations of the usual Hall-MHD model. They showed
that Landau damping was responsible for strong damping of
slow magnetosonic modes, which is consistent with the kinetic
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theory, and also that the power spectra of the magnetic and
velocity fields with respect to k|| are much steeper in MS-Landau
fluid simulations than in the usual Hall-MHD model. The scale-
dependent magnetic compressibility, as defined here, was not
directly calculated by Hunana et al. (2011). Instead, the velocity
field was expressed as a solenoidal (incompressible) and non-
solenoidal (compressible) decomposition and the associated en-
ergies were calculated by summing over all spatial scales in the
simulation domain. Compressibility, defined as the ratio of the
compressible energy to the total energy in the velocity field for
the full solution (which, in addition to KAWs, contained all other
possible modes and fluctuations), was shown to be significantly
reduced in the MS-Landau fluid simulation.

The reduction of compressibility is important in the solar wind
context as, even though the solar wind is a fully compressible
medium, the turbulent fluctuations behave essentially as if they
were incompressible. For a compressible MHD flow to display
such a behavior, turbulent fluctuations must have initially very
specific scalings with respect to the turbulent Mach number,
as is known from the theory of nearly incompressible MHD
(Zank & Matthaeus 1993; Hunana & Zank 2010; Bhattacharjee
et al. 1999, and references therein) and from compressible
hydrodynamic simulations (Ghosh & Matthaeus 1992; Passot
& Pouquet 1987). However, there is no a priori reason why
such specific initial conditions should be present in the solar
wind. The addition of kinetic Landau damping to a fluid model
strongly damps the slow magnetosonic modes and naturally
reduces the compressibility of the flow regardless of the form
of the initial conditions.

In the analysis presented here, the effect of Landau damping
was demonstrated by calculating the KAW eigenvector and by
evaluating the magnetic compressibility χ . We showed that the
isotropic two-fluid model is very compressible in comparison
with kinetic theory and, surprisingly, the largest discrepancy
is at large scales (k⊥rL < 1). We showed that the anisotropy
of pressure fluctuations introduced by the CGL protons +
CGL electrons model drastically reduces the compressibility
of KAWs at large scales. However, the anisotropy of pressure
fluctuations leads to compressibility values which are very far
from kinetic calculations. Very large errors in this model occur
also for the real frequency ωr , especially at sub-proton scales and
intermediate values of β. This is in contrast with the isotropic
two-fluid for which the real frequency is reproduced quite
accurately for all range of scales and values of β considered here.

The addition of Landau damping appears to cure these problems
and the LS-Landau fluid model indeed yields solutions which
have compressibilities and real frequencies much closer to
kinetic theory. From Figures 3 and 6, where the compressibility
χ is plotted in a logarithmic scale, it is clearly visible that Landau
damping strongly influences the compressibility even at the
largest considered scales, i.e., k⊥rL = 0.01 and k⊥rL = 0.001.
We conclude that the anisotropy of pressure fluctuations should
not be introduced without retaining an appropriate form of
Landau damping, even at scales much larger than the proton
gyroscale.

An interesting result also concerns the polarization of the
electric field P , for which we have shown that the isotropic
two-fluid model yields very incorrect values at scales as large as
k⊥rL = 0.001 and possibly larger. From the models considered
here, only the FLR-Landau fluid model was able to correctly
capture the polarization. To better understand this result, in
Appendix B we consider two additional fluid models, where
FLR corrections are supplemented to the usual fluid models
which do not contain Landau damping (see, e.g., Stasiewicz
1993; Stasiewicz et al. 2000; Goldstein et al. 1999). We
briefly explore the effect of the large-scale (first-order) FLR
corrections supplemented to the isotropic two-fluid and to the
CGL protons + CGL electrons models. We show (Figure 12,
top) that these two models also do not describe the polarization
correctly, even at the largest scales. All solutions have P = +0.5
or P = −0.5, with some solutions flipping back and forth
between these two values at smaller scales. For completeness,
the compressibility of these two models is shown in Figure 11
and the real frequency in Figure 12 (bottom). Note that the
large-scale FLR corrections used in these models are much
simpler than the FLR corrections in the FLR-Landau fluid
model.

All the discrepancies presented in this paper can be resolved
by using a fluid model that incorporates low-frequency kinetic
effects (i.e., the FLR-Landau fluid model). The FLR-Landau
fluid model correctly captures both compressibility and polar-
ization. The reason for these discrepancies is simple: kinetic
effects are important and cannot be ignored even at scales much
larger than proton gyroscale. This conclusion suggests that cau-
tion should be exercised in the development of theoretical and
numerical descriptions that incorporate “multi-layer” physical
models where the large scales are described by the equations of
MHD and the small scales by a kinetic description.
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APPENDIX A

EQUATIONS OF FLUID MODELS

The basic equations of all the fluid models considered here
(consisting of protons and electrons) are described by the
following system of equations:

∂tρ + ∇ · (ρup) = 0, (A1)

∂t up + up ·∇up +
1

ρ
∇ ·pp − e

mp

(
E +

1

c
up × B

)
= 0, (A2)

E = −1

c

(
up − j

ne

)
× B − 1

ne
∇ · pe, (A3)

∂t B = −c∇ × E. (A4)

In the above system, the plasma is considered electrically neutral
(np = ne = n) and the total plasma density is approximated by
the proton density ρ = mpn. The electric current is given by
j = (c/4π )∇ × B and the displacement current is neglected.
The electron inertia is neglected and the electron velocity ue is
directly related to the proton velocity up by ue = up − j/ne.
The system is not closed and a form of the pressure tensor pr

must be further specified (index r = p for protons and r = e
for electrons).

Isotropic two-fluid model. The isotropic two-fluid model is
described by Equations (A1)–(A4), where the pressure tensor
for both particle species is isotropic pr = prI and the scalar
pressure obeys pr = ργr . We used γp = 5/3 and γe = 1.
For numerical solutions it is useful to write the scalar pressure
equations in an explicit time-dependent form as

∂tpr + ur · ∇pr + γrpr∇ · ur = 0. (A5)

Anisotropic two-fluid model: CGL protons + CGL electrons.
The anisotropic two-fluid with CGL protons and CGL electrons
is described by Equations (A1)–(A4), where the pressure tensor
for both particle species is

pr = p⊥r (I − b̂b̂) + p‖r b̂b̂. (A6)

The b̂ = B/|B| is the unit vector along the local magnetic field.
The scalar parallel and perpendicular pressures obey the usual
CGL condition:

d

dt

(
p⊥r

ρ|B|
)

= 0,
d

dt

(
p‖r |B|2

ρ3

)
= 0, (A7)

which in explicit time-dependent form is equivalent to

∂tp⊥r + ∇ · (urp⊥r ) + p⊥r∇ · ur − p⊥r b̂ · ∇ur · b̂ = 0, (A8)

∂tp‖r + ∇ · (urp‖r ) + 2p‖r b̂ · ∇ur · b̂ = 0. (A9)

This model is equivalent to the LS-Landau fluid model if the
heat fluxes for both particle species are neglected, i.e., q⊥r = 0
and q‖r = 0. We emphasize that after linearization and imposing
isotropy for the mean pressure values p‖r = p⊥r , this model is
not equivalent to the linearized isotropic two-fluid model.

Anisotropic two-fluid model: CGL protons + Iso electrons.
This model is used only in Figure 3. The proton pressure
tensor is anisotropic according to (A6) and obeying the CGL
conditions (A8) and (A9). The electron pressure is isotropic and
obeys (A5) with γe = 1.

Large-scale Landau fluid model. The LS-Landau fluid model
we use here is constructed from the FLR-Landau fluid model of
Passot et al. (2012) by neglecting all non-gyrotropic contribu-
tions, i.e., by prescribing � = 0, S⊥

⊥r = 0, S‖
⊥r = 0, and RNG

⊥r =
0. The model is described by Equations (A1)–(A4), where the
pressure tensor for both particle species is anisotropic (A6) and
the scalar pressures evolve according to

∂tp⊥r + ∇ · (urp⊥r ) + p⊥r∇ · ur − p⊥r b̂ · ∇ur · b̂

+ ∇ · (q⊥r b̂) + q⊥r∇ · b̂ = 0, (A10)

∂tp‖r + ∇ · (urp‖r ) + 2p‖r b̂ · ∇ur · b̂

+ ∇ · (q‖r b̂) − 2q⊥r∇ · b̂ = 0. (A11)

The above pressure equations contain (scalar) parallel and
perpendicular heat flux components q‖r and q⊥r . The dynamics
of these components is given by

∂tq‖r + ∇ · (q‖r ur ) + 3q‖r b̂ · ∇ur · b̂ + 3p‖r (b̂ · ∇)

(
p‖r
ρr

)

+ ∇ · (r̃‖‖r b̂) − 3r̃‖⊥r∇ · b̂ = 0 (A12)

∂tq⊥r + ∇ · (q⊥r ur ) + q⊥r∇ · ur + p‖r (b̂ · ∇)

(
p⊥r

ρr

)

+ ∇ · (r̃‖⊥r b̂) +

(
(p‖r − p⊥r )

p⊥r

ρr

− r̃⊥⊥r + r̃‖⊥r

)

× (∇ · b̂) = 0. (A13)

The system is still not closed and the heat flux equations require
expressions for the gyrotropic fourth-rank cumulants r̃‖‖r , r̃‖⊥r ,
and r̃⊥⊥r . These are obtained from Equations (11)–(15) of Passot
et al. (2012) by evaluating them in their large-scale limit b → 0,
where the parameter b = k2

⊥r2
L/2 should not be confused with

the magnetic field. The final expressions are written in Fourier
space and are equal to

r̃‖‖r = 32 − 9π

2(3π − 8)
n0v

2
th‖rT

′
‖r − 2

√
π

3π − 8
vth‖r

ikz

|kz|q‖r , (A14)

r̃‖⊥p = −
√

π

2
vth‖p

ikz

|kz|
×

[
q⊥p +

1

Ωp

p⊥p

ρ0
(p⊥p − p‖p)

(
ik⊥ × B⊥

B0

)
z

]
,

(A15)

11



The Astrophysical Journal, 766:93 (13pp), 2013 April 1 Hunana et al.

r̃‖⊥e = −
√

π

2
vth‖e

ikz

|kz|
×

[
q⊥e − 1

Ωp

p⊥e

ρ0
(p⊥e − p‖e)

(
ik⊥ × B⊥

B0

)
z

]
,

(A16)

r̃⊥⊥r = 0. (A17)

The “overline” operator (i.e., p‖p) denotes instantaneous
mean/averaged quantities in the entire considered (simulation)
domain. Note that because no mean pressure/temperature
anisotropy is considered in the present paper, i.e., p‖r = p⊥r ,
the expressions (A15) and (A16) are further simplified. In the
expressions (A14)–(A17), the global mean magnetic field is as-
sumed to be in the z-direction, so kz is the parallel wavenumber.
The operator ikz/|kz| describes the Landau resonance in the
fluid formalism. Note that kz/|kz| is equivalent to the sign of
kz and that for purely perpendicular propagation with kz = 0,
there is no singularity present; the operator is just equal to zero.
Equations (A14)–(A17) were derived using linear kinetic theory
in the low-frequency limit and are therefore meant to be linear
(i.e., directly transferable between Fourier and real space). The
parallel temperature of fluctuations T ′

‖r = mpp‖r/ρ in the first
term of (A14) is therefore meant to be linearized. The parallel
thermal speed is defined as vth‖r = (2T ‖r/mr )1/2.

FLR-Landau fluid model. We use the FLR-Landau fluid
model as described in Passot et al. (2012). The model uses
Equations (A1)–(A4) with the anisotropic pressure tensor

pr = p⊥r (I − b̂b̂) + p‖r b̂b̂ + �δrp, (A18)

where the Kronecker operator δrp signifies that the FLR
corrections, �, to the pressure tensor are considered only
for protons. The model is formulated by the gyrotropic pres-
sure Equations (5)–(8), gyrotropic heat flux Equations (9)
and (10), and equations for the gyrotropic fourth-rank cu-
mulants (11)–(15). The FLR tensor � is prescribed by
Equations (16)–(22), where the required coefficient D is speci-
fied in Appendix B of the same paper by Equations (B7)–(B9)
and (B14). The non-gyrotropic heat fluxes S⊥

⊥r and S‖
⊥r are pre-

scribed by Equations (23)–(28). The remaining contribution σ
from the heat flux tensor only appears at the nonlinear level.
The non-gyrotropic fourth-rank cumulants RNG

⊥r are specified
by Equations (36) and (37). Coefficients containing expressions
with functions Γ0(b), Γ1(b), defined as Γν(b) = e−bIν(b), where
Iν is the modified Bessel function, are specified in Appendix A
of the same paper.

Further notes. Equations of all the fluid models were fur-
ther linearized and normalized. The normalization is done with
respect to the equilibrium density ρ0 = mpn0, the magni-
tude of the mean magnetic field B0, the Alfvén speed vA =
B0/(4πmpn0)1/2, the ion inertial length di = vA/Ωp, and the
equilibrium parallel proton pressure p0

‖p. The heat fluxes are
normalized by p0

‖pvA and the fourth-rank cumulants by p0
‖pv2

A.
The proton plasma beta is defined as β = v2

th‖p/v2
A, where

the proton thermal speed vth‖p = (2T ‖p/mp)1/2. In the linear
analysis presented here, the mean temperatures are not evolv-
ing and β is time-independent constant specified initially and
therefore equal to β = 2p0

‖p/(v2
Aρ0). The equations for the

isotropic two-fluid are normalized with respect to the equilib-
rium (isotropic) proton pressure p0

p and the proton plasma β

is equal to β = v2
thp/v2

A = 2p0
p/(v2

Aρ0). The proton Larmor

radius rL = (2T ⊥p/mp)1/2/Ωp and the proton cyclotron fre-
quency Ωp = B0e/(mpc). Note that even though the electron
inertia is neglected (i.e., the terms ∂t ue + ue ·∇ue in the electron
momentum equation are neglected), in Landau fluid models the
electron mass me enters the equations for the gyrotropic electron
heat fluxes and forth-rank cumulants. We use me/mp = 1/1836.

APPENDIX B

USUAL FLUID MODELS WITH
LARGE-SCALE FLR CORRECTIONS

The first model considered here is described by
Equations (A1)–(A4), where the pressure tensor pr = Ipr+�δrp

and the scalar pressures evolve according to (A5) with γp = 5/3
and γe = 1. We call this model “isotropic two-fluid + FLR.” The
second model is described by Equations (A1)–(A4), where the
pressure tensor is given by (A18) and the scalar pressures evolve
according to (A8) and (A9). We call this model “CGL protons
+ CGL electrons + FLR.” The large-scale FLR tensor we use
here is given by

Πxx = −Πyy = −p⊥p

2Ωp

(∂xuy + ∂yux),

Πxy = Πyx = p⊥p

2Ωp

(∂xux − ∂yuy),

Πxz = Πzx = − 1

Ωp

[
(2p‖p − p⊥p)∂zuy + p⊥p∂yuz

]
,

Πyz = Πzy = 1

Ωp

[
(2p‖p − p⊥p)∂zux + p⊥p∂xuz

]
,

Πzz = 0. (B1)

Note that imposing mean pressure isotropy (p‖p = p⊥p), as is
used in the present paper, further simplifies these expressions.
Figure 11 shows magnetic compressibility χ of highly oblique
KAWs (θ = 89.◦99) calculated from these two models. For
completeness, the χ is plotted both in a linear scale (top panels)
and in a logarithmic scale (bottom panels). Figure 12 shows
polarization P (top panels) and real frequency ωr (bottom
panels). P = +0.5 in the isotropic two-fluid + FLR model
(Figure 12, top left) for β � 2 at all range of scales. For
β = {4.0, 10.0}, P = −0.5 at large scales and it switches
to P = +0.5 at small scales somewhere between k⊥rL = 2 and
k⊥rl = 3. In the CGL protons + CGL electrons + FLR model
(Figure 12, top right), at large scales, P = +0.5 for all β except
β = 0.5. For β = 0.5, P = −0.5 at large scales and it switches
to P = +0.5 at around k⊥rL = 4. For β = {1.0, 2.0, 10.0},
P = +0.5 at large scales, but it switches to P = −0.5 at smaller
scales and later it switches back to P = +0.5 at even smaller
scales. The polarization is not correctly reproduced by either of
these models. Moreover, the compressibility for both of these
models (Figure 11) is in general different from that obtained
from the kinetic calculations. The real frequency calculated
from CGL protons + CGL electrons + FLR model (Figure 12,
bottom right) shows the same deficiencies at sub-proton scales
k⊥rL > 1 as were demonstrated for the CGL protons + CGL
electrons model without the FLR corrections. We conclude that
FLR corrections should not be introduced into the usual fluid
models before the Landau damping is incorporated via heat flux
equations.
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