Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photometric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misaligned and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, $71\pm1\degree$, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.

Our measured inclination for AA Tau differs by 4° from the inclination found for the inner disk ($i=75\degree$, O'Sullivan et al. 2005), in agreement with the inclination inferred from stellar rotation and $v\sin i$ ($i=70\pm10\degree$, Bouvier et al. 2003). The disk major axis is along PA=97.5°, 7° different from predictions from linear polarimetry by Ménard et al. (2003). The disk and jet of AA Tau has undergone a prolonged deep minimum, thought to be due to foreground material (V. Grinin, priv. comm.).

AA Tau has a variable SED (Cox et al. 2013). Blue stars show the positions of the HST STIS and NICMOS coronagraphic images. Non-or marginal detections are at maximum light, while the faint detection is near minimum light. Given the periodic minimum in AA Tau, future high contrast imagery might best be obtained at minimum light.

AA Tau does not lie in a region of obvious optical nebulousity (below, left), but does lie in a filament of cold dust which is more extended to the north of the star IRAS 15311+8606 (left). In the course of the past year, AA Tau has undergone a prolonged deep minimum. The absence of a jet is poorly collimated compared to other single T Tauri stars and is also slightly misaligned with respect to predictions based on polarimetric data (Ménard et al. 2003). The absence of an extended counter-jet may reflect an extinction gradient to the north and south of the star (PA 183°).

AA Tau has undergone a prolonged deep minimum, thought to be due to foreground material (V. Grinin, priv. comm.).