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Based on the properties of the energy levels and wave functions of H2O states, one can categorize H2O lines into
individually defined groups such that within the same group, the energy levels and the wave functions associated
with two paired lines have an identity property while those associated with different pairs have a similarity
property. Meanwhile, by thoroughly analyzing processes used to calculate N2-broadened half-widths, it was

found that the ‘Fourier series’ of W
ðaÞ
L1K1K

0
1
ðt; jf �f Þ and W

ðaÞ
L1K1K

0
1
ðt; ji�iÞ, and a factor P222( jf �f ji�i) are the key items

in the Robert-Bonamy formalism to distinguish contributions to ReS2(rc) among different transitions of jf �f ji
�i. However, these items are completely determined by the energy levels and the wave functions associated with

their initial and final states and they must bear the latter’s features as well. Thus, it becomes obvious that for two

paired lines in the same group, their calculated half-widths must be almost identical and the values associated

with different pairs must vary smoothly as their ji values vary. Thus, the pair identity and the smooth variation

rules are established within individual groups of lines. One can use these rules to screen half-width data listed in

HITRAN and to improve the data accuracies.

Keywords: energy levels and wave functions of H2O states; Robert-Bonamy theory; theoretically calculated
half-widths and shifts; rules governing spectroscopic parameters of H2O lines; HITRAN

1. Introduction

The modelling of the atmosphere from satellite-based,
balloon-based, and Earth-based instruments requires
an accurate spectroscopic database such as HITRAN
[1,2]. This widely used database has spectroscopic
parameters for the most important molecules in bands
from the microwave to the ultraviolet spectral regions.
It is obvious that the accuracy of these data is essential
for users’ applications. This is especially true in
accurate atmospheric retrievals involving the very
important water vapor molecule. In order to meet the
accuracy requirement for the H2O molecule, the H2O
database in HITRAN has been updated several times
[1,2] and a new HITRAN 2012 version will appear
soon. In the recent updating process, the majority of
the pressure broadened half-widths, the temperature
exponents, and the pressure-induced shifts come from
theoretically calculated values using the Robert-
Bonamy (RB) formalism [3]. It is worth mentioning
that the RB formalism was developed more than three
decades ago and it contains several basic assumptions
whose applicability was not thoroughly justified.
Mainly due to difficulties in developing better

formalisms to carry out practical calculations, there

are no viable alternatives available and one has to rely

on the RB formalism at present. Besides, for lines with

small half-width values, contributions to their calcu-

lated half-widths result mainly from nearly head-on

collisions in which two interacting molecules can reach

closer distances [4]. Unfortunately, the largest uncer-
tainties in modeling interaction potentials and collision

trajectories usually occur in the short distance regions

and they could lead to large errors in calculating

contributions from nearly head-on collisions. Thus,

calculated half-width values for lines with small half-

width values are less reliable [4]. Meanwhile it turns out

that, in general, lines with small half-widths are those

involving high j states. Thus, uncertainties associated

with calculated values would be worse than the
requirements needed for users’ atmospheric applica-

tions, especially for lines with high j values.
On the other hand, some of the data for the water

vapor lines are experimental and may come from
different labs. Given the fact that lines with high j
values are usually weak, to perform measurements for
them becomes more difficult and measured results
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could contain larger uncertainties. In addition, there
are a huge number lines especially at high tempera-
tures, and the majority of them are associated with
high j states, and thus to provide these data from
experimental measurements is not realistic. In sum-
mary, the current uncertainties for the half-widths in
the H2O database are far beyond the desired accuracy
and it seems that this situation could last for a while.

In order to find realistic ways to improve the
accuracies of half-widths of H2O lines, we began this
study by wondering whether links between lines of
interest and their half-widths do exist or not. If the
answer is yes, we hoped that some rules representing
these links can be discovered. Of course, the success of
this idea relies not only on the nature of pressure
broadened half-widths, but also the answer to the
fundamental question about why and how calculated
N2-broadened half-widths vary for the lines of interest.
In fact, we have been interested in this fundamental
question for several years and have made many efforts
to search for the answer. Very recently, however, we
have found a method and in the following we outline
our route leading to the answer yes. Readers who are
not familiar with the theorymay skip over the next three
paragraphs.

It is well known that calculated half-widths depend
on the lines of interest and also on the environment in
which the absorber molecule H2O is immersed.
In order to find the answer, our approach is to
separate these two dependences as completely as
possible. In theoretical calculations, the former is
described by the initial and final states of H2O and
the latter is explicitly represented by the interaction
potential and trajectory models. Within the RB
formalism, our investigation targets are contributions
to the term of ReS2(rc) from individual correlation
functions because ReS2(rc) plays a crucial role in
determining calculated half-widths. Along this way, we
have found that for each of the correlations, both its
contributions to ReS2, outer, i(rc) and ReS2, outer, f (rc),
two of the components of ReS2(rc), can be expressed as
integrations over time whose integrands mainly consist
of two functions. One is the correlation function
FL1K1K

0
1
L2
ðtÞ that depends on the potential and trajec-

tory models and is common for all lines. The other is
the two functions W

ðaÞ
L1K1K

0
1
ðt; j�Þ which depend on the

initial or the final states of the lines of interest but are
independent of the environment. Thus, for an individ-
ual line, two W

ðaÞ
L1K1K

0
1
ðt; j�Þ associated with its initial

and final states contains all information necessary to
determine its contributions to ReS2, outer, i(rc) and
ReS2, outer, f (rc). Therefore, it is these two functions
W
ðaÞ
L1K1K

0
1
ðtÞ that distinguish the different magnitudes of

ReS2, outer, i(rc) and ReS2, outer, f (rc) for individual lines.

Meanwhile, similar analysis can be applied to the term
of S2,middle(rc), the remaining component of ReS2(rc)
also. In this case, it is a factor PL1K1K01ð jf �fji�iÞ that
depends on the lines of interest but is independent of
the environment. Then, we know that in order to find
the answers we need to focus our attention on the two
functions W

ðaÞ
L1K1K

0
1
ðt; j�Þ and the factor PL1K1K

0
1
ð jf �fji�iÞ.

It turns out that expressions for W
ðaÞ
L1K1K

0
1
ðt; j�Þ are

given in terms of ‘Fourier series’ and the number of
their major components is very limited. This implies
that each W

ðaÞ
L1K1K

0
1
ðt; j�Þ can be well represented by a

spectrum containing only several components. As a
result, to analyze profiles ofW

ðaÞ
L1K1K

0
1
ðt; j�Þ among many

different states becomes easier. By simply plotting
distributions of the spectra associated with different
H2O states, we have found that there are identities of
their distributions between certain pairs of states and
there are similarities within certain groups of states
also. With respect to values of PL1K1K

0
1
ð jf �fji�iÞ, similar

features have also been found. In addition, the events
associated with W

ðaÞ
L1K1K

0
1
ðt; jf �f Þ and W

ðaÞ
L1K1K

0
1
ðt; ji�iÞ and

the events with PL1K1K
0
1
ð jf �fji�iÞ happen simultaneously

among the same lines.
Thus, we are sure that the similar features must

exist for the calculated half-widths among certain lines.
Armed with the knowledge where the identity and
the similarity happen for W

ðaÞ
L1K1K

0
1
ðt; j�Þ and

PL1K1K
0
1
ð jf �fji�iÞ, we know how to categorize lines into

different groups. Then by checking values of the
calculated half-width for lines in the same group, our
expectation is well verified. At this stage, we are only
one step away from finding the answer, namely. we
have to explain why these features exist within the
groups. Based on quantum mechanics, the energy
levels and the wave functions of the H2O states contain
all information about the states. Therefore, the latter is
a right place to search the answer. By investigating the
properties of the energy levels and the wave functions
of states, their identities and similarities clearly emerge
within the groups. Thus, we have got the answers. With
respect to the first question why calculated half-widths
vary with the lines, it results from individual energy
levels and wave functions associated with their initial
and final states. Concerning the second question how
calculated results vary with the lines, we know the
answer within individually defined groups. It is the
identities and the similarities of their energy levels and
their wave functions that govern their variations.

After realizing the above, an immediate thought
was that there must be similar rules valid for other
spectroscopic parameters. In fact, we consider a system
consisting of an absorber water molecule immersed in
bath molecules while the absorber interacts with
electromagnetic fields as a black box. The inputs and
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the outputs of this black box are the transition lines of
H2O and their spectroscopic parameters. The main
assumptions introduced here are: (1) the outputs
depend on the inputs; (2) identical inputs should
yield identical outputs; and (3) similar inputs should
yield similar outputs. Then, by fully exploiting the
identity and similarity properties of the energy levels
and wave functions, without knowing what really
happens inside the black box, we can expect that the
identity and similarity features exist among the spec-
troscopic parameters. We have found that measure-
ments from different groups do demonstrate the above
claim. In addition, several important applications have
been proposed. The study based on the black box
theory was summarized in a recent paper [5].

For the theoretically calculated N2-broadened half-
widths, we know completely what happens inside of
the system. Instead of relying on the black box, we can
establish these rules from rigorous theoretical analyses.
In addition by developing tools used in the analysis,
new features of the line-shape theory can be exhibited.
Therefore, the present work is supplementary to recent
work [5]. In the present study, we do not follow our
discovery route exactly. Because properties of the
energy levels and wave functions are fundamental, we
first present our discussion of this subject in Section 2.
With this as a guide, we then present our analysis, step
by step, in the following sections. Finally, we present a
short discussion and conclusion section.

2. Properties of energy levels and

wave functions of H2O

It is well known that when one studies energy levels and
wave functions for an asymmetric top molecule such as
H2O, one must identify its three principal axes a, b, c
with a body-fixed frame [6–9]. There are six different
choices to make the identification and they are
designated: I R, I L, II R, II L, III R, and III L. Of
course, in describing energy levels and wave functions,
all these representations are equivalent. The energy
levels are independent of the choice of representation.
However, the wave functions would be different, but
wave functions derived from different representation
are exchangeable. One can change them by using
rotational transformations representing proper rotation
operators under which one body-fixed frame rotates
into another. In practice, one can choose the most
suitable representation according to one’s preference.

For years there have existed subroutines available to
enable one to obtain energy levels and wave functions
for important rotational states. Thus, in pursuing their
spectroscopic studies, most people adopt energy levels

and wave functions derived from these subroutines and
they usually do not pay too much attention to these
items themselves. However, it turns out that exploiting
the properties of energy levels and wave functions
proves to be a great help. In order to support this claim,
we exhibit some properties of the energy levels and wave
functions of H2O in the ground state first.

Before continuing our discussions, we note that
usually states of the H2O molecule are labelled by three
quantum numbers j, ka, and kc. In the present study,
sometimes we may use j and � (�ka� kc) to label a
state because we want to use short labels, especially in
figures. There is a simple way to recover the corre-
sponding ka and kc values from j and �. For the case
where jþ �¼ 2n, ka¼ n and kc¼ j� n. Meanwhile, for
the case where jþ �¼ 2nþ 1, ka¼ nþ 1 and kc¼ j� n.

2.1. Properties of energy levels

With respect to the energy levels, we present rotational
energy levels of H2O with j¼ 11 to 20 in the vibrational
ground state provided by Barber et al. [10] versus j in
Figure 1. In this plot energy levels of states with
jþ ka� kc¼ even are plotted by symbols� and those
with jþ ka� kc¼odd are given by symbols D, respec-
tively. In addition, for the former, their values of
ka� kc are presented on the right side of � and for the
latter, the values are on the left side of D. As shown in
the figure, there are identities of the energy levels
between pairs of the states with the same j. Thus,
within certain small tolerances, the pair identity of the
energy levels holds well. The higher the j is, the firmer
the identity holds. With Figure 1, one can easily
identify those paired states. They are pairs of two states
with the same j and kc (¼j� n), but their ka¼ n or nþ 1
where n¼ 0, 1, . . . or two states with the same j and ka
(¼j� n), but kc¼ n or nþ 1. We list some of them
in braces: { j0, j, j1, j}, { j1, j�1, j2, j�1}, { j2, j�2, j3, j�2}, . . . ,
{ jj�2,3, jj�2,2},{ jj�1,2, jj�1,1}, and { jj,1, jj,0}. Besides this
pair identity feature, one can conclude that for each of
these pairs, their energy levels vary smoothly as j varies
and these variation patterns are well organized along
the j axis.

2.2. Properties of wave functions

With respect to wave functions of the H2O states, they
are given in terms of expansion coefficients Uj

k� over
the symmetric top wave functions | jkmi with k¼�j,
�jþ 1, . . . , j,

j j�mi ¼
X
k

U j
k� j jkmi: ð1Þ

Molecular Physics 309

D
ow

nl
oa

de
d 

by
 [N

A
SA

 G
od

da
rd

 In
st

itu
te

 fo
r S

pa
ce

 S
tu

di
es

] a
t 0

7:
23

 2
3 

A
pr

il 
20

13
 



With the selected representation, states assigned either
by the sub-block Eþ or by E� have non-zero values of
Uj

k� only for k is even and states associated with Oþ or
O� have non-zero values only for k is odd. In addition,
depending on the superscripts þ and � in the sub-
block symbols assigned, Uj

k� is either an even function
of k or an odd function of k. In the present study, we
follow a convention adopted by Zare [9] to define the
Wang functions and the symmetric top wave functions.
With this convention, symmetry classification by the
parities of ka and kc in the six representations is given
by Table 1.

After outlining the basics about how to describe the
wave functions, we exhibit their properties. First, we
consider three sets of pairs of states { jj,0, jj,1},
{ jj�1,1, jj�1,2}, and { jj�2,2, jj�2,3}and present their coef-
ficients Uj

k� starting from certain boundary values jbd
(i.e., 3, 5, and 7, respectively) to j¼ 26 in corresponding

Figures 2(a)–(c). For these states whose ka are the
maximum or close to the maximum, the I R represen-
tation is the best choice.

As shown in the figure, there are two striking
features of these coefficients. First of all, coefficients of
the paired states such as jj,0 and jj,1 with the same j are
almost identical in the positive k axis and one becomes
the other’s mirror image in the negative k axis. In other
words, their absolute values are always the same. It is
worth mentioning that their opposite signs in the
negative k axis are necessary to guarantee the orthog-
onality between their wave functions. Neglecting the
sign difference in the negative k axis, we call this
feature the pair identity of the wave functions. We note
that the higher the j, the better the pair identity.
Because the pair identity breaks down for j5 jbd, the
plotting in Figure 2 starts from j¼ jbd. Secondly, by
comparing the coefficients associated with different

Figure 1. A plot to show energy levels of H2O states with j¼ 11 to 20 in the vibrational ground state [10]. For states with
jþ ka� kc¼ even, their energy levels are plotted by� and their values of ka� kc are presented on the right side of the symbols.
Meanwhile, for states with jþ ka� kc¼ odd, their energy levels are plotted by D and values of ka� kc are on the left side of the
symbols.

Table 1. Symmetry classification by the parities of ka and kc.

I R I L II R II L III R III L

Jeven Jodd Jeven Jodd Jeven Jodd Jeven Jodd Jeven Jodd Jeven Jodd

Eþ ee eo ee eo ee oo ee oo ee oe ee oe
E� eo ee eo ee oo ee oo ee oe ee oe ee
Oþ oo oe oe oo oe eo eo oe eo oo oo eo
O� oe oo oo oe eo oe oe eo oo eo eo oo
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j values, it is obvious that for members of the pairs
such as jj,0 with j¼ 3, 4, . . . , their patterns are very
similar. As j varies, without any distortions, place-
ments of the patterns shift horizontally along both the
positive and negative k axes. We call this the pattern
similarity of the wave functions. It is worthwhile
emphasizing that these pattern similarities are valid
only among members of these pairs. For example, they
are valid within a set of the states jj,0 and within a set
of the states jj,1, and so on. Finally, by comparing
Figures 2(a)–(c), values of the boundary jbd increase
from 3 to 5 to 7, respectively. This implies that as ka
decreases from the maximum, the pair identity and the
smooth variation break down at higher and higher
j values.

Now, we consider states whose kc values are the
maximum or close to it. In these cases, the III R
representation is more suitable to describe the proper-
ties of the wave functions. We present coefficients Uj

k�

for three sets of pairs of states { j0, j, j1, j}, { j1, j�1, j2, j�1},
and { j2, j�2, j3, j�2} starting from certain boundary
values jbd (i.e., 7, 10, and 13, respectively) to j¼ 26 in
Figure 3. As shown in the figure, the pair identities and
the pattern similarities appearing in Figure 2 for the
previous three sets of pairs clearly hold there also, but
it is noticeable that their validity boundaries become
higher than those associated with the previous
three sets.

In practice, for sets of paired states, one can find
boundary estimations from plots to show their wave

(a)

(b)

(c)

Figure 2. A plot to show properties of H2O wave functions for three sets of pairs of states { jj,0, jj,1}, { jj�1,1, jj�1,2}, and { jj�2,2,
jj�2,3} for j¼ jbd, . . . , 26. Their coefficients Uj

k� with k ranging from �j to j in the I R representation are represented by
symbols� and D, respectively. Different colors are used to distinguish different j values and symbols associated with the same
states are connected by dotted or solid lines.
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functions such as Figures 2 and 3. Alternatively, for a

set of paired states j,�1 and j,�2, by defining the relative

difference of their wave functions " as

" ¼
X
k

����jUj
k�2
j2 � jUj

k�1
j2
����
�X

k

jUj
k�1
j2, ð2Þ

one can calculate how " varies with j and determine a

boundary for this set. We note that " is a numerical

measure of the identity of the paired wave functions.
We provide our suggested jbd and their corresponding
values of " in Table 2. As shown in the table, we have
chosen " about 1% to determine jbd and the latter
match those estimated from the figures well.

In summary, with respect to the H2O energy levels,
there are pair identities and well organized variations
exhibited within each of the sets of paired states whose

(a)

(b)

(c)

Figure 3. The same as Figure 2 except that the three sets of pairs of states are { j0, j, j1, j}, { j1, j�1, j2, j�1}, and { j2, j�2, j3, j�2} and
their wave functions are derived in the III R representation.

Table 2. Boundaries for different sets of paired H2O states.

Set
jj,0
jj,1

jj�1,1
jj�1,2

jj�2,2
jj�2,3

jj�3,3
jj�3,4

jj�4,4
jj�4,5

jj�5,5
jj�5,6

jj�6,6
jj�6,7 � � �

j4, j�4
j5, j�4

j3, j�3
j4, j�3

j2, j�2
j3, j�2

j1, j�1
j2, j�1

j0, j
j1.j

jbd 3 5 7 9 10 12 14 19 16 13 10 7
" (%) 0.63 0.66 0.49 0.32 1.08 0.60 0.32 1.28 0.55 1.13 1.00 0.60
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j values are high. Meanwhile, for the wave functions,
there are pair identities and pattern similarities within
each of the same sets defined in analysing the energy
levels. In general, sets with small differences between j
and |ka� kc| have lower boundaries jbd and those with
large differences have higher ones. On the other hand,
except for the pair identities, other properties of the
energy levels and wave functions have individual
characters. For example, similar patterns of the wave
functions appearing in one set differ significantly from
those in other sets. Furthermore, as explained above,
these properties disappear for states whose j values are
below certain boundaries and the latter vary with
the sets.

There are useful explanations about symmetry
assignments of H2O wave functions for paired states.
Besides, there are quantities associated with the
energy levels and the wave functions which are
important in the present study because they determine
couplings between H2O states. Readers can find
discussions of these in sections A-1 and A-2 of the
Appendix.

Finally, we would like briefly to point out that it is
not difficult to explain why the paired states with high j
values have almost the same energy levels and the wave
functions. It is well known that the Hamiltonian of the
H2O molecule associated with the quantum number j
can be expressed by a sub-block form consisting of
four sub-matrices, Eþ, E�, Oþ, and O�. As an
example, we assume j¼ even and consider the pairs
of jj,0 and jj,1. According to Table A-1 in the Appendix
and Figure 1, jj,0 is an eigenvector of Eþ with the
largest eigenvalue and jj,1 is an eigenvector of E� with
the largest eigenvalue. Both of these Eþ and E� are
tridiagonal and they are almost identical except for
adding additional first low and first column in Eþ. In
addition, in comparison with their diagonal elements,
their off-diagonal elements are small. The higher the j
is, the more identical are Eþ and E�. It turns out that
their largest eigenvectors and eigenvalues are their ones
least affected by their differences. As a result, they bear
the identity feature the most. For other cases, similar
arguments are also applicable, but we do not pursue
this here.

3. General formalism in calculating half-widths for

H2O lines

After discussing the properties of the energy levels,
wave functions, we briefly outline the formalism used
to calculate the half-widths and shifts of H2O lines.

The main computational task for calculating the
Lorentzian half-widths is the evaluations of matrix

elements appearing in the perturbation expansion of
the Ŝ matrix (¼SI �S�F, where SI and SF are scattering
matrices in Hilbert space). Usually, in practice, these
evaluations are limited to the second-order of the
expansion. Within the RB formalism that has been
widely used for calculating Lorentzian spectral line
half-widths and shifts for decades [11–14], the original
expression for the half-width is given by

�RB ¼ nb
2�c

Z þ1
0

�f ð�Þd�
Z þ1
0

2�b db

� 1� cos½S1ðbÞ þ ImS2ðbÞ�e�ReS2ðbÞ� �
j2
, ð3Þ

where nb is the number density of the bath molecule, f(v)
is theMaxwell–Boltzmann distribution function, S1 and
S2 are matrix elements in the Liouville space associated
with the first- and second-orders of the perturbation
expansion of the Liouville operator Ŝ, and h ij2 means
an average over the quantum number j2 of the N2

molecule. However, we have found a subtle error in the
RB formalism [15]. After remedying this derivation
error, the correct expression for the half-width in the
‘modified’ RB formalism (MRB) becomes [15]

�MRB ¼ nb
2�c

Z þ1
0

�f ð�Þd�
Z þ1
0

2�b db

� 1� cos½hS1ðbÞij2 þ ImhS2ðbÞij2 �e�RehS2ðbÞij2
� �

:

ð4Þ
We note that the essential difference between these two
expressions is that in Equation (3) the summation over
j2 is outside of the cumulant expansion while in
contrast, in Equation (4) it is inside. It is worthwhile
emphasizing that because the bath average is carried
out in the line space, an average over j2 has been
included. Thus, by understanding that S1(b) and S2(b)
are the bath averages associated with the first- and
second-order expansions of the Liouville operator, one
can supress all of these h ij2 in Equation (4). For
simplicity, we will omit the subscript MRB of �.

In the present study, we consider lines in the H2O
pure rotational band. Then, by ignoring negligible
contributions from ImS2(b), making an approximation
to replace the integration over the velocity by the
averaged velocity �� ð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kT=�m

p
Þ and changing the

integration variable impact parameter b and the lower
limit 0 to the distance of closest approach rc along
trajectories and rc,min, the minimum value of rc corre-
sponding to strictly head-on collisions, respectively, one
can obtain a simplified expression for the half-width

� ¼ nb ��

2�c

Z þ1
0

2�b 1� e�ReS2ðbÞ	 

db

¼ nb ��

2�c

Z þ1
rc,min

2�b
db

drc

� �
1� e�ReS2ðrcÞ	 


drc: ð5Þ
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The value of rc, min can be determined by an energy
conservation equation

2Visoðrc, minÞ
m ��2

� 1 ¼ 0: ð6Þ

Usually, people prefer to represent S2 by three
components labelled by S2, outer, i, S2, outer, f, and
S2,middle, respectively. In the present study, we follow
the same custom. As an example, an expression for
S2, outer, i where the subscript i is a simple notation for
the initial state ji �i is given by [4]

S2,outer,i ¼ 1

�h2ð2ji þ 1Þ
�

X
j2

�j2
X
j 0
i
�0
i

X
j 0
2

X
ðmÞ

Z 1
�1

dt

�
Z t

�1
dt0e

ið!ji�i j
0
i
�0
i
þ!j2 j

0
2
Þðt�t0Þ

� ji�imi j2m2jVð ~RðtÞÞj j 0i �0im0i j 02m02
D E

� j 0i �
0
im
0
i j
0
2m
0
2 jVð ~Rðt0ÞÞj ji�imi j2m2

D E
: ð7Þ

In the above equation, �j2 is the density matrix of
the bath molecule, !ji�i j 0i �

0
i
is given by equation (A-1),

!j2j
0
2
¼ ½EðbÞð j2Þ � EðbÞð j 02Þ�=�h , and j ji�imi j2m2i ¼

j ji�imii � j j2m2i where j ji�imii and j j2m2i are the
basis of Hilbert space for the H2O and N2 molecules,
respectively.

In order to overcome convergence problems exist-
ing in usual line-shape theories involving the site–site
potential models, we have developed a new formalism
based on the coordinate representation. We will not
provide a detailed development of the new formalism,
but interested readers can find its derivation in our
previous work [4,16]. Here, we only present some of
the important formulas. By introducing the correlation
functions FL1K1K

0
1
L2
ðtÞ and their Fourier transforms

HL1K1K
0
1
L2
ð!Þ defined by

HL1K1K
0
1
L2
ð!Þ ¼ 1ffiffiffiffiffiffi

2�
p

Z 1
�1

ei! tFL1K1K
0
1
L2
ðtÞdt: ð8Þ

the expression for the real part of S2, outer, i can be
obtained as

ReS2,outer,iðrcÞ ¼
ffiffiffi
�

2

r X
L1K1K

0
1
L2

X
j 0
i
�0
i

ð2j 0i þ 1Þ

�Dð ji�i j 0i �0i;L1K1ÞDð ji�i j 0i �0i;L1K
0
1Þ

�
X
j2 j
0
2

ð2j2 þ 1Þð2j 02 þ 1Þ�j2

� C2ð j2 j 02 L2, 000Þ
�HL1K1K

0
1
L2
ð!ji�i j 0i �

0
i
þ !j2j

0
2
Þ: ð9Þ

We note that because the correlation functions

FL1K1K
0
1
L2
ðtÞ are associated with a specified trajectory,

ReS2, outer, i is a function of rc. For clarity, we have

explicitly added the argument rc for ReS2, outer, i in

Equation (9). An expression for ReS2, outer, f (rc) is the

same as ReS2, outer, i(rc) given in Equation (9) except for

a replacement of ji, �i by jf, �f. Meanwhile, an

expression for S2,middle(rc) is given by

S2,middleðrcÞ ¼
ffiffiffiffiffiffi
2�
p X

L1K1K
0
1
L2

fð�1ÞL1ð2ji þ 1Þð2jf þ 1Þ

�Wð ji jfji jf; 1L1Þ
� Dð ji�i ji�i;L1K1ÞDð jf �fjf �f;L1K

0
1Þg

�
X
j2j
0
2

ð2j2 þ 1Þð2j 02 þ 1Þ�j2

� C2ð j2j 02L2, 000ÞHL1K1K
0
1
L2
ð!j2j

0
2
Þ:
ð10Þ

We note that with our new formalism, the main

tasks to calculate N2-broadened half-widths for H2O

lines are evaluations of several dozens of the correla-

tions FL1K1K
0
1
L2
ðtÞ labeled by a set of numbers consisting

of one tensor rank L1 with two subsidiary indices K1,

K01 related to H2O and another tensor rank L2 for N2

[4]. Because N2 is a diatomic molecule, L2 must be

even. Thus, the number of sets is determined by the

upper limits of L1 and L2. If one chooses the II R

representation to develop the H2O wave functions

where the two H atoms are symmetrically located in

the molecular-fixed frame, values of K1 and K01 must

also be even. Due to symmetries, some of the corre-

lation functions are identical. For examples, the four

correlations labeled by (2 2 2 0), (2 2�2 0), (2�2 2 0) and
(2�2�2 0) are identical. One can conveniently express

this symmetry by FL1jK1jjK01jL2
ðtÞ. In addition, there is

another exchange symmetry between K1 and K01 in the

correlation functions. Thus, the number of the corre-

lations required to be evaluated can be reduced

significantly.
Finally, as shown in Equations (9) and (10), the

expressions for ReS2, outer, i(rc), ReS2, outer, f (rc), and

S2,middle(rc) are given by summations of contributions

from individual correlations. As a result, among all

correlations how important the individual correlation

is depends on how large its magnitude is. For a

specified correlation, the asymptotic behaviour of its

magnitude as rc!1 is well defined. In general,

(1000), (1002), (2|2||2|0), and (2|2||2|2) have large

magnitudes and at rc!1 they vary as rmc with

m¼�14, �8, �16, and �10, respectively. In the

present study, we will focus our attention on these

correlations.
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4. Theoretical tools in analyzing calculated

half-widths

4.1. Harmonic expansions appearing in
S2, outer, i(rc) and S2, outer, i(rc)

In the process of deriving Equation (9) for

ReS2, outer, i(rc) from Equation (7), there is an interme-

diate expression for S2, outer, i(rc) such that

S2,outer,iðrcÞ

¼
X

L1 K1K
0
1
L2

Z 1
0

dtW
ðaÞ
L1K1K

0
1
ðt; ji�iÞWðbÞL2

ðtÞFL1K1K
0
1
L2
ðtÞ,

ð11Þ
where two functions are defined by

W
ðaÞ
L1K1K01

ðt; ji�iÞ ¼
X
j 0
i
�0
i

ð2j 0i þ 1ÞDð ji�i j 0i �0i;L1K1Þ

�Dð ji�i j 0i �0i;L1K
0
1Þe

i!ji�i j
0
i
�0
i
t
, ð12Þ

and

W
ðbÞ
L2
ðtÞ ¼

X
j2j
0
2

ð2j2 þ 1Þð2j 02 þ 1Þ�j2

� C2ð j2j 02L2, 000Þei!j2 j
0
2
t
, ð13Þ

respectively. It is worth mentioning that the correlation

functions FL1K1K
0
1
L2
ðtÞ depend on the potential and

trajectory models. In contrast, the functions

W
ðaÞ
L1K1K

0
1
ðt; ji�iÞ and W

ðbÞ
L2
ðtÞ are independent of these.

On the other hand, FL1K1K
0
1
L2
ðtÞ and W

ðbÞ
L2
ðtÞ are

common for all lines. Meanwhile, the functions

W
ðaÞ
L1K1K

0
1
ðt; j�Þ associated with ji and �i and their

partners associated with jf and �f are only factors

depending on the line of interest. They contain all

information necessary to distinguish different amounts

of contributions to the half-width of individual lines

from the correlations to be considered.
It turns out that in Equations (12) and (13), both

W
ðaÞ
L1K1K01

ðt; ji�iÞ and W
ðbÞ
L2
ðtÞ are given in terms of

harmonic expansions. Although these two functions

are not periodic, their forms are very similar to the

usual Fourier series. Thus, we borrow the concept of

the Fourier series here. For later convenience, we

rewrite Equation (12) as

W
ðaÞ
L1K1K

0
1
ðt; ji�iÞ ¼

X
�

A�ðL1K1K
0
1; ji�iÞei!�ð ji�iÞt, ð14Þ

where the summation index � represents a selected

combination of j 0i and �0i in Equation (12), !�ð ji�iÞ
stands for !ji�i j 0i �

0
i
, and A�ðL1K1K

0
1; ji�iÞ is defined by

A�ðL1K1K
0
1; ji�iÞ

¼ ð2j 0i þ 1ÞDð ji�i j 0i �0i;L1K1ÞDð ji�i j 0i �0i;L1K
0
1Þ: ð15Þ

As usual, the ‘Fourier series’ of W
ðaÞ
L1K1K

0
1
ðt; ji�iÞ are

given by a set of components consisting of two values

of !�ð ji�iÞ and A�ðL1K1K
0
1; ji�iÞ: The total number of

components equals how many choices of �, and in
general, there are several dozens of components.

Fortunately, as shown later, there are only a few

strong ones because many components are very weak.

With Equations (A-2) and (15), one can show thatX
�

A�ðL1K1K
0
1; ji�iÞ ¼ ð2L1 þ 1Þ�K1K

0
1
: ð16Þ

The summation of A�ðL1K1K
0
1; ji�iÞ over all � equals to

2L1þ 1 if K1¼K01 or equals to 0 if K1 6¼K01. We note

that the above discussion is also applicable for

analysing ReS2, outer, f (rc) where the ‘Fourier series’ of
W
ðaÞ
L1K1K01

ðt; jf �f Þ are introduced.
Similarly, we can rewrite Equation (13) as

W
ðbÞ
L2
ðtÞ ¼

X
	

B	ðL2Þei!	t, ð17Þ

where the summation index 	 represents a selected pair

of j2 and j 02, !	 stands for !j2j
0
2
, and B	(L2) is given by

B	ðL2Þ ¼ ð2j2 þ 1Þð2j 02 þ 1Þ�j2C2ð j2 j 02 L2, 000Þ: ð18Þ
Meanwhile, it is easy to show that the total intensity of

the ‘Fourier series’ of W
ðbÞ
L2
ðtÞ is equal to 2L2þ 1. In

contrast with A�ðL1K1K
0
1; ji�iÞ which are independent

of the temperature, the ‘Fourier series’ of W
ðbÞ
L2
ðtÞ

depends slightly on the temperature.
Furthermore, by combining Equation (14) and

Equation (17), we have

W
ðaÞ
L1K1K

0
1
ðt; ji�iÞWðbÞL2

ðtÞ
¼

X
�

X
	

A�ðL1K1K
0
1; ji�iÞB	ðL2Þei½!�ð ji�iÞþ!	�t

¼
X
�

E�ðL1K1K
0
1L2; ji�iÞei!� ð ji�iÞt, ð19Þ

where � is a simple notation for a set of j 0i , �
0
i , j2, j

0
2,

!�ð ji�iÞ ¼ !ji�i j 0i �
0
i
þ !j2j

0
2
, and E�ðL1K1K

0
1L2; ji�iÞ ¼

A�ðL1K1K
0
1; ji�iÞB	ðL2Þ. After having the expressions

for E�ðL1K1K
0
1L2; ji�iÞ and !�ð ji�iÞ available and

knowing all accessible choices of �, one can simply

rewrite ReS2, outer, i(rc) as

ReS2,outer,iðrcÞ ¼
ffiffiffi
�

2

r X
L1K1K

0
1
L2

X
�

E�ðL1K1K
0
1L2; ji�iÞ

�HL1K1K
0
1
L2
½!� ð ji�iÞ�: ð20Þ

This expression clearly shows for an H2O line of

interest, how contributions to the ReS2, outer, i(rc) term

from individual correlations are calculated. First of all,

one determines a set of pairs E�ðL1K1K
0
1L2; ji�iÞ and
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!�ð ji�iÞ with all accessible choices of the �. We note
that in contrast with the correlations that are common
for all H2O lines and depend on the interaction and
trajectory models, this set of pairs depends on the line
of interest but is independent of the interaction and
trajectory models. In the next step, for an individual
correlation, one picks up values of its Fourier trans-
form HL1K1K

0
1
L2
ð!Þ at ! ¼ !�ð ji�iÞ, multiplies the latter

by the corresponding values of E�ðL1K1K
0
1L2; ji�iÞ, and

adds up all the results to obtain the total contributions
from this correlation. One then repeats the above step
for each of the correlations, and finally one adds up
contributions from all correlations to obtain the
final result.

4.2. General properties of the ‘Fourier series’ of
W
ðaÞ
L1K1K

0
1
ðt; jsÞ

We outline some properties of W
ðaÞ
L1K1K

0
1
ðt; j�Þ that are

very helpful in calculating contributions to
ReS2, outer, i(rc) and ReS2, outer, f (rc) from the correla-
tions. For simplicity, as long as their arguments are not
involved in discussions, W

ðaÞ
L1K1K

0
1
ðt; j�Þ is simplified to

W
ðaÞ
L1K1K

0
1
. First of all, it is obvious that there is an

exchange symmetry between K1 and K01 such that

W
ðaÞ
L1K1K

0
1
¼W

ðaÞ
L1K

0
1
K1
: ð21Þ

Secondly, based on the fact that there is a symmetry
property for the product of Uj

k� and Uj
k0�

Uj
k�U

j
k0� ¼ Uj

�k�U
j
�k0� ð22Þ

that is valid no matter which sub-blocks (Eþ, E�, Oþ,
and O�) the wave functions of H2O states belong. With
this symmetry property, one can show that

W
ðaÞ
L1K1K

0
1
¼W

ðaÞ
L1�K1�K01 : ð23Þ

As a result, we know that some of W
ðaÞ
L1K1K

0
1
with

different K1 and K01 are identical. For example,
W
ðaÞ
222 ¼W

ðaÞ
2�2�2, W

ðaÞ
220 ¼W

ðaÞ
202 ¼W

ðaÞ
2�20 ¼W

ðaÞ
20�2, and

so on.
On the other hand, the four correlations (2 2 2 0),

(2�2�2 0), (2 2�2 0) and (2�2 2 0) are identical and the
other four correlations (2 2 2 2), (2�2�2 2), (2 2�2 2)
and (2�2 2 2) are identical. Then, with Equation (11)
one can conclude that contributions to S2, outer, i(rc) and
S2, outer, f (rc) from the correlations (2 2 2 0) and
(2�2�2 0) are the same because not only
W
ðaÞ
222 ¼W

ðaÞ
2�2�2, but also these two correlations are

identical. Among the eight correlations listed above,
similar conclusions are also true for the pair of (2 2 2 2)
and (2�2�2 2), for (2 2�2 0) and (2�2 2 0), and for
(2 2�2 2) and (2�2 2 2). There are many similar

identities valid for other correlations. Based on these
identity properties, one is able to significantly reduce
CPU times required when performing numerical calcu-
lations for the half-widths of H2O lines.

Besides, with Equation (16) one knows that a
summation of AnðL1K1K

0
1; ji�iÞ over all n equals to

2L1þ 1 if K1¼K01 or equals to 0 if K1 6¼K01. For
examples, the total intensity of the spectrum forW

ðaÞ
222 is

5, meanwhile the summation of the Fourier series of
W
ðaÞ
22�2 is zero. For the latter, the summations over its

positive coefficients and over its negative ones are
equal to 2.5 and �2.5, respectively. This implies that
when contributions to S2, outer, i(rc) and S2, outer, f (rc)
from the correlations (22–20) are added up, significant
cancelations would happen between the positive and
negative coefficients associated with W

ðaÞ
22�2ðtÞ. As a

result, the net contributions from (22–20) are dramat-
ically reduced. Numerical results show that in com-
parison with (2220), the contributions from (22–20) are
several times smaller. Given the fact that these two
correlations are completely identical, it is the different
properties of W

ðaÞ
222 and W

ðaÞ
2�22 that play crucial roles

here in determining which one is dominant. With
respect to other correlations, similar conclusions are
also true. Based on these conclusions, one knows which
correlations are important and which are not. This is
helpful in our quantitative analyses.

4.3. Spectra of W
ðaÞ
L1K1K

0
1
ðx; jsÞ

In order to exploit the benefits of the ‘Fourier series’ of
W
ðaÞ
L1K1K01

ðt; j�Þ and to exhibit their intrinsic properties,
one examines how they vary with members within the
sets of paired states defined previously in analyzing the
energy levels and the wave functions. According to
definitions of the sets, states belonging to the same sets
are paired with their partners and each of the pairs is
distinguished by one parameter (i.e., the quantum
number j). Then, by applying the knowledge on the D
matrices developed in Section A-2 of the Appendix,
one can predict that there are identities between spectra
associated with two paired states in the same sets, and
one can also expect that these distribution patterns
would vary smoothly as the pairs of interest vary.

We choose W
ðaÞ
100ðt; j�Þ as an example. In calculating

contributions to ReS2, outer, i(rc) or ReS2, outer, f (rc),
these spectra are the most important ones because
the correlations (1000) and (1002) associated with them
are the largest among all the correlations. First of all,
we consider the sets of two paired states jj�n, n and
jj�n, nþ1 with j¼ jbd, jbdþ 1, . . .where n could be one
among 0, 1, . . . . We are interested in comparing the
‘Fourier series’ of W

ðaÞ
100ðt; j�1Þ and W

ðaÞ
100ðt; j�2Þ where
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�1¼ j� 2n and �2¼ j� 2n� 1. The former is a two
dimensional array constructed by !j�1j 0�01 and
Aj 0�0

1
ð100; j�1Þ with j 0 and �01 ðor j 0; k0a1; and k0c1Þ run-

ning over all allowed selections where the expression
for Aj 0�0

1
ð100; j�1Þ is given by

Aj 0�0
1
ð100; j�1Þ ¼ ð2j 0 þ 1Þ½Dð jj�n,nj 0k0

a1
, k0

c1
; 10Þ�2: ð24Þ

Meanwhile, the latter is an array constructed by
!j�2j 0�02 and Aj 0�0

2
ð100; j�2Þ with j 0 and �02 over all allowed

selections where Aj 0�0
2
ð100; j�2Þ is given by

Aj 0�0
2
ð100; j�2Þ ¼ ð2j 0 þ 1Þ½Dð jj�n,nþ1j 0k0

a2
, k0

c2
; 10Þ�2: ð25Þ

Because the two original states jj�n, n and jj�n, nþ1
differ from each other only by kc¼ n and kc¼ nþ 1,
their non-zero coupling partners determined by the
selection rule must have the same j 0 and k0a, but with
different k0c values differing by 1. For example, as one
picks a subsidiary state j 0j 0�n, nþ1 with j 0 ¼ jþ 1 from the
allowed coupling list for the original state jj�n, n, one can
find its corresponding subsidiary one j 0j 0�n, n appearing in
the allowed coupling list for the original state jj�n, nþ1.
It is obvious that these two subsidiary states j 0j 0�n, nþ1 and
j 0j 0�n, n are paired states. Thus, one can conclude that the
two D matrices Dð jj�n,nj 0j 0�n, nþ1; 10Þ and
Dð jj�n,nþ1j 0j 0�n, n; 10Þ which appear in Equations (24)
and (25), respectively, are paired also. Besides, the
energy difference between the original jj�n, n and its
coupling j 0j 0�n, nþ1 approximately equals to the difference
between the original jj�n, nþ1 and its coupling j 0j 0�n, n. This
implies that the ‘Fourier series’ ofW

ðaÞ
100ðt; j�Þ associated

with jj�n, n and that associated with jj�n, nþ1 have one
identical component. By extending this discussion to
other allowed couplings in their lists, one can conclude
that these two paired states almost share identical
components. Similar discussions can be carried out for
the sets of pairs states jn, j�n and jnþ1, j�n with
n¼ 0, 1, . . . . In summary, one should expect that any
pairs of the states whose j values are above jbd should
share identity ‘Fourier series’.

Concerning the analysis of how the spectra would
vary with pairs within the same sets, one has to rely on
plotting calculated spectra. For better visualization,
one can consider the ‘Fourier series’ of W

ðaÞ
100ðt; j�Þ as

spectra W
ðaÞ
100ð!; j�Þ consisting of many components.

Each of their components can be imaged as a
harmonics with !�ð j�Þ and A�ð100; j�Þ as its frequency
and intensity. We would like to note that the terms of
the spectrum and intensity are used here in describing
the ‘Fourier series’ of W

ðaÞ
100ðt; j�Þ: Readers should not

confuse these with those in describing resonance
transitions for the H2O molecule.

In the following, we select several different sets of
the pairs and calculate their spectra of W

ðaÞ
100ð!; j�Þ:

In Figure 4(a–c), we present the spectra for three sets of
{ jj,0, jj,1}, { jj�1,1, jj�1,2}, and { jj�2,2, jj�2,3} with
j¼ jbd � � � 21 whose ka values are the maximum or
closer to the maximum and whose wave functions are
plotted in Figure 2. In the plots, only j values of the
pairs are explicitly provided. Based on these j values
and definitions of the symbols in the plots, one can
easily determine to which of the states the spectra
belong. As shown in Figure 4(a–c), there are three or
four branches consisting of main components from
different states. By comparing the spectra between two
paired states, one can conclude that their spectra are
almost identical because two symbols h and � are
always overlapped. The higher the j is, the more
identical their spectra. In addition, by looking at
structures of the branches one can find that their
patterns are well organized. This reflects the fact that
their spectra vary very smoothly as j varies. Finally, by
comparing the plots associated with the different sets,
one can conclude that different sets have different
spectral distributions. It is worth reiterating that the
above claims are valid only for those states whose j
values are above certain boundaries jbd and the latter
depend on the sets of interest.

Similarly, in Figure 5(a–c) we present the spectral
distributions for another three sets of pairs { j0, j, j1, j},
{ j1, j�1, j2, j�1}, and { j2, j�2, j3, j�2} whose kc values are
the maximum or close to it and whose wave functions
are plotted in Figure 3. We don’t repeat the discussion
and conclusions here because they are the same as
those for the previous three sets. In summary, there are
spectrum pair identities and spectrum pattern similar-
ities within the sets defined previously.

There are several others of W
ðaÞ
L1K1K

0
1
ð! ; j�Þ with

different choices of L1, K1, and K01. We expect that they
could differ from each other dramatically. For exam-
ple, the spectra of W

ðaÞ
22�2ð! ; j�Þ contain components

with either positive or negative intensities such that its
total intensity is zero. However, we believe that the
pair identity and smooth variation features in describ-
ing W

ðaÞ
100ð! ; j�Þ within the same sets should remain

valid for them also because these features result from
the same sources: the properties of the energy levels
and the wave functions.

4.4. The ‘Fourier series’ of W
ðbÞ
L2
ðtÞ

Wenow present profiles of the ‘Fourier series’ of W
ðbÞ
L2
ðtÞ

with L2¼ 0, 2, . . .which are common for all H2O lines.
It is obvious that the ‘Fourier series’ of W

ðbÞ
0 ðtÞ consists

of only one term with its magnitude equals to 1 and
!¼ 0. Next, we consider the ‘Fourier series’ of W

ðbÞ
2 ðtÞ

which is the most important one among all W
ðbÞ
L2
ðtÞ and
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present its spectrum at T¼ 296K in Figure 6. As shown
in the figure, the spectra consists of many components,
but the one located at !¼ 0 is overwhelmingly larger
than the others.

4.5. Samples of the ‘Fourier series’ of
W
ðaÞ
L1K1K

0
1
ðt ; jsÞWðbÞL2

ðtÞ
We now consider spectra associated with the ‘Fourier
series’ of W

ðaÞ
L1K1K

0
1
ðt ; j�ÞWðbÞL2

ðtÞ: We note that although

W
ðaÞ
L1K1K

0
1
ðt; j�Þ are independent of the temperature,

but W
ðbÞ
2 ðtÞ depends on the temperature slightly. As a

result, the ‘Fourier series’ of W
ðaÞ
L1K1K

0
1
ðt ; j�ÞWðbÞL2

ðtÞ
would vary slightly with T also.

First of all, it is obvious that the spectra associated
with W

ðaÞ
L1K1K

0
1
ðt; j�ÞWðbÞ0 ðtÞ are the same as that of

W
ðaÞ
L1K1K

0
1
ð!; j�Þ because the spectrum associated with

W
ðbÞ
0 ðtÞ consists of only one component located at !¼ 0

with a unit intensity. With respect to the spectra for
W
ðaÞ
L1K1K

0
1
ðt; j�ÞWðbÞ2 ðtÞ, one expects their main patterns

(a)

(b)

(c)

Figure 4. The spectra W
ðaÞ
100ð!; j�Þ of three sets of the paired states { jj,0, jj,1}, { jj�1,1, jj�1,2}, and { jj�2,2, jj�2,3} with j¼ jbd, . . . , 21

whose ka values are the maxima or closer to the maxima. For each of the pairs, spectra of the two paired states are plotted by
symbols of h and � in (a) – (c), respectively. Meanwhile, their j values are printed above the symbols h.
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are similar to that of W
ðaÞ
L1K1K

0
1
ð!; j�Þ because the

dominant component of W
ðbÞ
2 ð!Þ is located at !¼ 0

and its other components are weak.
In order to demonstrate this claim more clearly, we

present the spectra of W
ðaÞ
100ð!; j�Þ for two paired states

100,10 and 101,10 in Figure 7. As shown by the figure,
their spectra contain two major components account-
ing for 90.7% of the total intensity and one minor one.
Then, we present the spectra of the ‘Fourier series’
W
ðaÞ
100ðt; j�ÞWðbÞ2 ðtÞ for them in Figure 8. By comparing

Figures 7 and 8, it is clear that the whole spectra share

the main features of W
ðaÞ
100ð!; j�Þ, but have more small

structures due to co-adding many weak components

in W
ðbÞ
2 ð!Þ.

In the present study, we want to investigate why

and how the calculated half-widths vary with lines of

interest. Because the Fourier transforms HL1K1K
0
1
L2
ð!Þ

are common for all lines, the ‘Fourier series’ of

W
ðaÞ
L1K1K01

ðt; j�ÞWðbÞL2
ðtÞ contain all the information neces-

sary to distinguish contributions to ReS2, outer, i (rc) and

ReS2, outer, f (rc) for different H2O lines. Given the fact

that the spectra of W
ðbÞ
L2
ð!Þ are independent of lines,

(a)

(b)

(c)

Figure 5. The same as Figure 4 except for three sets of pairs { j0, j, j1, j}, { j1, j�1, j2, j�1}, and { j2, j�2, j3, j�2} whose kc values are the
maxima or closer to the maxima.
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the only factor to distinguish contributions for indi-
vidual lines of jf �f ji �i are their spectra of
W
ðaÞ
L1K1K

0
1
ð!; ji�iÞ and W

ðaÞ
L1K1K

0
1
ð!; jf �f Þ. In addition, we

have shown these spectra represent main features of
the whole spectra well. Thus, we believe all results and
conclusions obtained from analysing W

ðaÞ
L1K1K

0
1
ð!; j�Þ

are similar to those that would be derived if the

entire spectra were taken into account. Thus, in the
following analyses we only focus on the spectra of
W
ðaÞ
L1K1K

0
1
ð!; j�Þ.

Alternatively, one can argue that among all possi-
ble choices of !j2j

0
2
, many of them are zero. For those

remaining, one can assume j!j2j
0
2
j 	 j!j�j 0�0 j because

the rotational constant of the N2 molecule is small.

Figure 7. The spectra of W
ðaÞ
100ð! ; j�Þ for two paired states 100,10 and 101,10. The former is given by � and the latter by h.

Figure 6. The ‘Fourier series’ of W
ðbÞ
2 ðtÞ with L2¼ 2 at T¼ 296 for the bath molecule N2.
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Then, by approximating !
ð j�Þ (¼!j�j 0�0 þ !j2j
0
2
) by

!�ð j�Þ (¼!j�j 0�0 ), Equation (20) can be simplified

ReS2,outer,iðrcÞ



ffiffiffi
�

2

r X
L1K1K

0
1
L2

ð2L2 þ 1Þ

�
X
�

A�ðL1K1K
0
1; ji�iÞHL1K1K

0
1
L2
½!�ð ji�iÞ�: ð26Þ

Therefore, we have demonstrated that one can

use the simpler spectra W
ðaÞ
L1K1K

0
1
ð!; j�Þ to analyze

contributions to ReS2, outer, i(rc) and ReS2, outer, f (rc).

In comparison with Equation (20), the number of

choices for the � in Equation (26) is much smaller than

that for the �.

4.6. The term of S2,middle(rc)

With respect to S2,middle(rc), it can be expressed as

S2,middleðrcÞ ¼
X

L1K1K
0
1
L2

PL1K1K
0
1
ð jf �fji�iÞ

�
Z 1
�1

dtW
ðbÞ
L2
ðtÞFL1K1K

0
1
L2
ðtÞ

¼
ffiffiffiffiffiffi
2�
p X

L1K1K
0
1
L2

PL1K1K
0
1
ð jf �fji�iÞBL1K1K

0
1
L2
ðrcÞ:

ð27Þ

In the above expression, PL1K1K
0
1
ð jf �fji�iÞ and

BL1K1K
0
1
L2
ðrcÞ are defined by

PL1K1K
0
1
ð jf �fji�iÞ

¼ ð�1ÞL1ð2ji þ 1Þð2jf þ 1ÞWð ji jfji jf; 1L1Þ
�Dð ji�i ji�i;L1K1ÞDð jf �fjf �f;L1K

0
1Þ, ð28Þ

and

BL1K1K
0
1
L2
ðrcÞ ¼

X
j2j
0
2

ð2j2 þ 1Þð2j 02 þ 1Þ�j2

� C2ð j2j 02L2, 000ÞHL1K1K01L2
ð!j2j 02 Þ

¼
X
	

B	ðL2ÞHL1K1K
0
1
L2
ð!	Þ, ð29Þ

respectively. In comparison with the expressions for
ReS2, outer, i(rc) in Equation (20), the expression for
S2,middle(rc) in Equation (27) is simpler because it is a
product of two factors which are not interwoven. The
factor of BL1K1K

0
1
L2
ðrcÞ is a function of rc and it is

common for all lines. In contrast, the factor of
PL1K1K

0
1
ð jf �fji�iÞ is a constant and its value depends

on the line of interest. Thus, with respect to a specified
correlation, how its contributions to S2,middle(rc) would
vary as rc varies depends only on BL1K1K

0
1
L2
ðrcÞ, and

meanwhile the magnitude for the line jf �f ji �i would
be proportional to the value of FL1K1K

0
1
ð jf �fji�iÞ.

As mentioned previously, similar to ReS2, outer, i(rc)
and ReS2, outer, f (rc), contributions to S2,middle(rc) from
individual correlations are also additive. It is not

Figure 8. The spectra of the ‘Fourier series’ of W
ðaÞ
100ðt ; j�ÞWðbÞ2 ðtÞ at T¼ 296K for two paired states 100,10, and 101,10. They are

given by � and h, respectively.
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difficult to show there are no contributions to

S2,middle(rc) from correlations with odd L1 because
the matrix elements Dð j�j�;LKÞ are zero. In fact, with

Equation (22) one can show that

Dð j�j�;LKÞ ¼ ð�1ÞLþKDð j�j�;LKÞ: ð30Þ
Because we use the II R representation to describe the

wave functions of H2O, the indices K1 and K01 of the
correlations must be even. As a result, Equation (30)

means that Dð j�j�;LKÞ are zero unless L is even.
Therefore, we know that there are no contributions to

S2,middle(rc) from all the correlations with odd L1

values.
At this stage we would like to discuss the symme-

tries associated with PL1K1K01ð jf �fji�iÞ and BL1K1K01L2
ðrcÞ.

First of all, with Equation (22) one can also show that

Dð j�j�;L� KÞ ¼ Dð j�j�;LKÞ: ð31Þ
Based on this one can conclude that, as long as |K1|
remains the same, the values of PL1K1K

0
1
ð jf �fji�iÞ asso-

ciated with different K1 are identical. The same
conclusion is also true for K01. One can conveniently

express this symmetry as PL1jK1jjK01jð jf �fji�iÞ. However,
there is no exchange symmetry between K1 and K01 in

PL1K1K
0
1
ð jf �fji�iÞ.

Secondly, we discuss symmetry properties of
BL1K1K

0
1
L2
ðrcÞ. With Equation (29), one can conclude

that symmetries of BL1K1K
0
1
L2
ðrcÞ are determined by

HL1K1K
0
1
L2
ð!mÞ and the latter’s are the same as

those of the correlation function. Therefore, we know

that B2220(rc)¼B2�2�20(rc)¼B22�20(rc)¼B2�220(rc)
and B2222(rc)¼B2�2�22(rc)¼B22�22(rc)¼B2�222(rc).
Similarly, one can express this symmetry as
BL1jK1jjK01jL2

ðrcÞ. In addition, there is an exchange

symmetry between K1 and K01 in BL1K1K
0
1
L2
ðrcÞ.

Finally, it is worth mentioning here that with
respect to making contributions to S2,middle(rc), corre-

lations with K1 6¼K01 and K1¼K01 are comparable. This
contrasts with S2, outer, i(rc) and S2, outer, f (rc) where
correlations with K1 6¼K01 are much less important

than those with K1¼K01. As a result, in comparison
with S2, outer, i(rc) and S2, outer, f (rc), how important

S2,middle(rc) is would depends on whether K1¼K01 or
K1 6¼K01 for the correlation to be considered. In

general, S2, outer, i(rc) and S2, outer, f (rc) are larger than
S2,middle(rc), but this may not be true for correlations

with K1 6¼K01.

4.7. Simplification in evaluating S2,middle(rc)

It turns out that among all BL1K1K
0
1
L2
ðrcÞ, the most

important ones are B2220(rc) and B2222(rc). Then, one

can adopt a simpler approximate formula to calculate
S2,middle(rc)

S2,middleðrcÞ ¼ 4
ffiffiffiffiffiffi
2�
p

P222ð ji�i jf �f Þ½B2220ðrcÞ þ B2222ðrcÞ�,
ð32Þ

where the factor of 4 appearing on the right side of
Equation (32) results from the four identical contribu-
tions for each B2220(rc) and B2222(rc). From Equation
(32) one can draw two important conclusions about
S2,middle(rc). First, the pattern of S2,middle(rc) (i.e., as a
function of rc as it varies) is mainly determined by
B2220(rc)þB2222(rc). Second, for specified H2O lines
their contributions to S2,middle(rc) are roughly propor-
tional to values of F222( jf �fji�i). Thus, with these
values, one is able to easily judge which lines would
have large magnitudes of S2,middle(rc) and which lines
would have small ones. Therefore, values of
F222( jf �fji�i) play a crucial role to distinguish
S2,middle(rc) for different lines.

Based on the potential model used in updating
HITRAN 2008 [17], the 20th order cut-off and the
‘exact’ trajectory model, we have derived the function
of 4

ffiffiffiffiffiffi
2�
p ½B2220ðrcÞ þ B2222ðrcÞ� at T¼ 220, 296, and

340K and present results in Figure 9. As shown in
the figure, values of 4

ffiffiffiffiffiffi
2�
p ½B2220ðrcÞ þ B2222ðrcÞ�

decrease as rc increases from the starting point rc,min.
Meanwhile, by comparing its magnitudes at different
temperatures, one can conclude that the magnitudes
slightly decrease as T increases.

On the other hand, one can easily evaluate values of
P222( jf �fji�i) for all H2O lines of the pure rotational
band listed in HITRAN from Equation (28). In
contrast with 4

ffiffiffiffiffiffi
2�
p ½B2220ðrcÞ þ B2222ðrcÞ�, P222( jf �fji�i)

is a constant, it does not depend on the temperature,
and its values are independent of the potential and
trajectory models used in calculations. When values of
P222( jf �fji�i) for all H2O lines are available, it becomes
very easy to obtain the corresponding S2,middle(rc)
terms approximately for individual lines of interest
because one only needs to multiply
4

ffiffiffiffiffiffi
2�
p ½B2220ðrcÞ þ B2222ðrcÞ� by their P222( jf �fji�i) values.

In order to exhibit intrinsic properties of
P222( jf �fji�i), one needs to calculate values for lines
belonging to the individually defined groups.
In Section 5, we will provide their definitions in
detail. At present, we only note that each of the groups
consists of a set of paired lines in a specified branch.
As an example, we choose three groups, f jf0,jf  ji1,ji ,
jf 1,jf  ji0,jig, f jf 1,jf�1 ji2,ji�1, jf 2,jf�1 ji1,ji�1g, and
f jf3,jf�3 ji2,ji�1, jf4,jf�3 ji1,ji�1g in the R branch of
the pure rotational band and present their calculated
values in Figure 10. As shown in the figure, for two
paired lines whose j values are not less than either of
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the jbd associated with their initial and final states, their
P222( jf �fji�i) values are always identical. More specifi-
cally, for these three groups, as long as their members’
ji values are above 7, 10, and 15, respectively,
their paired lines have identical P222( jf �fji�i) values.

Meanwhile, by looking at how their values vary as
the pair of interest varies within the same groups,
one can conclude that the variations with ji
are very smooth. Finally, by comparing values
of P222( jf �fji�i) with the same ji among different

Figure 9. A plot to show profiles of 4
ffiffiffiffiffiffiffi
2�
p ½B2220ðrcÞ þ B2222ðrcÞ� at T¼ 220, 296, and 340K. They are plotted by solid, dashed,

and dash-dotted curves, respectively.

Figure 10. Calculated values of P222( jf �fji�i) for three groups of H2O lines f jf0,jf  ji1,ji , jf 1,jf  ji0,ji g,f jf 1,jf�1  ji2,ji�1, jf 2,jf�1  ji1,ji�1g, and f jf3,jf�3  ji2,ji�1, jf4,jf�3  ji1,ji�1g in the R branch listed in the pure rotational band
of HITRAN. They are plotted by three pairs of symbols {�, D}, {þ, S}, and {*, h}, respectively.

Molecular Physics 323

D
ow

nl
oa

de
d 

by
 [N

A
SA

 G
od

da
rd

 In
st

itu
te

 fo
r S

pa
ce

 S
tu

di
es

] a
t 0

7:
23

 2
3 

A
pr

il 
20

13
 



groups, one can conclude the values could change

dramatically.
As another example, we present results of

P222( jf �fji�i) for three groups f jf 2,jf�1 ji1,ji ,

jf 1,jf�1 ji0,jig, f jf 2,jf�2 ji1,ji�1, jf3,jf�2  ji2,ji�1g, and
f jf3,jf�3 ji2,ji�2, jf4,jf�3  ji3,ji�2g in the Q branch in

Figure 11. We don’t repeat the discussion here because

the main conclusions are the same as above. We only

note that for paired lines in these three groups, the pair
identity of P222( jf �fji�i) is valid starting from ji¼ 10,

13, and 16, respectively.

5. Categorizations of H2O lines and profiles of

ReS2(rc) for lines within the same groups

We have shown that by dividing H2O states into the

sets of paired states, there are the pair identity and

smooth variation properties applicable for the energy

levels, the wave functions, and the spectra
W
ðaÞ
L1K1K

0
1
ð!; j�Þ of states belonging to the same sets.

This knowledge provides a useful hint for how to

divide the H2O lines into groups such that for lines in

the same groups their calculated N2 broadened half-

widths have similar properties. It is obvious that in
specifying the lines, one has to categorize their initial

and final states simultaneously. First of all, in order to

reduce one variable from ji and jf, one divides lines into

the P, Q, and R branches. Then, by determining which

of the sets of paired states their initial and final states

belong to, one categorizes those lines in the same

branches.
For example, a group in the R branch ( jf¼ jiþ 1)

consists of a set of pairs of lines f jf0,jf  ji1,ji ,

jf 1,jf  ji0,jig with ji¼ 0, 1, 2, . . . . In this group, two

lines with the same ji are called paired lines because

their final sates jf0,jf and jf 1,jf are paired partners in the

same set and their initial states ji1,ji and ji0,ji are also

paired partners in the same set. In this group, the pairs

of lines are determined by only one variable ji and the

interesting pairs are those with ji above the boundary

jbd (¼7). Due to similar properties shared by their

energy levels and wave functions, one expects that their

calculated N2-broadened half-widths must somehow

follow a similarity too. In fact, for each of the paired

lines in this group we have explicitly shown the spectra

W
ðaÞ
100ð!; j�Þ associated with their initial and final states

in Figure 5(a) and provided their values of P222( jf �fji�i)
in Figure 10. Given the fact that the former mainly

determine their S2, outer, i(rc) and S2, outer, f (rc) terms and

the latter determine their S2,middle(rc), one can be pretty

sure that their half-widths must have similar proper-

ties. More specifically, as long as ji� 7, the paired lines

in this group should have the same half-width values.

In addition, these values should vary smoothly with

the pairs.
In order to demonstrate this claim, we present

calculated ReS2(rc) at T¼ 296K for lines with

ji¼ 7, 8, . . . , 19 in this group in Figure 12. The calcu-

lations are carried out with the modified RB formalism

Figure 11. The same as Figure 10 except for three groups f jf 2,jf�1  ji1,ji , jf 1,jf�1  ji0,jig, f jf 2,jf�2  ji1,ji�1, jf3,jf�2  ji2,ji�1g, andf jf3,jf�3  ji2,ji�2, jf4,jf�3  ji3,ji�2g in the Q branch.
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and based on the potential model used in updating
HITRAN 2008 [17]. In addition, 132 correlations have
been taken into account and the ‘exact’ trajectory
model was used. As shown in the figure, for each of the
pairs their ReS2(rc) are always identical and the
profiles of ReS2(rc) associated with different ji values
change very smoothly. Based on this, there are pair
identity and smooth variation properties for their
calculated half-widths because the latter are completely
determined by these functions of ReS2(rc). We will
return to this subject latter.

Similarly, one can define other groups in the R
branch such as f jfn,jf�n  jinþ1,ji�n, jfnþ1,jf�n  jin,ji�ng
with n¼ 1, 2, . . . . In defining these groups, values of kc
for their initial and final states are closer to the
maxima. Meanwhile, we can define groups in the R
branch where values of ka are equal or close to the
maxima, such as groups consisting of paired
lines f jf jf�n,n  ji ji�n,nþ1, jf jf�n,nþ1  ji ji�n,ng with
n¼ 0, 1, . . . . As long as the selection rule is allowed,
more groups based on many other combinations of
paired lines are accessible. In addition, there are groups
consisting of un-paired lines. For example,
jf jf�1,2  ji 0,ji with ji¼odd are considered as un-
paired lines because one cannot find other lines to
pair both their final and initial states.

For the P and Q braches, one can perform similar
procedures. As another example, we can define a group
in the Q branch consisting of a set of paired lines
jf 2,jf�1  ji1,ji and jf 1,jf�1  ji0,ji with ji¼ 1, 2, . . . .

We present calculated ReS2(rc) at T¼ 296K for pairs
of lines with ji¼ 9, 10, . . . , 20 in this group in Figure 13.
As shown in the figure, profiles of these functions of
ReS2(rc) have similar features as the group in the R
branch given above.

6. Pair identity and smooth variation rules for the

half-widths

After categorizing H2O lines based on properties of
energy levels and wave functions of their initial and
final states, we are ready to establish rules applicable
for the calculated half-widths for lines within individ-
ual groups.

We select six groups of lines in the pure rotational
band and present their calculated N2-broadened
half-widths in Figure 14(a–f). They are three groups
of f jf0,jf  ji1,ji , jf 1,jf  ji0,jig, f jf 1,jf�1  ji2,ji�1,
jf 2,jf�1  ji1,ji�1g, and f jf 2,jf�2  ji1,ji , jf3,jf�2  ji0,jig in
the R branch, two groups of f jf 1,jf�1  ji0,ji ,
jf 2,jf�1  ji1,jig and f jf 2,jf�2  ji1,ji�1, jf3,jf�2  ji2,ji�1g
in the Q branch, and one group of
f jf 2,jf�2  ji1,ji , jf3,jf�2  ji0,jig in the P branch. As
shown in the figures, paired lines with their ji values
above boundaries in all six groups have almost
identical half-widths. In addition, by comparing dif-
ferent pairs in the same groups, their half-widths vary
smoothly as their ji values vary. In general, the
boundaries of the groups of lines are determined by

Figure 12. Calculated ReS2(rc) at T¼ 296K for lines with ji¼ 7, 8, . . . , 19 in the group of jf0,jf  ji1,ji and jf 1,jf  ji0,ji in the R
branch. For each of the paired lines, their ReS2(rc) are plotted by a solid and a dotted curves. Results associated with different ji
values are plotted by different colors and lie from top to bottom in the figure.
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states with the smallest of |ka� kc|. With Table 2, one
can predict these boundaries and they are 7, 10, 13, 10,
13, and 14, respectively. We note that for lines in the
P branch, their jf are less than ji. As a result, the
boundary requirement applies for jf (i.e. jf� 13) and
the latter means ji� 14.

Thus, the pair identity and smooth variation rules
applicable for calculated half-widths for lines involving
high j states within the groups can be established. The
higher the ji, the firmer these two rules hold.
As explained above, the very origin of these two rules
is the properties of the energy levels and the wave
functions of H2O states. No matter what kinds of
potential and trajectory models are used in calcula-
tions, theoretically calculated N2-broadened half-
widths must follow these rules.

Furthermore, by scrutinizing the whole process pre-
sented above, one cannot find any reason why
the analyzing process and the final conclusions
described above for the widths are not applicable for
calculated pressure-induced shifts. In fact, with the
modified RB formalism, the expression for the shift is
given by

�MRB ¼ nb
2�c

Z þ1
0

�f ð�Þd�
Z þ1
0

2�bdb sinðhS1ðbÞi

þ ImhS2ðbÞiÞe�RehS2ðbÞi: ð33Þ
For lines in the pure rotational band, by replacing

the integration over the velocity by the averaged

velocity the above expression can be simplified as

�MRB ¼ nb �v

2�c

Z þ1
rc,min

2�b
db

drc

� �
sin½ImS2ðrcÞ�e�ReS2ðrcÞdrc:

ð34Þ
Because S2,middle(rc) is real, ImS2(rc) consists

of only two components –ImS2, outer, i(rc) and
ImS2, outer, f (rc) where the minus sign of ImS2, outer, i(rc)
results from the fact that S2(rc)¼S2, outer, i(rc)*þ
S2, outer, f (rc)þS2,middle(rc) [11]. The expression for
ImS2, outer, i(rc) is the same as Equation (9) for
ReS2, outer, i(rc) except for a replacement of
HL1K1K

0
1
L2
ð!Þ by the Cauchy principal integrations

IL1K1K
0
1
L2
ð!Þ defined by

IL1K1K
0
1
L2
ð!Þ ¼ � 1

�
P

Z þ1
�1

d!0
1

!0 � !
HL1K1K

0
1
L2
ð!0Þ,
ð35Þ

where P means the principal part. Similar to the
function of HL1K1K

0
1
L2
ð!Þ, IL1K1K

0
1
L2
ð!Þ are common for

all lines. As a result, all the discussions given above are
applicable for the calculated shifts and the same two
rules must be valid also.

One can extend the discussions to other tempera-
tures for the H2O–N2 system. One can carry out similar
analysis for other systems involving different pertur-
bers such as H2O–O2 and H2O–H2O. It seems that
there are no any essential differences occurring among
these different cases. Therefore, the two rules are not

Figure 13. The same as Figure 12 except for lines with ji¼ 9, 10, . . . , 20 in a group of jf 2,jf�1  ji1,ji and jf 1,jf�1  ji0,ji in the Q
branch.
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only applicable for the N2-broadened half-widths, but
also for the air- and self-broadened half-widths and
their corresponding temperature exponents.

7. Discussion and conclusions

Based on this understanding acquired in the present
study, one can develop useful ways to improve the
accuracy of the spectroscopic parameters in databases.

First of all, by applying the identity rule to two paired
lines, one is able to pick out those values listed in the
database that differ appreciably from one another.
One can be fairly sure that those data picked out con-
tain large errors or, for instance, came from different
theoretical or experimental sources. Meanwhile, by
applying the smooth variation rule for lines in the same
groups, their individual errors could be partially aver-
aged out using proper smoothing procedures. Thus,
one is able to obtain better values with less uncertainty.

(a) (b)

(d)

(f)
(e)

(c)

Figure 14. Calculated N2-broadened half-widths for paired H2O lines in six groups defined in the pure rotational band. Three
groups in the R branch are plotted in (a)–(c), two groups in the Q branch are in (d)–(e), and one group in the P branch is in (f).
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For people who are in charge of databases, the
present work provides a helpful guide and a useful tool
in their developing practices. It is wise to consider that
all lines in each of the transition bands belong to a well
organized network. Acting as one member of the
network, the half-width value of an individual line is
not self-contained because it has to be somehow
connected with other values associated with those
lines, especially its paired line, who belong to the same
group as the line of interest does. The same statement
is also true for other spectroscopic parameters. Given
the fact that data listed in the databases may come
from several independent sources, to take a balance
procedure becomes even necessary. Meanwhile, by
applying the two rules to each of the groups of lines
thoroughly, one can screen the database and identify
lines whose half-width values (or other spectroscopic
parameters) that behave strangely. These outliers
should be carefully checked, or one could consider
the option to replace them by smoothed values
obtained from their neighboring lines. After removing
the errors, they are able to improve the accuracy of the
database significantly.

Experimentalists can also use the pair identity and
smooth variation rules to check their measured spec-
troscopic data. If their results scatter wildly, it
definitely indicates contaminations or errors existing
in their data. In addition, the smooth variation rule
provides a sound support and is a useful guide for their
developing data smoothing procedures. Again, one has
to keep in mind that although the smoothing practice
for data with high j states in the same groups is well
justified, one cannot apply it to those lines with low j
states, otherwise the procedures could introduce arti-
ficial errors. Finally, with respect to the determination
of measurement priorities, it is prudent to choose
several lines with high js in the same group because
several good measurements are enough to determine
others in the same group. This implies that it is not
necessary to measure all lines in the same group for the
completeness purpose.

In summary, it is the properties of energy levels and
wave functions of the H2O states that play an essential
role in establishing the pair identity and the smooth
variation rules and these rules reflect natural correla-
tions between the inputs and the outputs for a whole
system consisting of an absorber H2O molecule
immersed in bath molecules and radiation fields.
However, due to the complexity of dynamical processes
happening inside the system, these correlations are very
difficult to be fully grasped. This implies that it is
unrealistic to set as a goal to find common rules with
which the outputs can be well monitored from the
inputs unless one narrows the variation range of the

inputs. Thus, it is the categorization of the H2O lines
that enable one to narrow the variation ranges of the
inputs first. In fact, after completing the categorization
procedures for each of theP,Q, andR branches, there is
only one independent variable (i.e. the initial quantum
number ji) left to distinguish lines of interest. Then to
establish the rules valid within the individual groups
becomes possible. Therefore, these two rules have two
characteristics: they are natural, but they are local.
Local here means the rules work for each individual
groups and are valid only for its members above certain
boundaries. Finally, while the present study was carried
out in the pure rotational band of H2O, one can extend
the study to other H2O bands and establish similar rules
there also. Of course, one has to analyse the properties
of the energy levels and wave functions of the states
involved in these transitions first.
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Appendix

A.1. Symmetry assignments of H2O wave functions
for paired states

We consider the symmetry assignments for the sets of paired
states jj�n, n and jj�n, nþ1 where n¼ 0, 1, . . .whose wave
functions in the I R representation are given in Figure 2.
It is obvious that the paired states have the same ka values,
but their kc values differ from each other by 1. This implies
that they have identical evenness or oddness for ka, but have
opposite evenness or oddness for kc. Thus according to
Table 1, no matter whether their j values are even or odd,
their symmetry assignments by the superscripts þ and � in
the I R representation must be opposite. In terms of their
coefficients Uj

k� , the coefficients of one state must be an even
function of k and the coefficients of its paired partner must
be an odd function of k. In Table A-1, we list the assignments
for these pairs.

Similarly, we consider the symmetry assignments for the
sets of paired states jn, j�n and jnþ1, j�n where
n¼ 0, 1, . . .whose wave functions in the III R representation
are given in Figure 3. In this case, the paired states have the
same kc and their ka differ from each other by 1. Then, one
can conclude that with respect to their wave functions
derived in the III R representation, one must be an even
function assigned by the superscriptþ and its partner must
be an odd function assigned by the superscript�. In terms of
their coefficients Uj

k� , the conclusion is the same as that for
the sets of jj�n, n and jj�n, nþ1 drawn above. In Table A-2, we
list the assignments for them. These symmetry properties are
important and we will be back to this subject later.

A.2. Important quantities in determining couplings
between H2O states

As shown in Section 4, in the RB formalism there are two
quantities which play crucial roles in determining how the
Lorentzian half-widths would vary with lines of interest. For
two H2O states j� and j 0�0 which can be coupled by the
irreducible tensor L and its subsidiary index K, the quantities
!j�j 0�0 defined by

!j�j 0�0 ¼ ½EðH2OÞð j�Þ � EðH2OÞð j 0�0Þ�=�h ðA-1Þ
represent their energy differences and the quantities
Dð j�j 0�0;LKÞ called as the D matrices represent their
couplings; and this is defined by

Dð j�j 0�0;LKÞ ¼
X
k

ð�1ÞkU j
k�U

j 0
k�K�0 Cð jj 0L, kK� kKÞ:

ðA-2Þ
As shown by Equation (A-1) and (A-2), with the energy

levels and the wave functions of these two states, one can
easily calculate the energy differences and the D matrices.

However, it turns out that exploiting the properties of
these two quantities is fruitful in answering a fundamental
question why and how the calculated N2-broadened half-
widths and pressure induced shifts would vary with lines of
interest. Based on our analysis of the properties of the energy
levels and the wave functions of the H2O described
previously, one can find the properties of these two quantities
accordingly.

Let us consider two pairs of the states { j �1, j �2} and { j 0
�01, j

0 �02}. We assume j �1 and j �2 are paired and j 0 �01 and j 0 �02
are paired. By picking one member from each of the pairs,
one gets two combinations, for example, a combination of j
�1 and j 0 �01 and a combination of j �2 and j 0 �02. We assume
that the two states in the same combinations can be coupled
by L and K where L is the irreducible tensor rank and K is its
associated index [4,16], and we would like to compare the
energy differences and the D matrices between these two

Table A-1 Symmetry assignments for pairs of jj�n, n and
jj�n, nþ1 in the I R representation.

jj,0, jj,1 jj�1,1, jj�1,2 jj�2,2, jj�2,3 � � �
j¼ even Eþ, E� Oþ, O� Eþ, E�

j¼ odd Oþ, O� Eþ, E� Oþ, O�

Table A-2. Symmetry assignments for pairs of jn, j�n and
jnþ1, j�n in the III R representation.

j0.j, j1, j j1, j�1, j2, j�1 j2, j�2, j3, j�2 � � �
j¼ even Eþ, E� O�, Oþ Eþ, E�

j¼ odd O�, Oþ Eþ, E� O�, Oþ
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combinations. First of all, it is obvious that there are
identities of their energy differences

!j�1j 0�01 
 !j�2 j 0�02 ðA-3Þ
approximately valid within certain accuracy tolerances when
both j and j 0 are above corresponding boundaries defined for
their sets.

On the other hand, for the two D matrices Dð j�1j 0�01;LKÞ
and Dð j�2j 0�02;LKÞ, one has shown that jUj

k�1
j 
 jUj

k�2
j and

jUj 0
k�0

1
j 
 jUj 0

k�0
2
j. In addition, as shown in Section A.1, the

evenness or oddness of Uj
k�1

and Uj
k�2

over k must be
opposite and this is true for Uj 0

k�0
1
and Uj 0

k�0
2
also. Thus, it

becomes clear that

Uj
k�1

Uj 0
k�K�1 
 Uj

k�2
Uj 0

k�K�0
2
: ðA-4Þ

As a result, one is able analytically to verify

Dð j�1j 0�01;LKÞ 
 Dð j�2j 0�02;LKÞ: ðA-5Þ

Thus, one can draw an important conclusion that the
coupling by L and K between two states approximately
equals the coupling between their paired partners. The higher
the j is, the more equal these couplings become. We call these
two D matrices as the paired D matrices later. Besides, there
is another interesting feature of the paired D matrices. This
feature represents a behavior of their values as j varies.
In order to exhibit it, one has to find their values by
performing numerical calculations explicitly.

It is worth mentioning that Equation (A-4) is applicable
for the coefficients derived accordingly in the I R or III R
representation, but not in the II R representation. This
implies that we have verified Equation (A-5) analytically in

the I R and III R representations, but not in the II R
representation. On the other hand, in developing the line
shape formalism with the correlation functions described in
Section 3, we prefer to choose the II R representation in
which the symmetry axis of the H2O molecule lies along the z
axis of the molecular fixed frame. With this choice, one is
able to exploit more symmetries of H2O to reduce a number
of the correlation functions required to be evaluated
significantly. Because Equation (A-4) is not valid, to verify
Equation (A-5) analytically in the II R representation is
not as easy as shown above. In the present study, we do not
pursue the analytical verification, rather we carry out
numerical verification. In addition, numerical results are
needed to exhibit another feature of the paired D matrices.

For later convenience, we rewrite Dð j�j 0�0;LKÞ as
Dð jka,kc j 0k0a , k0c ;LKÞ where ka� kc¼ � and k0a � k0c ¼ �0.
We note that there are rules to determine whether there are
non-zero couplings between two states jka ,kc and j 0k0a , k0c or not.
For example, in the II R representation the rule associated
with L¼ 1 and K¼ 0 is similar to the selection rule of the
H2O transitions; Dj (�j 0 � j)¼ 0,� 1, Dka (� k0a � ka)¼
�1,�3, . . . , and Dkc (� k0c � kc)¼�1,�3, . . . . The rule for
L¼ 2 and K¼ 0 is Dj¼ 0,�1,�2, Dka¼ 0,�2,�4, . . . , and
Dkc¼ 0,�2,�4, . . . . For other L and K values, the rules
become more complicated.

As an example, we consider a set of two D matrices
fDð jj,0j 0j 0 , 1; 10Þ,Dð jj,1j 0j 0, 0; 10Þg with j 0 ¼ jþ 1. It is obvious
that these two are paired D matrices because jj,0 of the first D
and jj,1 of the second D are paired states, and j 0j0,1 in the fist D
and j 0j0,0 in the second D are paired. In addition, there are
non-zero couplings both between jj,0 and j 0j0,1 of the first D
and between jj,1 and j 0j0,0 of the second D. We have calculated
these two paired D matrices for values of for j¼ 3, . . . 26 and

Figure A.1. A plot to show properties of Dð jka,kc j 0k0a, k0c ;LKÞ with L¼ 1 and K¼ 0. Calculated values of jDð jj,0j 0j 0, 1; 10Þ j andjDð jj,1j 0j 0, 0; 10Þ j with j 0 ¼ jþ 1 and j¼ 3, . . . 26 are plotted by � and D, respectively. Because values are positive for even j and
become negative for odd j. In order to show how their magnitudes vary with j more clearly, their absolute values are plotted in
the figure. Similarly, a set of pairs jDð jj,0j 0j 0�1, 1; 10Þ j and jDð jj,1j 0j 0�1, 2; 10Þ j with j 0 ¼ j whose values are negative for even j and
positive for odd j are plotted by þ and S. Finally, another set of pairs jDð jj,0j 0j 0, 1; 10Þ j and jDð jj,1j 0j 0, 0; 10Þ j with j0 ¼ j� 1 whose
values are negative for even j and positive for odd j are plotted by * and h.
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found their values are almost identical. However, it turns out
that the values are positive for j¼ even and become negative
for j¼ odd. In order to show how their magnitudes vary
with j more clearly, we plot their calculated magnitudes in
Figure A-1. Similarly, we select another two sets
fDð jj,0j 0j 0�1, 1; 10Þ,Dð jj,1j 0j 0�1, 2; 10Þg with j 0 ¼ j and
fDð jj,0j 0j 0, 1; 10Þ,Dð jj,1j 0j 0, 0; 10Þg with j 0 ¼ j� 1. Both of them
have non-zero couplings and both of them consist of two
paired D matrices. Again, because their calculated values
change signs for even j and odd j alternatively, we plot their
magnitudes in Figure A.1. Based on these results, we can
draw two conclusions. First of all, values of the paired D
matrices are almost identical. This implies that we have
verified Equation (A-5) numerically for these sets.
In addition, we would like to note that for these three sets,
the identity of paired D matrices becomes valid starting from
j¼ 3, 5, and 4, respectively. These j values are consistent with
those jbd values listed in Table 2. Readers may wonder for the
third set, why the identity starts from j¼ 4, but not j¼ 3. It is
easy to explain this because for this set, j 0 ¼ j� 1 and the
smaller of j and j 0 must be not less jbd. Secondly, as shown in
the figure, one can conclude that for each of these sets, their
magnitudes vary very smoothly as j varies. Variation of the

magnitudes with j smoothly is just a feature of the paired
D matrices we are looking for.

As another example, instead of choosing states asso-
ciated with large ka values we consider sets of the paired
D matrices whose states are associated with large kc values.
In addition, with respect to L and K we consider a case of
L¼ 2 and K¼ 2. More specifically, we select fDð j0,jj 01,j 0 ; 22Þ,
Dð j1,jj 00,j 0 ; 22Þg with j 0 ¼ jþ 1, fDð j0,jj 01,j 0�1; 22Þ,
Dð j1,jj 02,j 0�1; 22Þg with j 0 ¼ j, fDð j0,jj 01,j 0 ; 22Þ,Dð j1,jj 00,j 0 ; 22Þg
with j 0 ¼ j� 1. We present their calculated magnitudes with
j¼ 5, . . . 26 in Figure A.2. As shown in the figure, the two
features exhibited previously remain the same. We do not
repeat the discussion here, other than to mention that in
comparison with the previous three sets, the identity of two
paired D becomes valid starting from a higher j value. For
these three sets, it starts from j¼ 7, 10, and 8, respectively.
These starting values are consistent with those jbd values
listed in Table 2.

With respect to other sets, we believe the same conclu-
sions mentioned above are applicable there also. As shown in
Section 3 these two features of the paired D matrices are very
helpful in analyzing values of calculated half-width for the
H2O lines.

Figure A.2. The same as Figure A.1 except for L¼ 2, K¼ 2, three sets of the paired Dmatrices fDð j0,jj 01,j 0 ; 22Þ,Dð j1,jj 00,j 0 ; 22Þg with
j 0 ¼ jþ 1, fDð j0,jj 01,j 0�1; 22Þ,Dð j1,jj 02,j 0�1; 22Þg with j 0 ¼ j, and fDð j0,jj 01,j 0 ; 22Þ,Dð j1,jj 00,j 0 ; 22Þg with j 0 ¼ j� 1.
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