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[1] We describe the main differences in simulations of stratospheric climate and
variability by models within the fifth Coupled Model Intercomparison Project (CMIP5)
that have a model top above the stratopause and relatively fine stratospheric vertical
resolution (high-top), and those that have a model top below the stratopause (low-top).
Although the simulation of mean stratospheric climate by the two model ensembles is
similar, the low-top model ensemble has very weak stratospheric variability on daily and
interannual time scales. The frequency of major sudden stratospheric warming events is
strongly underestimated by the low-top models with less than half the frequency of events
observed in the reanalysis data and high-top models. The lack of stratospheric variability
in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived
anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric
impacts, as seen in observations. The lack of stratospheric variability, however, does not
appear to have any impact on the ability of the low-top models to reproduce past stratospheric
temperature trends. We find little improvement in the simulation of decadal variability for the
high-top models compared to the low-top, which is likely related to the fact that neither
ensemble produces a realistic dynamical response to volcanic eruptions.

All supporting information may be found in the online version of this article.
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1. Introduction
[2] One major change in coupled-climate modeling

between the third (CMIP3) and fifth (CMIP5) Coupled
Model Intercomparison Projects is an increase in the
number of models with model tops above the stratopause
and general progress toward a more realistic representation
of the stratosphere in coupled climate models. As an
example of this trend, only 5 of the 23 CMIP3 models
considered in Cordero and Forster [2006] had tops above
1 hPa. In the CMIP5 archive, this ratio has increased to 15
models of 45. Furthermore, very few models now place
their model lid in the middle stratosphere near 10 hPa,
thereby reducing the number of models that are likely to se-
verely distort stratospheric dynamics. In the present study,
we seek to understand the benefits of a model lid above 1
hPa to the simulation of stratospheric climate and variability
by comparing the simulation of stratospheric climate by a
subset of models submitted to the CMIP5 archive.
[3] The move to increased stratospheric representation in

coupled climate models has been motivated in part by the
large body of recent work providing evidence that both
internal stratospheric climate variability and external
stratospheric climate forcing can be important drivers of
tropospheric climate (as discussed by Gerber et al.
[2012]). The climate models that make up the CMIP5 en-
semble might be crudely divided into two subensembles;
one representing models that attempt to fully represent strato-
spheric processes (for which we use the shorthand, “high-
top”) and the other representing models that do not (for which
we use the shorthand, “low-top”).
[4] In this study, we attempt the first broad-scale assessment

of the performance of the high-top and low-top ensembles in
CMIP5 in simulating stratospheric climate and variability.
Many previous assessments of the simulation of stratospheric
climate by stratosphere-resolving models [Pawson et al.,
2000; Cordero and Forster, 2006] and chemistry-climate
models [Austin et al., 2003; Eyring et al., 2006; Butchart
et al., 2011] have shown an improving simulation of
stratospheric mean climate over time. However, several per-
sistent biases remain in most models. One example is the cold
bias in spring temperatures in the polar lower stratosphere,
associated with a delay in the stratospheric final warming. This
bias is present in both hemispheres and in high-top and low-
top models. The key questions in this study are if biases in
the lower and middle stratosphere are reduced in high-top
models compared to low-top models and if low-top models
exhibit additional stratospheric biases.
[5] Ultimately, for most climate modeling centers the value

of enhancing the stratospheric representation in their models
will be measured in terms of any improvement to
tropospheric biases and variability and the simulation of
tropospheric climate change. Several studies have shown that
the pattern and magnitude of regional tropospheric climate
change can be significantly affected by changes in the strato-
spheric climate [e.g., Sigmond and Scinocca, 2010; Scaife
et al., 2011; Karpechko and Manzini, 2012]. In a companion
paper, Manzini et al. [2012] examine how the multimodel
simulation of tropospheric climate change in CMIP5 is

sensitive to stratospheric climate change. A key prerequisite
to this analysis is the diagnosis of the simulation of
stratospheric climate and variability presented in this paper.

2. High-Top and Low-Top Models in the CMIP5
Ensemble

[6] The subset of models from the CMIP5 experiment
considered in this study are listed in Table 1. In considering
this large ensemble, it is clear that the CMIP5 models have a
wide variety of lid heights, vertical resolutions, and parame-
terized physical processes in the stratosphere. The models
were classified into a high-top and low-top ensemble based
primarily upon their lid height, with a threshold between
high-top and low-top at 1 hPa. This choice is motivated by
previous studies [Cagnazzo and Manzini, 2009; Maycock
et al., 2011; Shaw and Perlwitz, 2010], which have sug-
gested that models with a top below the stratopause fail to
properly simulate episodic stratospheric variability such as
stratospheric sudden warmings. We might therefore expect
a similar difference between models in the CMIP5 ensemble
segregated by this threshold.
[7] Because this study is primarily concerned with

assessing how the models reproduce past observed climatol-
ogy, our focus is solely on the historical runs of the CMIP5
models, which have observed climate forcings (including
forcing from greenhouse gasses, ozone depletion, land-use
change, tropospheric and stratospheric aerosol, and solar
variability). More details of the CMIP5 experimental design
can be found in Taylor et al. [2012]. Typically, model
simulations are compared with the MERRA [Rienecker
et al., 2011] and ERA-Interim [Dee et al., 2011] reanalysis
data sets over the modern satellite era (1979 to present)
when confidence in stratospheric reanalysis is highest, but
for some diagnostics that require longer climate records,
the ERA-40 reanalysis data set is used as an additional or
alternative point of reference. The methodology used for
each diagnostic and the reanalysis data set used is described
in each subsection.
[8] To put our results in context with other generations

and types of GCMs, we compare some of the diagnostics
with those from the CMIP3 [Meehl et al., 2007] and
CCMVal-2 [SPARC CCMVal, 2010] ensembles. The
CMIP3 models, which were developed in the early 2000s,
generally have a lower vertical resolution than the CMIP5
models. The CCMVal-2 models are coupled chemistry-cli-
mate models, which are stratosphere resolving and have a
vertical resolution comparable to the CMIP5 high-top en-
semble, but are mostly run without coupling to the ocean.
There is also a degree of commonality between the
CCMVal-2 and CMIP5 models, because many share a sim-
ilar or identical dynamical core.
[9] In section 3, we assess stratospheric climate by first

calculating broad-scale metrics of the overall skill of the
two model ensembles in simulating stratospheric climate
and variability, following the work of Reichler and Kim
[2008]. This approach allows us to directly and compactly
assess the overall skill of the two ensembles and to compare
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them with the CMIP3 and CCMVal-2 ensembles. However,
the broad-scale metric does not help us to understand the
reasons for differences in the performance of the two CMIP5
ensembles. Hence, in section 4 we use a small selection of
process-based diagnostics to illustrate why the model
ensembles produce a similarly skillful simulation of mean
climate but a very different simulation of stratospheric
variability. In section 5, we then assess the impact of the lack
of stratospheric variability in the low-top ensemble on the
simulation of stratosphere-troposphere coupling and the
reproduction of past stratospheric trends by the models.
[10] It is not possible to construct a consistent high-top

and low-top ensemble for all of the diagnostics of strato-
spheric climate presented in this study and the supporting in-
formation. The coverage of different diagnostics in the
CMIP5 archive is quite variable and hence we have chosen
to construct the largest possible ensemble for each of the
diagnostics available. The models and ensemble members
used for each diagnostic are shown in Table 2. Although this
approach is far from ideal, it does allow us to make a broad-
scale assessment of the simulation of stratospheric climate
by the high-top and low-top ensembles within the CMIP5 ar-
chive. In almost all cases, each ensemble is made up of a
large number of different GCMs and the removal of individ-
ual models from the ensemble does not change the qualita-
tive structure of the high-top or low-top ensemble mean or
their difference where this is significant.

3. A Broad Metric of Stratospheric Climate

[11] A simple way to assess the performance of the
CMIP5 models in the stratosphere and compare them to
previous generations of models is to compute broad-scale
climate metrics. In this section, model performance is evalu-
ated in terms of zonal averages of temperature (T), zonal
wind (U), and specific humidity (q). The analysis domain
for the model metrics extends from 90�S to 90�N and from
100 to 10 hPa. Some models in the low-top ensemble may
have artificial numerical momentum damping near the

model top extending into this domain, but this information
is not provided in the CMIP5 meta-data. This information
is important to future evaluation of model performance in
the stratosphere and we recommend that future multimodel
intercomparison experiments include this type of meta-data.
[12] Four different aspects of climate are examined: long-

term mean (MEAN), and variability on synoptic (DAILY),
interannual (INTA), and decadal (DCDL) time scales. All
four aspects are calculated individually for the four seasons.
The calculation of mean climate as well as interannual and
decadal variability is based on monthly mean input data.
Synoptic variability is based on daily data after removing a
low-frequency component with a temporal smoother using
Gaussian weighting with a full-width at half maximum of
15 days [Baldwin et al., 2003].
[13] Variability is defined as the standard deviation over

the given period of years. For example, interannual variability
is the standard deviation of seasonal means, and decadal
variability is the standard deviation of band-pass filtered
monthly anomalies, using the fast Fourier transform tech-
nique and only retaining periods between 5 and 15 years. De-
cadal variability is calculated for the period 1961–2000, using
the ERA-40 reanalysis as validation data. Mean climate,
interannual variability, and daily variability are all based on
1979–2000 data and validated against ERA-Interim reanaly-
sis. The model data are taken from the 20C3M (CMIP3),
REF-B1 (CCMVal-2), and HISTORICAL (CMIP5) experi-
ments; only one ensemble member is included from each
model to avoid biases in the calculation of the metric toward
models with larger ensembles.
[14] We examine two different measures of error: the

pattern correlations (r) and the normalized root mean square
error (E) [Reichler and Kim, 2008]. The procedure to
compute E follows the method employed in Chapter 10 of
SPARC CCMVal [2010]. In short, we first square the grid-
point error between simulated and observed climate, normal-
ize on a grid-point basis with the observed interannual
variance, average spatially over a certain domain, and then
take the square root. The grid-point error in simulating

Table 1. Models Used in the Study and Their Stratospheric Properties. An N in the Stratospheric Physics Column Indicates Nonorographic
Gravity Wave Drag is Included, a C Indicates Stratospheric Heterogeneous Chemistry is Included, a Line Indicates Neither is Included

Model Lid Height Levels Above 200 hPa Physics Ens.

BCC-CSM1.1 2.917 hPa 26 13 – Low
CCSM4 2.194067 hPa 27 13 – Low
CNRM-CM5 10 hPa 31 9 – Low
CSIRO-mk3.6.0 4.5 hPa 18 5 – Low
GFDL CM3 0.01 hPa 48 28 NC High
GFDL-ESM2G 3 hPa 24 5 – Low
GFDL-ESM2M 3 hPa 24 5 – Low
GISS-E2-R 0.1 hPa 40 19 NC High
GISS-E2-H 0.1 hPa 40 19 NC High
HadCM3 10 hPa 19 3 – Low
HadGEM2-ES 40 km 38 15 Low
HadGEM2-CC 85 km 60 37 N High
INMCM4 10 hPa (0.01 sigma) 21 8 N Low
IPSL-CM5A-LR 0.04 hPa 39 22 N High
IPSL-CM5A-MR 0.04 hPa 39 22 N High
MIROC-ESM 0.0036 hPa 80 63 N High
MIROC-ESM-CHEM 0.0036 hPa 80 63 NC High
MIROC5 3 hPa 40 17 – Low
MPI-ESM-LR 0.01 hPa 47 25 N High
MRI-CGCM3 0.01 hPa 48 25 NC High
NorESM1-M 3.54 hPa 26 13 – Low
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variability is based on the log2 variability ratio between
model and observation. Because the computed values of E
are nondimensionalized, errors from different climate
quantities can be combined into a single measure of overall
model performance. The values of r and E are calculated
separately for each quantity, season, and model. We then
take appropriate averages, e.g., for the four seasons and the
three quantities (T, U, and q).
[15] Figure 1 summarizes the outcome of the validation

exercise. Shown are the mean values of r and E for T, U,
and q and for the four seasons. The oval shapes show the
two standard deviation uncertainty intervals for the mean
performance of the different model groups and aspects of
climate, obtained by boot-strapping results from individual
models within each ensemble. The clustering and location
of the same colored ovals indicate that the simulation of
synoptic variability (green) is generally associated with the
highest skill scores. On the other hand, model performance
is lowest for the simulation of decadal variability (light blue;
note that this includes both forced and unforced variability),
which may be in part related to the relatively short 40 year
long data record and the uncertainty in observing this aspect
of climate (particularly in the Southern Hemisphere (SH)).
[16] It is most notable that the high-top CMIP5 ensemble

(thick solid line) simulates all three time scales of climate
variability considerably better than the low-top CMIP5
counterpart (thin solid line). The uncertainty ovals for low-
top and high-top CMIP5 models are well separated from
each other. In other words, models with an increased vertical
resolution and a higher model top presumably resolve
stratospheric processes better, which leads to improved
simulations of stratospheric climate variability. The mean

climate (orange) of the high-top ensemble has slightly better
correlation with the reanalysis than the low-top ensemble
(i.e., it reproduces better the horizontal and vertical struc-
ture of the climate), but the root mean square error is compa-
rable (i.e., the size of climate biases is broadly similar).
[17] Of the four model ensembles considered, the CMIP3

ensemble (thin dashed line) has the worst performance in
simulating mean climate and interannual variability. When
considering daily and decadal variability the CMIP3 and
CMIP5 low-top ensembles have comparable performance,
which is significantly worse than either the CMIP5 high-
top ensemble or the CCMVal-2 ensemble.
[18] Comparing the two high-top ensembles (CMIP5-high

and CCMVal-2 (thick dashed line)) one finds that CCMVal-2
simulates decadal and interannual climate variability
significantly better, but that the simulation quality for daily
variability and mean climate are essentially the same.
However, when interpreting these results it is important to
know that most CCMVal-2 models are run with observed
SST forcing and that many CCMVal-2 models include the
quasi-biennial oscillation (QBO), an important phenome-
non of interannual variability in the tropical stratosphere.
In most cases, however, the QBO simulation is due to
“nudging” to observations and thus does not represent a true
simulation. On the other hand, CMIP5 models do not use
such nudging. Nudging the QBO mostly improves the
simulation of the CCMVal-2 models over the tropics,
whereas over the extratropics the CCMVal-2 and the
CMIP5 models perform very similarly (not shown). It is im-
portant to note, of course, that most of the models in the
CMIP5 ensemble are run with a prescribed stratospheric
ozone field, potentially reducing intermodel spread in

Table 2. Membership of High and Low-Top Ensembles for Each Sectiona

Model Metric Zon. Trends SSWs AM Volc.
Temp.

High-top models
GFDL CM3 1 5 - 1 1 5
GISS-E2-R 1 5 5 5 - 5
GISS-E2-H 1 - - 15 - 5
HadGEM2-CC 1 3 1 1 1 3
IPSL-CM5A-LR 1 4 - 4 4 -
IPSL-CM5A-MR 1 1 - 1 1 -
MIROC-ESM 1 3 - 1 3 3
MIROC-ESM-CHEM 1 1 1 1 1 1
MPI-ESM-LR 1 3 3 3 3 3
MRI-CGCM3 1 3 3 3 1 3
Total models (EM) 10(10) 9(28) 8(30) 7(14) 8(15) 8(28)
Low-top models
BCC-CSM1.1 - 3 3 - 1 -
CCSM4 1 1 5 1 1 -
CNRM-CM5 1 1 - 1 1 -
CSIRO-mk3.6.0 1 10 10 5 - 10
GFDL-ESM2M 1 1 1 1 1 1
GFDL-ESM2G - - - 1 - -
HadCM3 1 - 10 10 - 10
HadGEM2-ES 1 4 4 4 4 3
INMCM4 1 1 - 1 - -
MIROC5 1 4 4 4 4 3
NorESM1-M 1 3 3 3 3 3
Total models (EM) 9(9) 9(28) 6(22) 9(27) 6(11) 7(40)

aBecause all models do not provide all diagnostics to the archive, the high-top and low-top ensembles have varying composition in each section as shown
here. Numbers indicate the number of ensemble members used in each case. Abbreviations used for each section are metric, a broad metric of stratospheric
climate (Figure 1); Zon. Temp., Zonal Mean Temperature Bias (Figure 2); Trends, Trends in Lower Stratospheric Temperature (Figure 6); SSWs, Sudden
Stratospheric Warmings (Figure 3); AM, Annular Modes (Figure 5); Volc., Response to Volcanic Eruptions (Figure 4).

CHARLTON-PEREZ ET AL.: STRATOSPHERE IN CMIP5 MODELS

2497



comparison to the CCMVal-2 models, which have their own
internally generated ozone fields.
[19] This analysis clearly shows that there are significant

differences in the simulation of climate variability in the
lower stratosphere between the high-top and low-top
ensembles. The aim of the remainder of the study is to
analyze the stratosphere in the two model ensembles in more
detail to discover the origin of these differences.

4. Possible Causes of the Differing Performance
of the Two Ensembles

4.1. Mean Climate

[20] The similarity of the mean temperature biases in the
two model ensembles can be shown by simply calculating
the difference between the multimodel mean, zonal-mean,
annual-mean temperature as a function of latitude and
pressure, and the same quantity in the ERA-Interim reanaly-
sis data set (Figure 2). In a separate procedure to that used
for calculation of the model metrics above, each models’
climatology is determined for individual realizations, then
averaged for all available ensemble members. The resulting
temperature field is interpolated onto T42 latitudes and

standard pressure levels, and averaged over all available
models within the high-top and low-top ensembles. For
both model ensembles there is model bias in the region of
the tropopause, with warm biases near the tropical
tropopause (around 100 hPa) and cold biases near the
extratropical tropopause (near 250 hPa). These differences
are consistent with a low bias in tropical tropopause
heights and a high-bias in extra-tropical tropopause
heights, with somewhat stronger biases in the low-top
models (see Figures S1 and S5 in the supporting informa-
tion for details). One difference between the two model
ensembles is in the high-latitude middle stratosphere (10
to 30 hPa). In the low-top model ensemble there are large
cold biases. This is consistent with previous generations
of low-top models [e.g., Cordero and Forster, 2006]. In
the Northern Hemisphere (NH) this is generally thought
to be associated with a lack of episodic stratospheric dy-
namical variability driven by wave-mean flow interactions. It
is explicitly shown in the next section that there is clear
distinction between the high-top and low-top ensembles in
CMIP5 in this regard. In the SH, where such episodic
dynamical variability is weaker, differences in the indirect
heating by the residual circulation driven by the gravity
wave drag parameterization may play a role in the large
cold bias in the low-top ensemble. We cannot explicitly
address this issue because tendencies from the gravity wave
parameterizations of the CMIP5 models are not available.
[21] More detailed analysis of the mean temperature

and zonal wind biases shown in the supporting information
(Figures S1 and S2) reveals that the model ensembles
diverge most in the extratropical middle stratosphere in the
seasons in which the stratosphere is dynamically active
(DJF in the NH and JJA and SON in the SH). This suggests
that differences in mean climate are largely associated with
differences in dynamical variability between the two ensembles.
[22] There are also other potentially important differences

between the mean climate of the high-top and low-top
ensembles, which could provide interesting examples for
further study. One point of difference is in the strength of
the tropical upwelling. Although both ensembles reasonably
capture the Brewer-Dobson circulation, the low-top models
produce anomalously strong upwelling at the equator but
with a narrower tropical pipe (Figure S3a). A second
difference concerns the well-known and persistent late bias
in the final warming of the polar vortex in both hemispheres.
Although both the high-top and low-top ensembles exhibit
this bias, the high-top ensemble does show some improve-
ment compared to the low-top ensemble (Figure S4). Finally,
all models underestimate the pole-to-equator contrast in
tropopause height (Figure S5), but this bias does appear to
be somewhat alleviated in the high-top models.
[23] In summary, aside from the region near the model

top, the high-top and low-top ensembles have very similar
mean climate biases.

4.2. Daily and Interannual Variability
[24] As shown in Figure 1 there are large differences in the

skill of the simulation of stratospheric daily variability
between the high-top and low-top ensembles. This section
shows that these differences are the result of a significant lack
of episodic stratospheric variability in the low-top models.

Figure 1. Simulation performance (90�S–90�N, 100–10 hPa)
for different model ensembles and aspects of climate. Best
performing ensembles are located at the lower left. Gray
contours show the skill score S (in %), which combines
E and r into a single index [SPARC CCMVal, 2010]. Oval
shapes indicate � 2 standard deviation uncertainty intervals,
derived by bootstrapping results from individual models
within a specific ensemble (estimates of the ensemble mean
uncertainty were derived by resampling the existing
estimates with replacement). C5H is the CMIP5 high-top
model ensemble, C5L is the CMIP5 low-top model ensemble,
CV2 is the CCMVal-2 model ensemble and C3 is the CMIP3
model ensemble. MEAN is the skill of the mean climate sim-
ulation, INTA is the skill of the internannual variability,
DAILY is the skill of the daily variability and DCDL is the
skill of the decadal variability.
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[25] Stratospheric sudden warming events (SSWs) are
the most dramatic examples of wintertime, extratropical
stratospheric variability and are often followed by large
perturbations to the tropospheric flow [e.g., Baldwin and
Dunkerton, 2001]. To properly represent stratospheric
climate variability, a climate model should be expected to
simulate stratospheric warmings at approximately the same
frequency as long-term reanalysis data sets and with a
similar climatological distribution. Charlton and Polvani
[2007] showed that, on an event by event basis, SSWs
contribute to the daily variability in the middle and lower
stratosphere and the interannual variability in the lower
stratosphere. We confirm at the end of this section that,
generally, models with a larger frequency of major SSW
events also have large daily and interannual zonal mean
zonal wind variance in the middle stratosphere.
[26] There are many different ways in which the occurrence

of SSW events in the stratosphere can be detected. In the
present analysis, we use the algorithm of Charlton and
Polvani [2007], based on measuring the number of times
that the zonal mean zonal wind at 60�N and 10 hPa crosses
zero during midwinter, which has been used to evaluate
SSW occurrence in both reanalysis data sets and a large
number of previous GCM studies. While other studies have
suggested potential modifications to the algorithm or
alternative algorithms, we retain the algorithm in its original
form to allow ease of comparison with other studies. In
addition, there is growing evidence that substantial decadal
variability in SSW occurrence may exist [Schimanke et al.,
2010]. Any analysis that seeks to characterize the SSW
climatology of GCMs needs to take this into account.
Therefore, in this analysis we use the period 1960–2005
for the models (the end of the historical simulation) so that
a moderately large sample of SSW events in both models
and reanalysis data sets can be considered. The calculated
model SSW frequency is compared to the frequency from
the ERA-40 reanalysis for the period 1958–2001. Previous
studies of high-top models, both with and without coupled
stratospheric chemistry [Charlton et al., 2007; Butchart

et al., 2011] have highlighted the wide spread in the simula-
tion of SSW frequency.
[27] Figure 3a shows the difference between the frequency of

SSW events in the high-top and low-top ensembles by comput-
ing the mean decadal frequency of SSW events in each model,
and provides an estimate of the 95% confidence interval for
each frequency estimate. All the high-top models produce
SSWs at a frequency consistent with the estimate from the
ERA-40 climatology. On the other hand, almost all low-top
models produce too few SSWs, with one model failing to pro-
duce any SSW events during the analyzed period. This differ-
ence is highlighted in the high-top and low-top ensemble
averages, with high-topmodels on average producingmore than
double the frequency of SSW events as the low-top models.
[28] It is also interesting to compare the simulations of

SSWs in the two versions of the IPSL model, which differ
only in their horizontal resolution. The medium-resolution
(MR) version of the IPSL model produces SSWs with almost
double the frequency of the low-resolution (LR) version
although note the large standard error on the MR estimate
and the overlap between the confidence interval for the LR
and MR estimates). Studies with idealized models have
pointed to the potential sensitivity of stratospheric dynamical
variability to horizontal resolution [Scott et al., 2004], but to
our knowledge this is the first evidence of that sensitivity in
more comprehensive models. As a point of information, the
horizontal resolution of the LR version is 1.875� � 3.75�
and the MR version is 1.25� � 2.5�. Scott et al. [2004] found
a significant underestimation of Rossby wave propagation and
breaking for dynamical cores at resolutions coarser than T42
(approximately equivalent to a resolution of 2.8� � 2.8�),
which is consistent with the fewer SSWs in the low-resolution
compared to the medium-resolution IPSL model.
[29] Detailed analysis of the monthly climatology of SSW

events (not shown) shows the wide range of behavior of
GCMs in this diagnostic. Although the climatological
distribution of SSW events is of course subject to significant
sampling uncertainty, the results are robust enough to sug-
gest that all models, but particularly low-top models, shift
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Figure 2. Zonal mean annual mean temperature difference between the multimodel average temperature
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the majority of their SSW events toward the end of winter,
and over-estimate the frequency of SSW events during
March.
[30] To confirm that the frequency of major SSW events is

a good indicator of the wintertime daily and interannual
variability in the models, in Figure 3b we plot estimates of
the total and interannual variance of the de-seasonalized
zonal mean zonal wind at 50 hPa and 60�N for the same
models. Although there is not a one-to-one relationship
between SSW frequency and variance, it is clear that models
with a higher frequency of SSW events also tend to have a
larger total and interannual variance. In both measures,
models in the high-top ensemble are closer to the value
derived from the ERA-40 reanalysis.
[31] In summary, low-top models underestimate the

frequency of major SSW events during midwinter and this
is the main reason for the poorer skill of these models
in simulating daily and interannual variability. As men-
tioned earlier, this is likely linked to the cold biases in the
NH winter from 10–30 hPa in the low-top ensemble, in
the sense that the cold bias and the limited number of
SSW events are both likely related to the weak response of

the stratosphere to tropospheric wave driving (see Table
S3). Given the well-known link between SSWs and sea-
sonal variations in tropospheric climate [e.g., Baldwin and
Dunkerton, 2001], it is also possible that tropospheric
seasonal climate variability will be different between the
low-top and high-top ensemble. We begin to explore this
idea in section 5.1.

4.3. Decadal Variability

[32] A significant source of stratospheric decadal variability
over the historical period studied is that due to the large
volcanic eruptions of El Chichón (in 1982) and Mt. Pinatubo
(in 1991) and the relative paucity of eruptions since.
[33] To assess the ability of the current generation models

to reproduce postvolcanic dynamical anomalies in the strato-
sphere, we compare here anomalies of lower stratospheric
(50 hPa) zonal mean geopotential height from the CMIP5
models and ERA-interim. Posteruption geopotential height
anomaly composites are then produced by averaging sea-
sonal geopotential height anomalies after the 1982 El
Chichón and 1991 Mt. Pinatubo eruptions. In the NH, the
two winters following each eruption are averaged, while
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for the SH, since aerosol transport to the SH after El
Chichón was quite weak, only the first spring after the El
Chichón eruption is averaged together with the two springs
following the Pinatubo eruption. Figure 4 shows the poster-
uption geopotential height anomalies for a number of
CMIP5 historical simulation ensemble members (as detailed
in Table 2) and from ERA-interim in SH spring (OND) and
NH winter (DJF), seasons which have been identified as show-
ing maximum posteruption circulation anomalies.
[34] Both high-top and low-top ensemble means show

similar postvolcanic response, with a modest increase in 50
hPa geopotential height over most latitudes. No CMIP5
model simulation from either the low-top or high-top
ensemble reproduces the strong volcanic response in the
NH winter stratosphere, a result which is consistent with
the recent analysis of Driscoll et al. [2012]. In SH spring,
the high-top ensemble mean 50 hPa geopotential height
anomaly has a slightly positive value in the high latitudes,
consistent with the reanalysis, but the large ensemble spread
indicates that the high-top model simulations, as an
ensemble, are not significantly closer to reality than the
low-top model results. The poor performance of both model
ensembles in simulating decadal variability in the stratosphere
(see Figure 1) is strongly tied to this deficiency but may also
be related to the ability of the models to reproduce the smaller
signal due to solar variability which has not been tested.
The impact of the weak decadal variability in both ensembles
on their simulation of past temperature trends is assessed in
section 5.2.

5. The Impact of Reduced Stratospheric
Variability

[35] It is clear from section 4.2 that the low-top CMIP5
model ensemble is deficient in its simulation of stratospheric
variability on daily and interannual time scales. In this final
section, we explore the impact of this deficiency on the

simulation of coupling between the stratosphere and troposphere
by the models and on the simulation of stratospheric trends.
We choose to focus on these two areas, because they are
relevant to many different applications of CMIP5 data
and should be of interest to a wide range of fellow
climate scientists.

5.1. Stratosphere-Troposphere Coupling

[36] We attempt to characterize stratosphere-troposphere
coupling in the models by examining the annular modes.
The annular modes characterize variability of the tropospheric
midlatitude jets and the stratospheric polar vortex [e.g.,
Thompson and Wallace, 2000]. Following Baldwin and
Dunkerton [2001] and Baldwin and Thompson [2009], we
compute the annular mode index separately at each pressure
level to explore the vertical coupling of the atmosphere. We
use the procedure of Gerber et al. [2010], defining the
Northern and Southern Annular Modes (NAM and SAM) as
the first Empirical Orthogonal Functions of daily zonal mean
geopotential height anomalies from each hemisphere. The
height fields are first filtered (by removing a 30 year low-pass
filtered version of the time series) to separate climate trends, so
that the remaining anomalies reflect the natural variations of
the atmosphere.
[37] Figure 5 shows composites of the NAM index based

on extreme events in the stratosphere. Negative NAM events
in the stratosphere are associated with a weak polar vortex,
and closely (though not entirely) correspond to stratospheric
sudden warmings [Charlton and Polvani, 2007]. Figure 5a,
based on ERA-40 and ERA-Interim, is an update of Baldwin
and Dunkerton [2001]; following a weakening of the
stratospheric polar vortex, the NAM in the troposphere tends
to shift toward a negative index, associated with an
equatorward shift of the midlatitude jet stream.
[38] Figures 5b and 5c suggest a difference in the response

of the high- and low-top ensembles to extreme stratospheric
events. The high-top ensemble composite (Figure 5b) is
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quite similar to the reanalyses; the NAM throughout the
atmosphere shifts toward a negative index following an
event at 10 hPa, with a slight lag in the troposphere, and
persists for approximately 60 days in the lower stratosphere
and troposphere. In the low-top ensemble, the initial
response to stratospheric perturbations is similar, but with
a slightly stronger response in the troposphere. The events,
however, fail to persist as long, particularly in the troposphere.
Composites based on extreme positive NAM events, when the
polar vortex becomes very strong, reveal a similar bias in the
low-top ensemble; the magnitude of the tropospheric response
is correct, but short lived (not shown).
[39] Further analysis suggests that the differences in the

models’ tropospheric response is due to a difference in the
temporal variability of the lower stratosphere. Following
Baldwin et al. [2003], the e-folding time scale of the NAM
was computed as a function of height. The time scales of
variability in the troposphere are fairly similar in the
reanalysis and both model ensembles (all about 10–15 days).
In the lower stratosphere, however, time scales were reduced
in the low-top models, peaking at approximately 20 days,
compared to approximate 30 days in the reanalyses and
35 days in the high-top ensemble. Both model ensembles
show a bias in the timing of the seasonal peak, which occurs
around January in the reanalyses, compared to March in the

models. This bias in the timing is consistent with CCMVal2
and CMIP3 models [Gerber et al., 2010]. The persistence of
anomalies in the lower stratosphere appears critical to sus-
taining the tropospheric response.
[40] It is important to point out that extreme NAM

variability is defined relative to the background variability
in each model separately. As the variance of the middle
stratosphere extratropics is smaller in the low-top models than
in the high-top models (not shown), their NAM composites
are based on smaller absolute changes to the geopotential
height field. Nonetheless, the diagnostic highlights potential
links between biases in natural stratospheric variability
and the dynamical coupling between the stratosphere and
troposphere in the low-top models.

5.2. Reproduction of Past Stratospheric Trends

[41] Because the CMIP5 models will be used extensively
to understand and predict future climate, a key test of their
fidelity in the stratosphere is their ability to reproduce past
stratospheric trends. In this section, we test if the missing
stratospheric variability in the low-top models has any
impact on their ability to reproduce past trends in the
lower stratosphere. We focus here on the satellite period
for which coverage is almost globally-complete, and
compare observed remote sensing system microwave
sounding unit (MSU) temperature of the lower stratosphere
(TLS) [Mears and Wentz, 2009] (a layer temperature with
a weighting function maximum located at close to 80 hPa),
with simulated temperatures from CMIP5 models. We
compare with an MSU observational data set, because
stratospheric trends are not robust in reanalyses [Xu and
Powell, 2011], and radiosonde coverage is spatially incomplete.
We focus on the lower stratosphere, because several models
considered do not resolve the region covered by the stratospheric
sounding units. Each historical simulation to 2005 was
concatenated with either the corresponding extended historical
simulation where available, or with the corresponding RCP
4.5 simulation to compare with observations up to 2011 and
to improve the signal-to-noise ratio. In both cases, radiative
forcings are continuous through the simulations and close to
those observed over the past 6 years [Gillett et al., 2012]. A
fixed weighting function with a maximum near 80 hPa [Mears
and Wentz, 2009] was applied to zonal mean monthly mean
data. Each individual simulation was given equal weight in
the analysis, meaning that models with larger ensembles
were given more weight (see Table 2). IPSL-CM5A-LR,
IPSL-CM5A-MR, and INMCM4 were excluded from the
analysis because they did not include volcanic aerosols, and
CNRM-CM5 was excluded because its simulated stratospheric
ozone changeswere underestimated compared to those observed.
[42] Figure 6a shows the generally good agreement

between simulated and observed TLS in both high-top and
low-top simulations. Following Pinatubo in 1992, the
positive temperature anomaly is overestimated in both sets
of simulations. Given that the models tend to underestimate
the 50 hPa geopotential height anomalies associated with
volcanic eruptions (Figure 4), it appears that models may
have some difficulty capturing the structure of the warming
or other feedbacks with the circulation. The overestimation
of the temperature response is larger for the high-top simula-
tions and is explained mainly by an overestimation of the
response to Pinatubo in MRI-CGCM3, even though its
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response to El Chichón is relatively consistent with observa-
tions. MRI-CGCM3 is the only model considered here that
interactively simulated the stratospheric aerosol distribution
and its radiative properties following volcanic eruptions,
unlike the other models in which the aerosol distribution
and properties are prescribed from observations [Driscoll
et al., 2012]. Our results suggest that this model’s stratospheric
aerosol scheme leads to an overestimation of the stratospheric
temperature response to Pinatubo. A further apparent differ-
ence between the observations and simulations is in the first
3 years (1979–1981), in which observed TLS temperatures
are higher than those in either the high-top or low-top ensem-
bles. Overall, agreement between simulations and observations
appears better for the CMIP5 simulations than for the CMIP3
simulations [Cordero and Forster, 2006], with the volcanic re-
sponse less overestimated than in CMIP3, and perhaps also be-
cause of the more realistic ozone changes specified in the

CMIP5 simulations. Agreement with observations also appears
better for the CMIP5 models than for the CCMVal models
[Forster et al., 2011; Austin et al., 2009], perhaps because
the former mostly use an observational data set of stratospheric
ozone changes usually derived from Cionni et al. [2011], rather
than the internally simulated ozone concentration of the
CCMVal simulations. It is important to note, however, that
the observed decreases in ozone concentrations following
major volcanic eruptions are not included in the forcing data
set, and hence the impact of stratospheric aerosol changes
on the lower-stratospheric temperature trends may be
slightly amplified.
[43] Figure 6b compares the pattern of zonal mean

temperature trends in simulations and observations, with
the 2 years following El Chichón and Pinatubo excluded.
Cooling is seen at all latitudes in observations and high-top
and low-top ensemble means. The level of agreement with
observations is generally good, and there is no significant
difference between the level of agreement with observations
of the high-top and low-top simulations. Whereas observed
trends calculated over the 1979–2005 period show little
latitudinal variation [Gillett et al., 2011], in part due to
anomalous warmth over the Antarctic in 2002 [Varotsos,
2002; Allen et al., 2003], the trend calculated over the
1979–2011 period shows enhanced Antarctic cooling,
consistent with the simulations. This is associated with the
years since 2005 all being colder than average over the
Antarctic, with 2011 particularly cold [Seidel et al., 2011].
[44] Overall, we find that the CMIP5 models considered

are able to simulate observed temperature changes in the
lower stratosphere rather well. The CMIP5 models appear
to perform better in this respect than either the CMIP3
models or the CCMVal models, which may relate to the
realistically prescribed stratospheric ozone variations.
Overall, although there are few significant differences
between the temperature trends simulated by the low-top
and high-top models the simulation of stratospheric trends
by the low-top models seems unaffected by their reduced
stratospheric variability.

6. Discussion and Conclusions

[45] In this study, the simulation of stratospheric climate
and variability by two subensembles of the full CMIP5
ensemble, one containing models with a high-top and one
containing models with a low-top, is compared. Away from
the model top, the simulation of mean stratospheric climate
by the two ensembles is similar and better than in the CMIP3
ensemble. However, the low-top ensemble has a poorer
simulation of stratospheric daily and interannual variability
than the high-top ensemble. In the Northern Hemisphere,
this difference is due to a lack of episodic stratospheric
variability in midwinter in the low-top models.
[46] The lack of dynamical variability in the low-top

models has an impact on stratosphere-troposphere coupling,
resulting in relatively short-lived anomalies in the Northern
Annular Mode, which do not persist in either the stratosphere
or troposphere. In this respect, the high-top models more
faithfully reproduce the stratosphere-troposphere coupling
seen in the reanalysis data. Conversely however, the lack of
daily and interannual stratospheric variability in the low-top
models does not seem to affect their ability to reproduce

(a)

(b)

Figure 6. Comparison of simulated and observed lower
stratospheric temperatures. (a) Global mean annual mean lower
stratospheric temperature anomalies from the 1979–2011mean,
based on the remote sensing solutions data set (black), the mean
of the high-topmodels (red), and themean of the low-topmodels
(blue). Global means are calculated over the observed latitudes
82.5�S–82.5�N. Pink and blue shaded bands show the approxi-
mate 5–95% ensemble range. (b) Corresponding zonal mean
temperature trends in �C over the 1979–2011 period. Volcano
years (1982, 1983, 1991, 1992, and 1993) were excluded from
the analysis, and linear trends were fitted by least squares.
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historical trends in lower stratospheric temperature. Both the
high-top and low-top ensembles are able to reproduce global
stratospheric trends with good fidelity.
[47] Of the three time scales of variability examined,

decadal variability is the least well represented by CMIP5
models compared to observations, with little difference
between the high-top and low-top ensembles. Examining
the stratospheric response to volcanic eruptions, a significant
source of forced decadal variability, we find realistic global
mean temperature responses in the models, but a lack of
dynamical response as seen in observations.
[48] Few of the models in CMIP5 place their model top at

10 hPa, thereby severely truncating stratospheric dynamical
behavior, but it is clear from our analysis that making a mod-
eling choice to place the model top below the stratopause still
has the potential to severely limit stratospheric dynamical var-
iability. Simulating realistic stratospheric dynamical variabil-
ity remains a challenge for all climate models, even those with
high-tops. For example, work with the suite of Canadian cli-
mate models has shown that the simulation of stratospheric
dynamical variability is very sensitive to small changes in
the stratospheric mean state and it is therefore very important
to continue work to understand biases in the stratospheric cli-
mate or climate models and seek to improve them [see for
example, Sigmond and Scinocca, 2010]. The single model
studies by Hardiman et al. [2012] and Shaw and Perlwitz
[2010] come to a similar conclusion that the current generation
of low-top and high-top models have a very similar simulation
of stratospheric mean climate and trends but differ in their sim-
ulation of stratospheric variability.
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