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The femtosecond laser electronic excitation and tagging (FLEET) method has been used 

to measure three components of velocity and acceleration for the first time.  A jet of pure N2 

issuing into atmospheric pressure air was probed by the FLEET system.  The femtosecond 

laser was focused down to a point to create a small measurement volume in the flow.  The 

long-lived lifetime of this fluorescence was used to measure the location of the tagged 

particles at different times.  Simultaneous images of the flow were taken from two 

orthogonal views using a mirror assembly and a single intensified CCD camera, allowing 

two components of velocity to be measured in each view. These different velocity 

components were combined to determine three orthogonal velocity components.   The 

differences between subsequent velocity components could be used to measure the 

acceleration.  Velocity accuracy and precision were roughly estimated to be ±4 m/s and ±10 

m/s respectively.  These errors were small compared to the ~100 m/s velocity of the subsonic 

jet studied.   

I. Introduction 

hile a variety of different velocity measurement technologies have been developed and used to study fluid 

mechanics in recent years, these measurements have not been adapted widely to large scale facilities because 

they often require seeding the facilities with particles or (sometimes toxic) gases.   “Unseeded” techniques 

have long been sought for making velocity measurements in both large and small scale wind tunnels.  Some 

techniques that allow measurements in unseeded air or N2 include Filtered Raleigh Scattering (FRS), Interferometric 

Rayleigh Scattering (IRS), RELIEF
1
, ozone tagging velocimetry (OTV)

2
 which requires O2, and APART

3
 which 

requires both O2 and N2 to be present.  Each technique has its advantages and disadvantages involving complexity of 

the setup, optical access requirements and other considerations.  A new technique, known as FLEET, recently 

developed at Princeton University
4,5,6

 is a molecular tagging velocimetry (MTV) technique wherein a femtosecond 

laser dissociates N2 in a flow and multiple images are acquired from the long lived fluorescence associated with 

nitrogen atom recombination back to molecular nitrogen.  The velocity is determined by dividing the measured 

displacement of the captured fluorescence by the time separation between the exposures.  The FLEET technique has 

the following advantageous features compared with other techniques: (1) it excites naturally-present N2 so it can be 

used in N2 or air flows so it does not require additional gas or particle seeding; (2) excitation and detection are both 

at a visible wavelength, so special UV or IR windows are not required; (3) only a single laser and camera are 

required which simplifies setup and operation; (4) the technique has been shown to work over a large range of 

pressures and (5) the technique can easily be extended to measure thousands of samples per second.  The technique 

                                                           
*
Research Scientist, Advanced Sensing and Optical Measurement Branch, MS 493, AIAA Associate Fellow. 

†
Research Scientist, Advanced Sensing and Optical Measurement Branch, MS 493, AIAA Member. 

‡
Graduate Student, Mechanical and Aerospace Engineering, AIAA Member. 

§
Research Scholar, Mechanical and Aerospace Engineering, AIAA Member 

**
Professor Emeritus, Mechanical and Aerospace Engineering, AIAA Fellow. 

W 



 

 

American Institute of Aeronautics and Astronautics 
 

 

2 

is thus applicable to a wide range of wind tunnels and, owing to the long fluorescence lifetime, it can potentially be 

used to acquire precise single-shot velocity measurements from subsonic through hypersonic regimes.   

 FLEET has previously been used to probe along a line, providing velocity profiles.
5,6

  In prior work, a single 

camera and single camera view have been used.  By generating a cross pattern, two velocity components were 

previously measured with FLEET.
5
  In the current work, the laser was focused to a small spot using a short focal 

length lens.  A mirror assembly allowed the resulting fluorescence imaged from two different (orthogonal) 

directions on a single camera.  Several exposures were obtained on the camera to provide raw particle-path data 

from which two sets of two velocity components could be measured.  These two velocity vectors were then 

combined to determine all three velocity components.  Subsequent velocity measurements could then be used to 

determine the acceleration of the tagged fluid.   

II. Experimental Setup  

 The amplified ultrafast laser system consisted of a Mai Tai® Spectra-Physics oscillator and a Coherent Hidra 

amplifier, capable of delivering 100 fs pulses at a wavelength of 800 nm with energies up to 3 mJ, at a repetition rate 

of 10 Hz.  To acquire the velocimetry data in the present experiment, the laser was operated at ~1 mJ/pulse. Lower-

than-maximum laser energy was used to avoid laser-induced breakdown which was audibly detected and which 

decreases the time-delayed FLEET signal. 

The laser beam was transmitted to a second room where the rest of the experiment was located.  A schematic of 

the measurement system is shown in Figure 1.  To generate a small measurement region, a 5-cm focal-length lens 

was used to focus the fs laser light.  The circular shaped measurement volume was observed to be as small as 0.6 

mm diameter (based on observation of the Rayleigh scattering, as shown in the middle panel of Fig. 2).  The 

resulting fluorescence was imaged by a Princeton Instruments PI-MAX:512 (Gen III) gated intensified charge-

coupled device (ICCD). The camera had 19 m x 19 m pixels (with an effective pixel size of 24 m x 24 m) on a 

12.4 mm x 12.4 mm chip.  The camera gate was operated in burst mode so that the intensifier could be pulsed 

several times in a single camera frame readout.  At burst timings of <8 s the measured intensity was attenuated, so 

measurements were obtained with >8 s timing.  The camera gain was set to the maximum of 255.  The camera’s 

HQ photocathode had ~45% quantum efficiency in the red spectral region where the long-lived FLEET signal is 

strongest.
6
   

The observed fluorescence is from the 1st-positive emission from molecular nitrogen (with vibrational features 

in the range of ~550-700 nm). The fluorescence was imaged with an F/1.2 50-mm focal length lens, through a 

mirror system shown in Figure 1.  A pair of orthogonally oriented mirrors placed close to the camera lens (M3 and 

M4) split the camera’s view into two directions as shown.  Two more mirrors (M2 and M5) directed these views 

towards the measurement volume.  These two views were aligned to be at a right angle with respect to each other.  

The N2 jet flow was provided by a ¼” outer diameter nylon tube supplied with N2, which is shown in the top-right 

corner of the figure.  N2 gas was used because it was readily available to provide a flow, FLEET excites N2, pure N2 

provides a higher signal than air and also because there is interest in developing FLEET for NASA facilities that use 

N2 as the test gas, such as the National Transonic Facility (NTF). 
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Figure 1. Schematic of detection setup showing camera, mirrors and setup of laser (shown in red) and the path of collected 

fluorescence (shown in blue with arrows).  M1-M5 are mirrors with M2-M5 attached to a single alignment rail.  L1 is a 5-cm 

focal-length spherical lens.  L2 is an F/1.2 50-mm focal length camera lens.   

III. Results 

Figure 2 shows an example of raw images obtained during the experiment. The left column shows images 

obtained from the left camera view and right column shows the right camera view.  The top row of images shows 

the images acquired of a pattern of square dots (known as a dotcard). The dots were 1.588 mm (1/16”) squares 

located on 3.175 mm (1/8”) centers.  Images were acquired sequentially with the dotcard oriented normal to each of 

the two camera views.  The dotcard was affixed to a rigid panel and was attached to a rotation stage so that it could 

be oriented normal to the camera views and so the angle between the camera views could be measured.  The 

dotcards were illuminated with room lights and a long exposure was used to obtain these averaged images.  These 

were analyzed to determine the magnification of the images, which was about 5.1 pixels/mm.  The second row of 

images was acquired coincident in time with the laser firing using a 2 µsec gate.  Rayleigh scattering from the gas at 

the location of the laser focus shows as the small circular spot in the image.  The tube providing the N2 jet flow was 

illuminated by scattered laser light.  When the camera was delayed further in time, as in the bottom row of images, 

the Rayleigh and scattered laser light was blocked by the intensifier and only the FLEET signal was recorded.  By 

double pulsing the intensifier with two 2 µsec gates started 40 µsec apart, two images of the excited N2 gas were 

obtained.  Two components of velocity were then obtained from each image, left and right.  Since the two camera 

views were orthogonal, the three components of velocity were obtained.  Vertical displacement in both left and right 

images corresponds to the (same) vertical velocity component in the laboratory (resulting in a redundant 

measurement).  However, side-to-side displacement in the two images corresponds to independent measurement of 

two orthogonal velocity components.  Hundreds of such images were obtained to measure the gas velocity exiting 

the tube.   
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Figure 2.  Raw data used for 2-exposure velocity measurement.  Left column shows the left camera view and the right column 

shows the right camera view.  Top row shows images obtained of the dotcard oriented normal to the displayed view.  Middle row 

shows an image acquired coincident with the laser pulse, which simultaneously illuminates the flow tube and generates Rayleigh 

scattering at the focal point of the laser.  Bottom row shows FLEET images containing successive exposures of the same tagged 

gas molecules acquired 40 µsec apart.  Flow is from right to left in the images. 

 

 
Figure 3.  Mean velocity measurements resulting from FLEET images shown in Fig. 2.   Red crosses show ±one standard 

deviation in the measurement. 

   

Displacements of the tagged fluid in the images were computed using MATLAB’s weighted-centroid-finding 

routine regionprops.  Outlier displacements greater than 3-σ were removed.  The displacement, in pixels, was 

divided by the image magnification of 5.1 pixels/mm to determine the displacement in mm.  This was divided by the 

time separation between the exposures, 40 µsec, to determine the gas velocity.  As expected from this subsonic jet 

flow, velocities of tens of meters per second were obtained.  By analyzing approximately 100 single-shot images, 

means and standard deviations were obtained.  Figure 3 shows the resulting mean velocities.  The vectors represent 

the mean velocity vectors as indicated and the red vertical and horizontal bars represent 1-σ of mean velocity 

components.  Note that the jet was somewhat unsteady and consequently the standard deviations contain 

contributions from unsteadiness of the jet as well as random measurement error.  The standard deviation of ~10 m/s 

then provides an upper limit on the measurement precision.  A steadier, more laminar flow could be used in the 

future to minimize flow velocity fluctuations, providing a better indication of the technique’s potential measurement 

precision.  An indication of accuracy can be obtained by comparing the mean z or vertical velocity components.  

The z velocity obtained from both views should be identical.  Instead, they differ by about 4 meters per second, 

which provides a lower limit of the measurement accuracy (measurement accuracy is, at best 4 m/s, at least for the 
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current setup, experimental settings and flowfield).  A better measure of the accuracy of the technique could be 

obtained by comparing the measurement to an accepted velocity measurement method such as a particle-based 

method (laser Doppler velocimetry or particle image velocimetry).   

 

 
Figure 4.   Raw data used for velocity measurements with the jet positioned differently from Fig. 2.  As in Fig. 2, the left 

column shows the left camera view and the right column shows the right camera view.  The top row shows the jet exit 

illuminated by room lights, with a long camera exposure.  The middle row shows FLEET images containing two successive 2 

µsec exposures of the same tagged gas molecules acquired 40 µsec apart.  The bottom row shows five successive 2 µsec 

exposures of the same tagged gas molecules acquired at 30 µsec intervals.   Flow is from bottom right to top left in the images.  

  

 Figure 4 shows images acquired with the jet oriented to give a larger z-component velocity.  Two-exposure and 

five-exposure images were obtained.  Figure 5 shows additional single-shot measurements using the five-exposure 

settings.  Usable single-shot data was obtained on most shots even with the five-exposure images. The final 

exposure was obtained more than 150 µsec after the laser pulse, demonstrating the long-lived fluorescence of the 

FLEET processes.  This long-lived fluorescence makes it possible to measure precise velocities even in relatively 

low speed flows (10’s of meters per second).  Gas could also be tagged upstream of a test article (a wing for 

example) and can be monitored as it passes over the article.   

 

 
Figure 5.  Each row shows a pair of 5 exposure images obtained with a single laser pulse at the same conditions used in Fig. 4.  

These three realizations were obtained in successive laser shots at 10 Hz. 
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Obtaining multiple exposures also allows the acceleration of the tagged fluid to be obtained.  Images such as 

those in the bottom row of Fig. 4 were analyzed to determine the trajectory of the tagged fluid, the sequence of 

resulting velocity vectors and the acceleration of the tagged fluid.   Figure 6 shows the resulting particle path (red 

dots), and velocity and acceleration vectors for one of the camera views.  The gas is observed to continue mostly in a 

straight line, but it is decelerating as it issues into the ambient air. 

 

 
Figure 6.  Particle path (red dots), with measured velocity vectors (left) and acceleration vectors (right) of tagged 

gas obtained for data obtained at the conditions of Fig. 4 (bottom row) and Fig. 5.  

 

While this paper reports a successful demonstration of three component particle path, velocity, and acceleration 

using the FLEET method, some changes could improve the apparatus or the characterization of the apparatus.  An 

improved method of aligning the two viewing angles should be developed.  In the current experiment, the two views 

were aligned approximately to be orthogonal by eye.  Then the dotcard was oriented to minimize perspective 

distortion in the images with the intention of precisely measuring the viewing angles based on the angle of the 

dotcard (measured from the rotation stage which had 1 degree gradations).   Unfortunately, when the camera was re-

focused, the repeatability of the method was determined to be only ±10 degrees.  The mean of these two 

measurements was 91 degrees, negligibly close to 90 degrees (considering the measurement uncertainty), so the two 

views were assumed to be orthogonal for the purposes of this paper and no correction was applied to the resulting 

velocity vectors.  In future measurements, it is recommended that an optical jig be developed to allow the two views 

to be mechanically aligned to be orthogonal.  Furthermore, careful observation of the individual images show that 

the second and subsequent exposures were significantly non-circular, indicating that the flow was somewhat 

turbulent.   A steadier, more laminar flow should be used to better assess the precision of the instrument.  Finally, 

the accuracy of the instrument could be assessed by comparing with an accepted velocimeter.  

The experiment could have been performed using two or more synchronized cameras.  However, the use of a 

single camera reduced setup cost and complexity though it reduces the signal intensity by approximately a factor of 

two. Nonetheless, only one camera was available for the current experiments. 

IV. Conclusions 

This paper reports three-component particle path, velocity and acceleration measurement using FLEET for the 

first time. Measurements were obtained in a subsonic N2 jet.  The method could be further characterized by 

performing measurements in a laminar flow facility and by comparing with an accepted velocity measurement 

method.   Such non-intrusive, unseeded particle path, velocity and acceleration measurements could provide 

quantitative data for comparison with computational fluid dynamics simulations of flows in wind tunnel facilities.  
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