Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles.

Gary A. Ruff and David L. Urban
NASA John H. Glenn Research Center
Cleveland, OH

Nov 7, 2013

29th American Society for Gravitational and Space Research
Orlando, Florida, USA, November 3 – 8, 2013
International Topical Team

- Carlos Fernandez-Pello, UC Berkeley, Berkeley, CA, USA
- James S. T’ien, Case Western Reserve University, Cleveland, OH, USA
- Jose L. Torero, University of Queensland, Brisbane, Australia
- Guillaume Legros, Université Pierre et Marie Curie, Paris, France
- Christian Eigenbrod, University of Bremen (ZARM), Bremen, Germany
- Nickolay Smirnov, Moscow Lomonosov State University, Moscow, Russia
- Osamu Fujita, Hokkaido University, Sapporo, Japan
- Adam J. Cowlard, University of Edinburgh, Edinburgh, UK
- Sebastien Rouvreau, Belisama R&D, Toulouse, France
- Olivier Minster and Balazs Toth, ESA ESTEC, Noordwijk, Netherlands
- Grunde Jomaas, Technical University of Denmark, Kgs. Lyngby, Denmark
GRC Science Team Members

- Paul Ferkul
- Sandra Olson
- John Easton
- Justin Niehaus
- Daniel Dietrich
- Suleyman Gokoglu
Outline

- Overview of the Spacecraft Fire Safety Demonstration Project
- Science and Technology Demonstration Objectives
 - Details of Sample Selection
- Supporting Ground-based Research
Spacecraft Fire Safety Demonstration

Requirements and Goals

♦ Level 1 Requirements
 • The project shall conduct an experiment on an International Space Station resupply vehicle after it leaves the ISS and before it re-enters the Earth’s atmosphere.
 • The experiment performed on this vehicle shall meet a critical need for developing rational spacecraft fire safety strategy on future exploration vehicles.

♦ Project Goals
 • Conduct a spacecraft fire safety experiment on three flights of Orbital Science’s Cygnus vehicle that investigates large-scale flame spread and material flammability limits in long duration low-gravity.
 — Orb-5: February 2015 probable slip to December 2015
 — Orb-6: September 2015 probable slip to June 2016
 — Orb-7: February 2016 probable slip to October 2016
 • Complete the major experiment development work no later than September 30, 2014.

♦ Needs:
 ♦ Quantify the development and growth of a realistic fire for exploration vehicles
 ♦ Determine low-g flammability limits for spacecraft materials
Objectives:

- **Saffire-I**: Assess flame spread of large-scale microgravity fire
- **Saffire-II**: Verify oxygen flammability limits in low gravity
- **Saffire-III**: Similar to Saffire–I at different air flow

Data:

- Flame size, position, and spread rate (video)
- Flame intensity (radiometer)
- Flame stand-off distance (t/c)
- Flame/plume temperature (t/c)
- O$_2$, CO$_2$ concentrations

- Data obtained from the experiment will be used to validate modeling of spacecraft fire response scenarios
- Evaluate NASA’s normal-gravity material flammability screening test for low-gravity conditions.
Experiment Layout

- Sample card (flame spread sample shown)
- Flow Duct
- Fans
- Power Management
- Cameras
- USB Hub
- Signal conditioning card
- Air flow

Dimensions are approximately 53- by 90- by 133-cm
Operations Concept
Saffire-I, II, & III Schedule & Milestones

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTR-1</td>
<td>6/19/13</td>
</tr>
<tr>
<td>FSDP Submit</td>
<td>7/3/13</td>
</tr>
<tr>
<td>ISS Flight Safety Phase I/II Review</td>
<td>8/20/13</td>
</tr>
<tr>
<td>Saffire Simulator to Orbital</td>
<td>11/2013</td>
</tr>
<tr>
<td>PTR-2</td>
<td>12/4/13</td>
</tr>
<tr>
<td>System AI&T Start</td>
<td>12/12/13</td>
</tr>
<tr>
<td>Ground Safety Phase I/II Review</td>
<td>12/12/13</td>
</tr>
<tr>
<td>Verification and Environmental Test Start</td>
<td>3/19/14</td>
</tr>
<tr>
<td>Ground Safety Phase III Review</td>
<td>8/21/14</td>
</tr>
<tr>
<td>ISS Phase III Review</td>
<td>9/24/14</td>
</tr>
<tr>
<td>SAR</td>
<td>10/17/14</td>
</tr>
<tr>
<td>Saffire-I Ship to WFF</td>
<td>10/24/14</td>
</tr>
</tbody>
</table>
Two major stakeholders in sample selection

- Scientific community
 - Address both the “no ignition” and “no flame spread” criteria involved in passing standard material flammability testing
 - Materials can pass NASA-STD-6001 Test 1 because ignition energy is not sufficient to start the flame spread process

- NASA Materials and Processes
 - If a material passes NASA Test 1 on the ground, will it pass the test in microgravity? (i.e. is the ground test the worst case scenario)

The long-term relevance to spacecraft fire safety applications depends on the careful and well-informed selection of the sample materials

- Relevance requires:
 - Scalability
 - Amenable to modeling
Sample Selection Constraints

- **Dimensions and energy release**
 - 1 or 2 flame spread (large) samples (0.5 m x 1.0 m)
 - 9 or 18 material flammability samples (5 cm x 30 cm)
 - Thickness can be a maximum of 10mm
 - Total energy released can be a maximum of 54 grams of fuel (cellulose equivalent)

- **Data Acquisition**
 - Thermocouples (6 total shared by all 9 samples)
 - Radiometer (two sides)
 - Camera (front view)
 - Maximum run time of 6 minutes

- **Flow**
 - Flow rate range is 10-30 cm/s
 - Concurrent or opposed

- **Ignition power and system**

- **Long-term sample storage**
Large-Scale Flame Spread Test

- Upward flame spread test on a fabric sample
 - Solid Inflammability Boundary at Low Speed (SIBAL)
 - Cotton on a fiberglass substrate
 - 75% cotton by weight (18.05 mg/cm²)
 - 0.4 m x 0.94 m

- Saffire-I: 20 cm/s air flow
- Saffire-III: 30 cm/s air flow

Normal gravity test conducted in the VF-13 facility at NASA GRC.
Material Flammability Samples

- NASA-STD-6001 describes the test methods used to qualify materials for use in space vehicles.
- The primary test to assess material flammability is Test 1: Upward Flame Propagation
- Materials “pass” this test if the flame self-extinguishes before it propagates 15 cm
 - Maximum oxygen concentration (MOC) is defined as the highest O_2 at which material passes Test 1

![Test 1 Apparatus](image)
Low-g Maximum Oxygen Concentration

- Flammability limits determined by this test are strongly influenced by natural convection
 - Normal gravity flames induce a natural convective flow that transports oxygen to the flame but also removes heat
 - Forced convection in low-g transports oxygen to the flame but rate of heat removal is reduced

Sample Selection Goals

- **Build data sets on scalability of low-g fires**
 - Materials that have been tested in low-g at different length scales

- **Amenable to modeling**
 - Large, vehicle scale fire modeling
 - Impact on vehicle
 - Real-time modeling of fire response
 - Details of low-g flame spread

- **Conclusive low-g flammability limit (Maximum Oxygen Concentration) data**
 - Flammability limit sample materials must cross the flammability limit in 21% O₂
 - Requires approaches to alter flammability including: material thickness, heat loss (metal backing/matrix), radiative feedback (surface variation (grooves), inert (non-flammable) coatings

Burning and Suppression of Solids (BASS)

- **2cm and 1cm Flat Samples**
 - SIBAL - cotton-fiberglass fabric
 - Nomex - flame resistant material related to nylon
 - Ultem - thermoplastic resins used in medical and chemical instrumentation

Three-dimensional, time dependent upward flame spread in buoyant flows
Candidate Samples

- Nomex (HT90-40, Combo)
- Mylar
- Ultem
- SIBAL cloth
 - Solid Inflammability Boundary at Low Speed (SIBAL)
 - Cotton on a fiberglass substrate
 - 75% cotton by weight (18.05 mg/cm²)
- Silicone (2-3 thicknesses, concurrent/opposed spread)
- PMMA
 - Straight, tapered, or structured
- Cellulose (with backing/metal matrix)
- Fire-resistant coating
- Wires

PMMA-samples shaped at University of Bremen with grooves parallel or perpendicular to the flame propagation direction
MOC and ULOI of Potential Saffire Samples

<table>
<thead>
<tr>
<th>Material Description</th>
<th>MOC</th>
<th>ULOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composites and Laminates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy/Glass laminate NEMA G-11, H-23842</td>
<td>23</td>
<td>23.6</td>
</tr>
<tr>
<td>Rigid Plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1700 polysulfone</td>
<td>25</td>
<td>27.5</td>
</tr>
<tr>
<td>Zytel 42 from 93-27463</td>
<td>24.1</td>
<td>24.5</td>
</tr>
<tr>
<td>Fabrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomex HT 90-40, L/N 7254</td>
<td>24</td>
<td>24.8</td>
</tr>
<tr>
<td>Nylon Tricot ST11N791-01</td>
<td>23</td>
<td>24.3</td>
</tr>
<tr>
<td>TCU Bottom, P/N SKD38114488-01</td>
<td>21</td>
<td>22.8</td>
</tr>
<tr>
<td>Nomex Webbing P/N 9981</td>
<td>22</td>
<td>23.4</td>
</tr>
<tr>
<td>Foams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-200 Minicel Foam</td>
<td>20</td>
<td>21.7</td>
</tr>
<tr>
<td>TA-301 Polyimide foam</td>
<td>25</td>
<td>27.3</td>
</tr>
<tr>
<td>Films</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultem 1000 Film, P/N DLI1648</td>
<td>21</td>
<td>22.1</td>
</tr>
<tr>
<td>PEEK Victrex Film, 10-mil</td>
<td>21.1</td>
<td>22</td>
</tr>
<tr>
<td>Kapton HN Film</td>
<td>26</td>
<td>27.2</td>
</tr>
<tr>
<td>SSP-M823 Silicone membrane, 0.004"</td>
<td>17</td>
<td>17.5</td>
</tr>
<tr>
<td>SSP-M823 Silicone membrane, 0.010"</td>
<td>18</td>
<td>19.7</td>
</tr>
<tr>
<td>SSP-M823 Silicone membrane, 0.014"</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>SSP-M823 Silicone membrane, 0.024"</td>
<td>20</td>
<td>22.8</td>
</tr>
<tr>
<td>SSP-M823 Silicone membrane, 0.040"</td>
<td>22</td>
<td>23.4</td>
</tr>
</tbody>
</table>
Selected Samples

- Nomex (HT90-40) with PMMA promoter (1 sample)
- SIBAL cloth (2 samples at the same flow rates as Saffire 1 & 3)
- Silicone (3 thicknesses for concurrent spread and 1 thickness for opposed spread)
- PMMA 10 mm thick
 - Flat sample
 - Structured sample

Top view of PMMA sample - edges have different radii
PMMA / Nomex

- Example with 4 inch SIBAL cloth promoter
- 8 inch Nomex
Downward Silicone

- Average ~ 5 minutes to burn 30 cm
- 0.014” thick Silicone will burn downward but not upward

.01” down burn
Flight 2 Sample Selection

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Material</th>
<th>Sample Thickness</th>
<th>Flow (cm/s)</th>
<th>Igniter Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saffire-2-S1</td>
<td>SIBAL</td>
<td>N/A</td>
<td>20</td>
<td>Bottom</td>
</tr>
<tr>
<td>Saffire-2-S2</td>
<td>Silicone down</td>
<td>0.36 mm (0.014") Silicone</td>
<td>20</td>
<td>Top</td>
</tr>
<tr>
<td>Saffire-2-S3</td>
<td>SIBAL</td>
<td>N/A</td>
<td>30</td>
<td>Bottom</td>
</tr>
<tr>
<td>Saffire-2-S4</td>
<td>Flam limit 1 Silicone</td>
<td>0.25 mm (0.010") Silicone</td>
<td>20</td>
<td>Bottom</td>
</tr>
<tr>
<td>Saffire-2-S5</td>
<td>Flam limit 2 Silicone</td>
<td>0.36 mm (0.014") Silicone</td>
<td>20</td>
<td>Bottom</td>
</tr>
<tr>
<td>Saffire-2-S6</td>
<td>Flam limit 3 Silicone</td>
<td>0.61 mm (0.024") Silicone</td>
<td>20</td>
<td>Bottom</td>
</tr>
<tr>
<td>Saffire-2-S7</td>
<td>PMMA 2 sided burning</td>
<td>10 mm with tapered edge for ignition</td>
<td>20</td>
<td>Bottom</td>
</tr>
<tr>
<td>Saffire-2-S8</td>
<td>Transition 1: PMMA to NOMEX</td>
<td>N/A</td>
<td>20</td>
<td>Bottom</td>
</tr>
<tr>
<td>Saffire-2-S9</td>
<td>PMMA 2 sided burning</td>
<td>10 mm with tapered edge for ignition</td>
<td>30</td>
<td>Bottom</td>
</tr>
</tbody>
</table>
The outcomes of this experiment are multiplied by tasks performed by contributing team members (and the funding from other organizations)

- **Sample Selection**
 - Structured materials:
 - Nickolay Smirnov, *Moscow Lomonosov State University*, Moscow, Russia
 - Christian Eigenbrod, *University of Bremen (ZARM)*, Bremen, Germany
 - Wires: Osamu Fujita, *Hokkaido University*, Sapporo, Japan
 - Coated materials: James S. T’ien, *Case Western Reserve University*, Cleveland, OH, USA
 - Nomex: Carlos Fernandez-Pello, *UC Berkeley*, Berkeley, CA, USA

Guanylurea Phosphate (GUP) (g) in 25 mL water (samples are 2 cm x 18 cm)

The outcomes of this experiment are multiplied by tasks performed by contributing team members (and the funding from other organizations)

- **Modeling**
 - Low-g Fire Dynamics
 - James S. T’ien, Case Western Reserve University, Cleveland, OH, USA
 - Real-time fire response:
 - Jose L. Torero, University of Queensland, Brisbane, Australia
 - Adam J. Cowlard, University of Edinburgh, Edinburgh, UK
 - Vehicle-scale fire scenario modeling
 - Sebastien Rouvreau, Belisama R&D, Toulouse, France
 - Dan Dietrich, NASA GRC, Cleveland, OH
 - Suleyman Gokoglu, NASA GRC, Cleveland, OH

Three-dimensional, time dependent upward flame spread in buoyant flows

Schematic for a concurrent spread over the flat surface of a solid combustible

Fluent model calculation of velocity magnitude in ATV configuration after 1 minute of heat release.
The outcomes of this experiment are multiplied by tasks performed by contributing team members (and the funding from other organizations)

- **Diagnostics**
 - Fuel Characteristics: Adam J. Cowlard, *University of Edinburgh, Edinburgh, UK*
 - *Flame Propagation Apparatus: Heat release rate of materials to support detailed modeling of fire response*
 - Soot Volume Fraction in Low-g: Guillaume Legros, *Université Pierre et Marie Curie, Paris, France*
 - *Laser extinction technique to measure soot volume fraction in large-scale normal- and low-g flames*
Summary

• The Saffire experiment (Spacecraft Fire Safety Demonstration Project) is in development to address knowledge gaps in low-g material flammability.

• Sample were selected to meet stakeholder requirements and to ensure the long-term impact of the project on the spacecraft fire safety protocol.

• Samples will address both flame spread and material flammability understanding.

• Recent studies and analyses have confirmed the fire safety needs for long-term exploration missions. Spacecraft fire safety technologies have been identified as enabling for some exploration missions, enhancing for others.
 • The Saffire experiments address several of these but lack fire detection, suppression, and post-fire cleanup.

• An end-to-end demonstration of a fire detection, suppression, and clean-up scenario would verify hardware and the ability to properly size fire response hardware.