Dynamic Human-Centered Suit Design: A Computational and Experimental Method

Conor R. Cullinane

Massachusetts Institute of Technology

Harvard Medical School

Lyndon B. Johnson Space Center – NASA

Dr. Leia Stirling, MIT
Richard Rhodes, NASA
Dr. Dava Newman, MIT

Man Vehicle Lab, MIT

Advanced Space Suit Development Lab, NASA
Background

Why does NASA fund PSS mobility/agility research?
Objectives of Internship

- Research & compare possible software packages for an analysis pipeline
 - Musculoskeletal Modeling (OpenSim, AnyBody, LifeMOD, SANTOS)
 - CAD (AutoCAD, SolidWorks, ProE)
 - FEM (ANSYS, Creo2, Abaqus)
- Obtain current CAD representations of the hip joint assembly
- Develop the CAD representation to include high fidelity information
 - Obtain and input complete component characterizations
 - material characteristics, composition, weight
 - Determine and input bearing characteristics - Force-displacement (time variant curves)
 - Breakaway Force, steady state dynamics, and transitional dynamics
- Force plate gait test, fully suited, to obtain normal and shear force plate inputs for a musculoskeletal crewmember model
Methods/Procedures or Skills

- Geometry Details - Bearing Experiment
 - Isolate Individual Bearing
 - Dynamometer: Constant V or F
 - Understand Response Profiles
 - Repeat for Each Bearing, 1-Side

- Crewmember Details – Mobility/Agility Experiment
 - Normal Gait: Suited vs. Uns suited
 - GRF & ROM: 6DOF Force Plates & Vicon Motion Capture Systems
 - Planetary Surface Motion: Kneel & Recover, Side Step, Walking Backwards
Use .stl Stereolithography as FEA surface representations