Dynamic Human-Centered Suit Design: A Computational and Experimental Method

Conor R. Cullinane

Massachusetts Institute of Technology

Harvard Medical School

Lyndon B. Johnson Space Center – NASA

Dr. Leia Stirling, MIT
Richard Rhodes, NASA
Dr. Dava Newman, MIT

Man Vehicle Lab, MIT
Advanced Space Suit Development Lab, NASA
About Me

Clarkson University

Wallace H. Coulter School of Engineering

MASSACHUSETTS GENERAL HOSPITAL

NASA

BROOKHAVEN NATIONAL LABORATORY

Dynamic Human-Centered Suit Design Using Computational and Experimental Methods
Background

Why does NASA fund PSS mobility/agility research?
Objectives of Internship

- Research & compare possible software packages for an analysis pipeline
 - Musculoskeletal Modeling (OpenSim, AnyBody, LifeMOD, SANTOS)
 - CAD (AutoCAD, SolidWorks, ProE)
 - FEM (ANSYS, Creo2, Abaqus)
- Obtain current CAD representations of the hip joint assembly
- Develop the CAD representation to include high fidelity information
 - Obtain and input complete component characterizations
 - Material characteristics, composition, weight
 - Determine and input bearing characteristics - Force-displacement (time variant curves)
 - Breakaway Force, steady state dynamics, and transitional dynamics
- Force plate gait test, fully suited, to obtain normal and shear force plate inputs for a musculoskeletal crewmember model
Methods/Procedures or Skills

- Geometry Details - Bearing Experiment
 - Isolate Individual Bearing
 - Dynamometer: Constant V or F
 - Understand Response Profiles
 - Repeat for Each Bearing, 1-Side

- Crewmember Details – Mobility/Agility Experiment
 - Normal Gait: Suited vs. Unsuited
 - GRF & ROM: 6DOF Force Plates & Vicon Motion Capture Systems
 - Planetary Surface Motion: Kneel & Recover, Side Step, Walking Backwards
Surface Scans

Use .stl Stereolithography as FEA surface representations