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ABSTRACT

We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden
changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full time-
dependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a
simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionization/thermal fronts that
propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly
from the illuminated face of the cloud to the ionization front (IF). IF/thermal fronts are often supersonic, and in slabs
initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important
dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that
the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover,
even the time average of ionization and temperature is different from any steady-state case. This time average is
characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the
radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions,
particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in
physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for
thermal fronts/IFs and equilibration times.

Key words: galaxies: nuclei – galaxies: Seyfert – H ii regions – methods: numerical – planetary nebulae: general –
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1. INTRODUCTION

The general problem of photoionization modeling has broad
importance in astrophysics. This topic comprises any situation
in which energy in the form of electromagnetic radiation is
provided to a gaseous object. The radiation is then re-processed
by the gas, which becomes ionized and heated, and the excess
energy is re-emitted into longer wavelength spectral lines and
diffuse continuum.

Traditionally, modeling of astronomical photoionized plas-
mas is done from the condition of steady-state statistical
equilibrium, which means that gas ionization is balanced by
recombination, atomic excitations are balanced by spontaneous
and induced de-excitations, and electron heating is balanced
by cooling. These conditions result in coupled ionization/
excitation balance equations (one for each atom and ion in
the plasma) and a general thermal balance equation. In addi-
tion, the models must determine the local radiation field, in-
cluding direct and diffuse components, which is also coupled
to the conditions above through the radiative transfer equation
(Osterbrock & Ferland 2006). There has been much progress in
steady-state photoionization modeling in the last few decades
through increasingly detailed treatment of the microphysics,
improvements in the quality and completeness of atomic and
molecular data, and growth of computational power. At present
there are several sophisticated photoionization modeling codes
in use, e.g., XSTAR (Kallman & Bautista 2001), CLOUDY
(Ferland et al. 1998), TLUSTY (Hubeny & Lanz 1995), and
MOCASSIN (Ercolano et al. 2003).

3 Current address: Harvard-Smithsonian Center for Astrophysics, 60 Garden
Street, Cambridge, MA 02138, USA.

The steady-state assumption is appropriate whenever the
equilibration timescales for excitation, ionization, and thermal
balance are much shorter than variability timescales in either
the ionizing radiation continuum or the geometrical structure
of the plasma. However, if the ionizing radiation changes at a
rate slower than the equilibrium timescales, or if other condi-
tions change on timescales shorter than those of microscopic
processes, then it is necessary to take into account the full
temporal dependence of the state equations. There are many
astrophysical systems in which time-dependent photoioniza-
tion (TDP) modeling has been discussed. Some examples in-
clude the interstellar medium (Lyu & Bruhweiler 1996; Joulain
et al. 1998), H ii regions (Rodriguez-Gaspar & Tenorio-Tagle
1998; Richling & Yorke 2000), planetary nebulae (Harrington &
Marionni 1976; Harrington 1977; Schmidt-Voigt & Koeppen
1987; Frank & Mellema 1994; Marten & Szczerba 1997), novae
and supernovae (Hauschildt et al. 1992; Beck et al. 1995; Kozma
& Fransson 1998; Dessart & Hillier 2008), reionization of the
intergalactic medium (Ikeuchi & Ostriker 1986; Shapiro & Kang
1987; Shapiro et al. 1994; Ferrara & Giallongo 1996; Giroux &
Shapiro 1996; Ricotti et al. 2001), ionization of the solar chro-
mosphere (Carlsson & Stein 2002), gamma ray bursts (Perna
& Loeb 1998; Böttcher et al. 1999), accretion disks (Woods
et al. 1996), active galactic nuclei (Nicastro et al. 1997, 1999;
Krongold et al. 2007), evolution of the early universe (Seager
et al. 2011), and quasar FeLoBALs (Bautista & Dunn 2010).
However, there is as yet no general tool to model non-
equilibrium photoionized plasmas.

In this paper we lay out the basic approach to solve the
TDP problem and present an overview of the behavior of non-
equilibrium, pure hydrogen photoionized plasmas. We illustrate
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the behavior in various cases of general interest in astrophysics.
This is a first step toward the development of a general purpose
TDP modeling code.

While the treatment of pure hydrogen plasmas does not in-
clude all the complexity of chemically enriched nebulae it is
interesting to study this case in detail. First, the treatment of
time-dependent effects, while expected to be present in vari-
ous scenarios, implies introducing a number of new parameters
and complexities for nebular modeling. Thus, it is important
to introduce time-dependent effects progressively in order to
understand the physics in detail and being able to disentan-
gle time-dependent effects from already known variables like
optical depth, adopted spectral energy distributions, chemical
effects, etc. Thus, an extensive study of optically thin, pure hy-
drogen nebulae, however qualitative, is a natural and necessary
first step in toward time-dependent modeling. Another motiva-
tion for this study is the ongoing Z-pinch experiments, like those
at the University of Nevada (e.g., Mancini 2011), which seek to
test the accuracy of photoionization modeling codes on single
composition plasmas, for example pure hydrogen or pure neon,
or particular mixtures of two gases. However, these experiments
are intrinsically time-dependent.

2. FUNDAMENTAL EQUATIONS

2.1. Ionization Balance

As a first approach to an otherwise cumbersome problem, we
will start by considering a gas composed entirely of hydrogen.
Additionally, we approximate the system to only two energy
levels, i.e., one to represent the ground state and another to
represent the continuum. This means that no bound excited states
are included, and only ionization and recombination processes
are considered. Under these assumptions, the population n1 of
the ground state can be described as

dn1(x, t)

dt
= −n1(x, t) [γ (x, t) + neαc(T )] + n2(x, t)neαr (T ),

(1)
where ni is the population of level i and ne is the electron density.
γ is the photoionization rate, which is given by

γ (x, t) =
∫ ∞

0
σεJε(x, t)

dε

ε
, (2)

where σε is the photoionization cross section and Jε(x, t) is the
mean intensity of the radiation field. αc and αr are the collisional
ionization and recombination rate coefficients, respectively. For
the collisional ionization rate, we will adopt the expression given
in Cen (1992):

αc(T ) = 5.83 × 10−11T 1/2
(
1 + T

1/2
5

)−1
e−157809.1/T (3)

and for the recombination rate we will use the fitting formula
given by Badnell (2006),

αr (T ) = 8.32 × 10−11[
√

T/2.97(1 +
√

T/2.97)1−0.75

× (1 −
√

T/7 × 105)1+0.75]−1, (4)

where T is the temperature in Kelvin, T5 is in units of 105 K, and
αr and αc are both in cm3 s−1. Note that we only consider the so
called ‘Case A’ recombination case, which is consistent with the
assumption of optically thing nebulae. Other scenarios, such as
Case B recombination of hydrogen, will be treated elsewhere.

In this simplified model there is one free electron per bare
proton, i.e., n2 = ne. Furthermore, given that the hydrogen
density, n = n1 + n2, is conserved Equation (1) can be written
in terms of n1 as

dn1(x, t)

dt
= n2

1(x, t) [αr (T ) + αc(T )] − n1(x, t){γ (x, t)

+ n [2αr (T ) + αc(T )]} + n2αr (T ) (5)

2.2. Energy Equation

The temperature of the gas is found by solving the energy
equation. The net heat of the system is given by

dQ

dt
= Λ(heat) − Γ(cool), (6)

where Q is the particle kinetic energy and the terms on the
right-hand side of the equation are the heating and cooling rates.
Here, we consider heating by photoionization and cooling by
recombination and collisional ionization.

By assuming rapid energy equipartition among atoms, pro-
tons, and electrons, one can write the particle kinetic energy as
Q = (3/2)ntkT , where nt = n + ne = 2n − n1 is the total
number density, k is the Boltzmann constant, and T is the gas
temperature. Then, if the number density, n, is constant one finds

dT

dt
= 2

3(2n − n1)k

[
Λ(heat) − Γ(cool) +

3

2
kT

dn1

dt

]
. (7)

The last term on the right-hand side of this equation corresponds
to changes in the kinetic energy associated with temporal
changes in the ionization of the plasma. This term explicitly
couples the ionization and thermal balance equations, but it is
zero under steady-state conditions. The photoionization heating
is

Λ(pho) =
∫ ∞

0
σεJ (x, t)εn1(x, t)(ε − εth)

dε

ε
(8)

and can be written as

Λ(pho) = n1(x, t)γ (x, t) ¯〈ε〉 (9)

where

¯〈ε〉 =
∫ ∞
εth

Jε(x, t)σε(ε − εth)dε/ε∫ ∞
εth

Jε(x, t)σεdε/ε
(10)

is the mean kinetic energy of free electrons weighted by the pho-
toionization cross section, and εth = 13.6 eV is the threshold
energy for hydrogen. The recombination and collisional ioniza-
tion cooling rates are given by

Γ(rec) = nen2(x, t)αr (T )gkT (11)

and
Γ(col) = nen1(x, t)αc(T )εth. (12)

In Equation (11) g is a constant factor, typically about 0.6, that
depends on the spectral energy distribution of the radiation field.

Then, the thermal balance equation can be written as

dT (x, t)

dt
= 2

3(2n − n1)k

[
n1(x, t)γ (x, t) ¯〈ε〉 − kT n2

eαr (T )

−n1(x, t)neαc(T )εth +
3

2
kT

dn1

dt

]
. (13)
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Figure 1. Time-dependent simulation for a slab with constant density of n = 104 cm−3 and initial flux of Fx = 7.95 erg cm−2 s−1. At t = 0 s the flux is increased
by a factor of three. The upper and lower panels show the neutral hydrogen density and the gas temperature along the position within the slab, respectively. In
both cases, each curve corresponds to the profile at a different moment in time. The initial condition is plotted in red, and the final state of the system is plotted in
green.

(A color version of this figure is available in the online journal.)

This equation has no analytic solution, even in the steady state
case dT /dt = 0 due to the nonlinear dependence of αr and αc

on T.
In general, Equations (5) and (13) need to be solved simul-

taneously. Moreover, they both depend on the radiation field,
which needs to be known at each position and instant in time.
Thus, one also needs to solve a coupled equation for radiation
transfer.

2.3. Ionization Parameter and Radiative Transfer

For the sake of clarity, it is assumed that the spectral energy
distribution of the source remains constant. Then, as shown by
Tarter et al. (1969), the state of the gas is determined by a single
parameter known as the ionization parameter

ξ = L

nR2
≈ 4πFx〈ε〉, (14)

where 〈ε〉 is the mean photon energy and R is the distance from
the source, L is the luminosity (in energy units) of the ionizing
source, and Fx is the flux of ionizing radiation. In practice L
is integrated from 1 Ry, the ionization threshold for hydrogen,
to 1000 Ry, beyond which the radiation is expected to be very

small. L and Fx are related through

Fx = 1

4πR2

∫ ∞

1Ry

Lν

hν
dν.

This definition for the ionization parameter is related to various
other customary ionization parameter definitions, i.e., UH =
Fx/n (Davidson & Netzer 1979); Σ = Fν(νL)/(2hcn), where
Fν(νL) is incident (energy) flux at 1 Ry; and Ξ = L/(4R2cnkT )
(Krolik et al. 1981).

The radiation transfer equation describes the interaction of
the radiation from the source and the material in the gas. In
plane-parallel geometry, the time-dependent radiative transfer
equation can be written as

1

c

∂Iε(x, μ, t)

∂t
+ μ

∂Iε(x, μ, t)

∂x
= ηε(x, t) − χε(x, t)Iε(x, μ, t),

(15)
where Iε(x, μ, t) is the intensity of the radiation field, μ is the
cosine of the angle with respect to the normal, and ηε(x, t)
and χε(x, t) are the total emissivity and opacity, respectively.
The solution of this equation is computationally challenging, as
discussed extensively in the literature. For the present qualitative
TDP study we simplify this equation by adopting a one-stream
approximation, in which only the direction along the normal is
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Figure 2. Ionization (solid line) and recombination (dotted line) rates vs. depth inside the slab with log ξ = 0 after a sudden increase of the ionizing flux by a factor
of three. The rates are plotted at t = 0 (initial steady-state conditions), t = 3.4 × 108 s (when the slab has reached equilibrium again), and two instants in between.

(A color version of this figure is available in the online journal.)

considered (i.e., μ = 1), and then Jε = (1/2)
∫ 1
−1 Iεdμ ≈ Iε.

Furthermore, by neglecting any local emissivity within the gas
as well as photon scatterings, the radiative transfer equation can
now be written as

1

c

∂Jε(x, t)

∂t
+

∂Jε(x, t)

∂x
= −n1(x, t)σεJε(x, t). (16)

2.4. Characteristic Times

The response of a plasma to variations in an ionizing radiation
source is governed by three timescales: the ionization equilibra-
tion timescale, the temperature equilibration timescale, and the
propagation timescale.

In terms of the ionization of the plasma we have the photoion-
ization time

tpi = n

n1γ
, (17)

the recombination time

trec = n

n2neαr

, (18)

and the collisional ionization time

tcol = n

n1neαc

. (19)

Note that these definitions of ionization and recombination
times are different from more conventional definitions in that
we include the factors n/n1 and n/n2. For example, a typical
definition of recombination time is trec = 1/(neαr ), which is
appropriate for the steady-state condition in the fully ionized
region where n/n2 ≈ 1. Our present definitions are generally
correct for nebulae where the ionization of the plasma may
change with time.

The ionization equilibration time, τion, can be defined as

1

n

(
n1 − nE

1

)
τion

= − 1

tion
+

1

trec
, (20)

where nE
1 is the equilibrium neutral hydrogen density after the

change in radiation field and tion is defined as the ionization
time, tion = tpitcol/(tpi + tcol). Thus,

τion = nE
1 − n1

n

tiontrec

trec − tion
. (21)

In terms of the temperature behavior, it is useful to define the
temperature equilibration time, τT , as

− 3k(T − T E)

2τT

= d

dt

(
3

2
kT

)
, (22)
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Figure 3. Heating (solid line) and cooling (dotted line) rates vs. depth inside the slab with log ξ = 0 after a sudden increase of the ionizing flux by a factor of three.
The rates are plotted at t = 0 (initial steady-state conditions), t = 3.4 × 108 s (when the slab has reached equilibrium again), and two instants in between.

(A color version of this figure is available in the online journal.)

where TE is the equilibrium temperature after the change in
radiation field. For constant n and n1, τT is the ratio of the
excess of energy density to the net cooling rate Λ − Γ.

The ionization and temperature timescales are intrinsically
related through various rate coefficients involved. Nonetheless,
the former is generally much longer than the latter, as illustrated
in the next section.

The equilibration timescales defined above refer to changes
in local conditions under variations in the local radiative field.
However, such changes are not simultaneous across the cloud.
Instead, variations in the local radiation field at any depth inside
the cloud are delayed with respect to the illuminated face of the
cloud by the radiation propagation time

τpro =
∫ x

0

n1(r)

F (r)
dr ≈ x〈n1〉

Fx

= NH

Fx

, (23)

where NH is the neutral hydrogen column density; see also
Schwarz et al. (1972). The propagation time is the characteristic
time it takes for the ionization front (IF) to move under the
assumption that there is one ionization event per incident photon.
The above equation shows that variations in the radiation field
propagate quickly and at nearly constant rate through the ionized
region, but the propagation time increases steeply across the IF,
where n1 increases. Thus, large departures from equilibrium
conditions should be expected across the IF under variations
of the radiation field. Across the IF too the equilibration times

reach maximum values. Thus, the IF expected to exhibit the
largest departures from equilibrium conditions after changes in
the ionizing radiation field.

3. NUMERICAL APPROACH

The solution of the TDP problem is obtained by solving the
three coupled equations (5), (13), and (16) simultaneously. To
do so, we divide space, time, and radiation energy coordinates
in finite elements. Thus, we express derivatives of a physical
quantity yi,j,k at the ith time step and jth spatial step as

dyi,j

dt
= yi+1,j − yi,j

Δt i
,
dyi,j

dx
= yi,j+1 − yi,j

Δxj
, (24)

with Δt i,j = t i+1,j − t i,j and Δxj = xi,j+1 − xi,j . Given the
large temporal and spatial scales typically involved in these
calculations, and due to the stiff nature of the differential
equations, we find that the use of the explicit method leads to
unstable solutions. Instead, we use the implicit method, in which
the solution of a given equation involves both the current and a
later state of the system. The ionization balance equation (5) is
then expressed as:

(
n1

i+1,j
)2[Δt i

(
αi+1,j

r + αi+1,j
c

)] − n
i+1,j

1

[
1 + Δt i

(
2nαi+1,j

r

+ nαi+1,j
c + γ i+1,j

)]
+

[
n

i,j

1 + Δt in2αi+1,j
r

] = 0, (25)
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Figure 4. As in Figure 2, but for the sudden drop in the ionizing flux by a factor of three.

(A color version of this figure is available in the online journal.)

where α
i+1,j
r = αr (T i+1,j ), α

i+1,j
c = αc(T i+1,j ), and γ i+1,j =

γ (x, t i+1,j ). Thus, the population n1 at the (i + 1)th time
step is given by the roots of the quadratic equation above,
provided that the temperature T i+1,j is known. One of these
solutions is negative, thus non-physical, which leaves only one
possible solution. To find the temperature we write the energy
equation (13) as

T i+1,j

[
1 +

2α
i+1,j
r (ni,j

2 )2

3(ni+1,j

1 + 2n
i,j

2 )
Δt i − n

i+1,j

1 − n
i,j

1

n
i+1,j

1 + 2n
i,j

2

]
− T i,j

− 2Δt i

3(ni+1,j

1 + 2n
i,j

2 )k

[
n

i+1,j

1 γ i+1,j ¯〈ε〉 − n
i,j

2 n
i+1,j

1 αi+1,j
c εth

] = 0.

(26)

The solution to this equation is found numerically by the
secant method. Then n

i+1,j

1 is found from Equation (25) for
every given temperature, T i+1,j . These solutions depend on the
photoionization rate γ i+1,j and determined through the radiative
transfer equation (16), which in finite differences form becomes

J i+1,j,k = J i,j−1,k

(
cΔt i

2Δxj

)
+ J i,j,k

(
1 − cΔt in

i,j

1 σ k
)

− J i,j+1,k

(
cΔt i

2Δxj

)
. (27)

This equation needs to be solved for every kth energy interval.

Our method starts by finding the solution at t = 0, which is
assumed to be the steady-state solution. At x = 0 the boundary
condition is imposed: J i,0,k = J i,k

inc , which is the radiation field
incident on the illuminated face of the slab. J i,k

inc is known at all
times i and for every kth energy interval.

We use logarithmically spaced grids for time, space, and
energy. For example, for a slab of thickness Δx ∼ 1018 cm
we use 103 spatial bins and a time integration over 104 steps up
to t = 1014 s, which is long enough for the system to return to
equilibrium for all cases considered here. The resolution used
for both the spatial and temporal grids is appropriate to resolve
the physical phenomena relevant to this problem. We use 100
energy bins in the 0.1–2 × 105 eV range. The spectral energy
distribution of the ionizing radiation field is assumed to be a
power law with photon index Γ = 2, and a high energy cut-off
at 200 keV.

For the present work, we investigate cases where the hydrogen
density is kept constant at n = 104 cm−3. Further, the intensity
of the radiation field from the source is changed using a step
function (i.e., instantaneous change). The change in the flux is
specified in terms of the original flux of the source, using the
ratio:

fx = F new
x /Fx, (28)

where F new
x is the new radiation flux after the change.
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Figure 5. As in Figure 3, but for a sudden drop in the ionizing flux by a factor of three.

(A color version of this figure is available in the online journal.)

4. RESULTS

4.1. Step Flux Function on a Constant Density Slab

In this section we present simulations of photoionized slabs
with constant hydrogen density, n = 104 cm−3, subjected to a
sudden change in the ionizing radiation. It is also assumed that
the slabs are in steady-state equilibrium at t = 0.

Figure 1 shows the ionization and temperature time evo-
lutions in hydrogen clouds with two different values of ξ .
The figure shows that under steady-state conditions the neutral
hydrogen density is minimum at the illuminated side of the slab,
where the temperature is maximum. The ionization and temper-
ature remain relatively constant through the cloud up to a point
where most ionizing photons have been absorbed. Then, an IF
develops (at 7–9 × 1016 cm) where the ionization and tempera-
ture of the plasma drop sharply. Models for different values of ξ
are very similar to each other, but the size of the ionized region
scales up with ξ .

From the state of equilibrium the incident flux suddenly
increases by a factor of three. We follow the evolution of the
system until it reaches a state of equilibrium again. As expected,
a raise in the flux leads to an increment in the temperature of the
gas and in its ionization stage, which consequently decreases
the neutral hydrogen fraction.

After the jump in the ionizing flux there is a temporal
overshoot in the temperature at the IF, i.e., a sharp increase

in temperature followed by a gradual drop to equilibrium
values. This is due to the hardening of the ionizing flux that
ionizes a largely neutral medium, as the lower energy ionizing
photons get absorbed through the ionized region of the cloud.
Moreover, a combination of fast moving photoelectrons and
relatively few protons make recombination cooling inefficient,
resulting in an initial sharp rise in temperature. Later, though, as
the plasma becomes highly ionized, the recombination cooling
rate increases, driving the temperature toward an equilibrium
value.

Figures 2 and 3 show the ionization/recombination rates and
heating/cooling rates for various time steps after a change in
the ionizing radiation field by a factor of three. At t = 0 and
t > 3.4 × 108 s (∼10 yr) the slab is in equilibrium, thus the
ionization and heating rates are equal to the recombination
and cooling rates, respectively, everywhere in the cloud. In
between these times, the figure shows ionization and heating
fronts propagating through the cloud, leaving the plasma out of
equilibrium. At 0.03 yrs the ionization and heating fronts are
found at 3 × 1016 cm, and the plasma behind these fronts is out
of equilibrium. At t = 0.35 yrs the heating and ionization fronts
are seen to reach the IF, where departures from equilibrium are
at maximum. Nonetheless, by these times the gas behind the
fronts has evolved significantly toward equilibrium.

The ionization/recombination rates and heating/cooling rates
are shown in Figures 4 and 5 for the case when the ionizing
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(A color version of this figure is available in the online journal.)

continuum is reduced by a factor of three. Cooling and
recombination fronts are seen to propagate through the
cloud and behind these fronts the plasma evolves toward
equilibrium.

4.1.1. Timescales and Rates

In the TDP models shown in Figure 1 the plasmas evolve
between two steady-state solutions set by two different values
of the ionization parameter. However, the plasma’s behavior is
different from a sequence of equilibrium solutions calculated
for different ionization parameters at different times. This is
because the local conditions at different depths inside the
cloud react at different times to the variations in the flux from
the source, according to the propagation time. Moreover, the
physical conditions evolve at different rates at different depths
according to the local timescales for ionization equilibration and
temperature equilibration.

Figure 6 shows the propagation, ionization equilibration, and
temperature equilibration times versus depth into the slab. It
can be seen that fronts that result from sudden increases in
the radiation flux travel at constant speed, ∼20,000 km s−1

(∼MACH 2), from the illuminated face of the slab up to
∼3 × 1016 cm inside the cloud. Beyond this point, the front
slows down by orders of magnitude and the propagation time
increases nonlinearly. In other words, it takes about ∼1 yr for
the radiation front to arrive near the IF, but several hundred years
to move across the IF. Clearly, the absolute propagation times
are inversely proportional to the magnitude of the flux variation,
yet the qualitative behavior of the propagation is essentially the
same in all cases.

The ionization equilibration timescale depends on the relative
change in ionization and the ionization and recombination rates.
In steady-state conditions ionization and recombination times
are of the order of ∼100 yr, for T = 104 K and ne = 104 cm−3.
Thus, across the IF, where the neutral hydrogen fraction changes
from ∼1 to 0, the ionization equilibration time is about 100 yr.
In contrast, before the IF the plasma is nearly fully ionized, thus
the relative change in ionization is very small for any increase
in the radiation flux and the ionization equilibration time is also
very short.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1016 1017 1018 1019

T
em

pe
ra

tu
re

 (
10

4  K
)

Distance (cm)

fx=3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

1016 1017 1018 1019

P
re

ss
ur

e 
(1

0−
8  d

yn
/c

m
2 )

Distance (cm)

fx=3.0

Figure 7. Ionization and temperature for a slab initially in pressure equilibrium
at Po = 4 × 10−8 dyn cm−2. The initial flux corresponds to log ξ = 0, which is
suddenly increased by a factor of three (fx = 3). The initial condition is plotted
in red, and the final state of the system is plotted in green. The black curves depict
the physical conditions at different times. The gas density obtained from the
pressure equilibrium solution is shown in the upper panel with the dashed-blue
line.

(A color version of this figure is available in the online journal.)

The temperature equilibration time is of the order of a few
years in the more ionized segment of the slab and peaks at ∼35 yr
across the IF. Interestingly, the temperature equilibration time
is longer than the ionization equilibration time in the ionized
fraction of the slab, but shorter across the IF.

4.2. Step Flux Function on a Slab in Pressure Equilibrium

Here we investigate the case of a cloud initially in gas pressure
equilibrium with its surroundings. Let the pressure at t = 0 be
Po = 4×10−8 dyn cm−2. For the pressure to be constant across
the slab, the gas density increases as 1/T from the hotter fraction
of the cloud, facing the ionizing source, to the neutral region.
This means that a sharp rise in density is expected across the IF,
where the temperature drops steeply. In the present simulation
the IF is originally found at x ∼ 1017 cm.

In Figure 7 we show the evolution of the temperature and
pressure when the ionizing flux is increased by a factor of three
(fx = 3) while the gas density is kept fixed. The increase in flux
creates an ionization and thermal front that propagates through
the slab and heats the gas beyond the original IF. Thus, the cloud
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Figure 8. Pressure profiles in the region where the IF is formed (black lines). The red dots indicate the position of the IF at different times. Each panel corresponds to
a different flux variation factor fx, as indicated.

(A color version of this figure is available in the online journal.)

is seen to go out of pressure equilibrium, particularly across the
original IF. As a consequence, the variation in the ionizing flux
will induce dynamical effects in the cloud. If the thermal front
is subsonic, the cloud will expand and the density profile of the
gas will adjust to maintain equal pressure across the cloud and
with its surroundings. Note that if the thermal wave is subsonic
in the ionized region in the cloud the wave is likely to remain
subsonic across the IF. This is because the speed of the front
across the IF decreases roughly proportionally to T, while the
sound speed goes as T 1/2. On the other hand, if the thermal
front moves supersonically the gas has no time to adjust itself

and strong pressure imbalances, like those seen in Figure 7,
will appear. Thus, shocks will be formed in the slab, which can
ultimately result in the fragmentation of the cloud (Bautista &
Dunn 2010). Either way, variations in the ionizing flux will have
important kinematic effects on the cloud.

We further studied front propagations under different condi-
tions. Figure 8 shows the pressure profiles at IFs when the flux is
varied by factors of fx = 0.3, 0.5, 0.8, 1.2, 1.5, and 2. On each
curve we identify the inflection point, i.e., the most negative
value for dP/dx, which we will use as a point of reference to
follow up the evolution of the front. When the flux is reduced,
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Figure 9. Propagation speed of the IFs (top panel) and recombination fronts
(bottom panel). Each curve corresponds to a different flux variation factor fx, as
indicated in each panel.

(A color version of this figure is available in the online journal.)

recombination fronts are formed and travel in the direction of
the ionizing source. Conversely, increased fluxes lead to IFs that
travel away from the source.

Figure 9 shows the speeds of ionization and recombination
fronts. It is found that the IFs move forward over long periods
of time with speeds proportional to the flux increment (up to
103 km s−1 for fx = 3). This is consistent with vpro = Fx/HH

(see Equation (23)). On the other hand, recombination fronts
propagate with maximum speeds of the order of hundreds of
km s−1 for fx = 0.8 or smaller. The speed of sound is given by
vs = √

γp/ρ, where γ is the adiabatic index, p is the pressure,
and ρ is the mass density of the gas. For an ideal gas γ = 5/3
and temperature range T = (1–4) × 104 K, vs = 12–24 km s−1.
Thus, even small variations of the incident flux can induce
ionization/recombination fronts that propagate at supersonic
speeds.

4.3. Periodically Varying Flux on a Constant Density Slab

In Section 4.2 we showed that equilibration times at different
positions of a slab range by at least an order of magnitude.
Thus, there is a large variety of astronomical nebulae whose
radiation sources vary periodically on timescales comparable
to their equilibration times, e.g., circumstellar nebula around
pulsating stars and binary systems. There are also systems, like

quasars and AGNs, characterized by quasi-periodic variability
on all timescales. Thus, it is interesting to look at the general
behavior of such systems.

As discussed in previous sections, slabs with total hydrogen
densities of ∼104 cm−3 have equilibration times ranging from
less than a year to a few decades. Let us consider constant
density slabs ionized by step-like periodically varying radiation
continua. Figure 10 shows the neutral hydrogen density and
temperature for various flux variation periods. This figure
shows the average physical conditions and their full range
of variability. For reference, we also show the steady state
solutions for the low and high flux states and the mean conditions
between these. Several conclusions can be drawn from this
figure.

1. The time average of the physical conditions is different
from the mean of the two steady-state solutions. In general,
the cloud tends to be overionized with respect to the steady-
state solutions for a mean value of the flux. This is because
ionization for a given increase in the radiation flux is a
faster process (directly proportional to the change in the
flux) than recombination when the flux decreases (set by
the recombination rate coefficients and the gas density).
On the other hand, the time-averaged temperature is lower
than the mean of steady-state solutions in the ionized region
of the cloud.

2. The dispersion from the time average of the physical
conditions increases with the period of the radiation flux.
This is expected because for flux periods shorter than the
plasma’s equilibration times, the cloud is forced to remain
around a non-equilibrium state in between the two steady-
state solutions. As the period of the flux variation increases
the plasma has time to approach the steady-state solutions.
Though, note that the equilibration time across the IF is
significantly longer than the ionized region.

3. TDP leads to much wider IFs than under steady-state
conditions. This is due to a combination of strong gradients
in equilibration and propagation times across the front.
Thus, time-averaged conditions across the IF transition
more smoothly from the ionized to neutral regions of the
slab than under steady-state conditions. A caveat to this
conclusion is that while the average of physical conditions
is relatively smooth the absolute instantaneous conditions
are not so. It is shown below that the IF exhibits larger
variability with respect to average values than anywhere
else in the cloud.

Note that the behaviors discussed above are for the case of
pure hydrogen, optically thin nebulae. Should one expect quali-
tatively similar effects in more realistic, i.e., chemically hetero-
geneous and optically thicker, clouds? Adding other chemical
elements to the gas is expected to enhance cooling rates and
optical depths. These changes are expected to have opposite ef-
fects in terms of temporal variability. Larger cooling rates will
contribute to reducing the temperature equilibration time. In
turn, faster temperature equilibration will tend to drive faster
ionization equilibration for neutral species; however, higher
ionization stages tend to have smaller photoionization cross
sections and for these the ionization equilibration times may
be longer. Increasing optical depths would result in reducing
effective recombination rates, for example by suppressing Lyα
photons, hydrogen recombination would be reduced by ∼40%
to Case B rates, which would extend the ionization equili-
bration times. Moreover, larger optical depths would extend
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Figure 10. Ionization and temperature solutions for a constant density slab subjected to periodically varying fluxes with periods of 3, 9, 15, and 40 yr. The initial
hydrogen density is 104 cm−3, the radiation flux corresponds to log ξ = 0, and the flux variations are of fx = ±0.5. The green curves show the steady-state equilibrium
conditions at the low and high states of the flux. The red curves depict the steady-state equilibrium solutions for a radiation flux at the media between the low and high
states. The blue solid line shows the time average conditions, while the dashed lines show the dispersion in that average.

(A color version of this figure is available in the online journal.)

propagation times in general, although the effects would vary
along the electromagnetic spectrum and would affect different
species selectively. In conclusion, one should expect the ef-
fects of periodically varying continuum discussed here to be
qualitatively valid in realistic astrophysical nebulae, albeit with
considerable additional complexity, which deserves additional
studies with more complete models.

In a gas cloud photoionized by a time-dependent radiation
source, the physical conditions change asynchronously across
the cloud. Full animations of the ionization and temperature
can be found at http://hea-www.cfa.harvard.edu/∼javier/tdp for
various flux variability periods. Figures 11 and 12 show a few
snapshots of ionization and temperature conditions, normalized
to the average values, for simulations run over 1000 yr. It is

seen that even for radiation flux periods as long as 30 yr the
system stays out of equilibrium through the whole duration of
the simulation. The ionized region of the slab, which starts from
the illuminated face, is seen to vary in sync with the continuum
flux. On the other hand, there is a delay between the response
across the cloud. Therefore, at any given instant, one can find,
for example, that while most of the cloud is warmer than the time
average, the gas across the IF would be cooler than the average.
In general, gas across the IF behaves very differently from the
rest of the cloud and exhibits the largest dispersion with respect
to time-averaged conditions. This is due to the combination of
the long propagation time and equilibration times across the IF.
Moreover, at no time during the evolution do the gas conditions
follow a steady-state solution.
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Figure 11. Instantaneous ionization relative to time-averaged values for instants along 1000 yr long simulations for various radiation flux variability periods. Here,
the radiation flux corresponds to log ξ = 0 and the amplitude of variations is fx = ±0.5.

(A color version of this figure is available in the online journal.)
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Figure 12. Instantaneous temperature relative to time-averaged values for instants along 1000 yr long simulations for various radiation flux variability periods. Here,
the radiation flux corresponds to log ξ = 0 and the amplitude of variations is fx = ±0.5.

(A color version of this figure is available in the online journal.)

5. CONCLUSIONS

We have studied the general behavior of TDP models. Here,
the energy balance, ionization balance, and radiation transfer
equations are considered in their full time-dependent form.

These equations are solved for pure hydrogen plasmas subjected
to sudden variations in the ionizing radiation field.

Simulations of constant density slabs show the formation
of ionization/thermal fronts that propagate through the cloud
after a change in the ionizing flux. The propagation times and
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response times to such fronts vary greatly from the illuminated
face of the cloud to the IF. Simulations carried out for different
degrees of ionization showed that the time evolution of physical
conditions in the plasma differs from a sequence of equilibrium
solutions.

Our results for slabs initially in pressure equilibrium show
that the thermal fronts that propagate through the plasma after
a change in the ionizing flux are also pressure fronts, which
become particularly pronounced across the IF of the slab. For
an increase in the ionizing flux, the speed of the thermal front
is proportional to the incident radiation flux. Thus, there is no
limit for how fast these fronts can propagate. In contrast, a
sudden drop in the ionizing flux creates a cooling/recombination
front whose speed is determined by the recombination rates.
In either case, the present simulations show that these fronts
often propagate with supersonic speeds, and thus large pressure
imbalances are created across the slab. This is expected to have
important dynamical effects on the cloud, such as the creation
of shocks and cloud fragmentation.

Further, we studied the case of periodic variations in the
ionizing flux. It was found that the physical conditions of the
plasma have complex behaviors that differ from steady-state
solutions. Moreover, even the time-averaged ionization and
temperature are different from any steady-state case. This time
average is characterized by overionization and a very wide IF
with respect to the steady-state solution for a mean value of the
radiation flux. Around the time average of physical conditions
there is a large dispersion in the instantaneous conditions,
particularly across the IF, which increases with the period of
radiation flux. Moreover, the dispersion in physical conditions is
asynchronous along the slab due to the combination of nonlinear
propagation times for thermal/ionization front and equilibration
times.

Our current description of TDP is simplified owing to the
lack of chemical elements other than hydrogen. More realistic
models including realistic chemical mixtures and detailed mi-
crophysics of multi-level atomic systems will be the subjects of
future publications.

We thank D. Hillier and P. Harrington for useful discussions
and valuable suggestions.
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