NASA/CR-2014-218288

A Traectory Algorithm to Support En Route
and Terminal Area Self-Spacing Concepts:
Third Revision

Terence S Abbott
Stinger Ghaffarian Technologies, Inc., Hampton, Virginia

July 2014

NASA STI Program

Sinceits founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (ST1)
program plays akey part in helping NASA maintain
thisimportant role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA Aeronautics
and Space Database and its public interface, the
NASA Technical Report Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in
both non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or amajor significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

...in Profile

e CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or co-
sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historica information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

e TECHNICAL TRANSLATION.
English-language trandlations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

o Accessthe NASA STI program home page
at http: //www.sti.nasa.gov

e E-mail your question to help@sti.nasa.gov

e Fax your question to the NASA STI
Information Desk at 443-757-5803

e Phonethe NASA STI Information Desk at
443-757-5802

o \Writeto:
STI Information Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA/CR-2014-218288

A Traectory Algorithm to Support En Route
and Terminal Area Self-Spacing Concepts:
Third Revision

Terence S Abbott
Stinger Ghaffarian Technologies, Inc., Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNL10AA14B

- ___
July 2014

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802

Table of Contents

INOINETICIATUTE ...ttt ettt ettt et e e b e e s et e bt et e bt sh e et e e bt este bt sbeemt e bt emeeateestentesbeemtesesneeneenne v
SUDSCIIPES ..t eivieeiieeette ettt et e ettt e sttt e et e et eeetee e tbeessbeaestseesssaeessaeessaeassseessseeasseeanssaeasseessseesnsaeesssaeanseeenssens v
UNItS aNd DIMENISIONSeuvieeieiietieierteeiete sttt ettt et e te e te e e e ae e eesteeseeneesseeneeaseeseenseaseeneenseaneensenseeneensesseennens vi
IIETOAUCTION ..ttt b e et e e bt et et e bt et e st e e st et e sb e e st e bt saeent e bt esteneeebeeneenees 1
ALZOTIERIM OVETVIEW ...ttt ettt ettt et ettt ettt e st eeate et e e bt e sseeeaeeeaseenbe e st enseesseenseesseesaeesnsesnseenne 2
ALZOTTtNIM INPUL DALA......iiiiiiiiciie ettt e et e et e e st e e stbeessbee e tbeessseeessseesssaesssseesseesnsseesssenns 6
Internal AIGOTIthM VAriablesc.eeviiiiiieriieiieiieeie ettt ete e re e teesaaessbesebeesseeseesseessaesseessnennsennns 6
Description 0f Major FUNCLIONScccueiiiiiriieitieiie ettt ettt stee st e e teenteebeesbeesseesaeesaeesnseenne 8
PrepPrOCESS RE LLEES..oiiiiiiiiiiiiiiie ettt ettt ettt e et e e sttt e e e e tbe e e e nsaeeeesnsbeeeesasseaeasssaeessseeesennsees 8
Generate Initial Tracks and DiStanCes.c.ccerieieiierieieeree ettt ee e see e e 12
Initialize Waypoint TUIN DAatac.cccveiiiiieiierieciceie ettt ete e steeseeseeeseaesebeenseesseenseesseenseens 13
CompPute TCP AIHIUAES ..ottt sttt ettt sttt ebe et sbeeatenbe 15
COPY CrOSSING ANELES ..uvvieeiiieiie ettt eeee ettt e et e st e e tae e s beeesseeessseeassaeasseessseeessseessseesssseesssenans 19
Meet Cruise CAS Waypoint RESLIICOMNc.ecvvieriierieiiesieeieeie ettt see e snesaesbeasseesseesaesseessaens 19
Add Descent Mach WayPOintc..ceieriiiiiinirieeieeenteete sttt sttt ettt et st s enee e 28
Compute MaCh-t0-CAS TCPooiiiiieiie ettt et e et e e s e e s teeetbeessbeeessseesssaessseeessseesssenans 30
Compute Altitude / CAS ReStriction TCPcc.viiiiiiiiiieieetetestest ettt st svesveesreessaessaerae s 32
Test for Altitude / CAS Restriction REqUITementcocevirieiiniiieniinieienenteeseeee st 34
COMPULE TCP SPEEAS ..ecuvviieiieeeiie ettt ettt e et e et e e tbeesbeeetbeessbeessseeessaesssaeesseesssesensseesssenans 35
ComPULe SECONAATY SPEEAS ... vievietieiieiieitieie et esteestesteereebeesseesseestaessseasseasseesseesseesssesssesssensseessensseens 36
UPAAte TUIN DAta......ecciiiiieiieciecieee ettt teete et e e te et essbessseesseessaessaesseesssesssesssesnseesseesssenssas 37
DICLELE TCPS ...ttt et ettt ettt e et e st e et e e bt e bt e bt e satesateenteenseenseenseesseesseesseesnseenseenseenseanseens 41
UPAate DTG DAtaocccviiiiiiiiiie ettt ettt et e st eetb e e s eveesbaeesabeesssaeessseesssasesseeesseenssesensseenssens 41
Check TUIM VALIAILY....coouieeieeiiciieieeieesee sttt ettt et s e et e e e e e staessaessaeasseesseesseessesssessseensesnsenns 43
Recover the Initial Mach SEZMENLScooiiiiiiriiiiiieeteeee ettt 43
InSert CAS DESCENE VTIPSooiiiiiiiietie ettt ettt ettt ettt ettt e st e sabeeenaaeas 44
COMPULE TCP TIMCS....eecuveeeiiieiiieeiie et e eciee et e e steeeteeessbeessteeesaeessseessseesssesasseeesssesssseeessseessseesnsseesssenans 46
Compute TCP Latitude and Longitude Data............ceecvveviieiiierienieniecieeieeeeriee e see e sre e eseeseeessae s 46
Description of Secondary FUNCHONScuiiiciiiiiiiiciiece ettt e et e e e veeeraeessveeesbaeessneas 49
BodDecelerationDIStANCE.eeruereieieeieeieieetee ettt ettt et et et e et e e e e et es e et e st et e naeeneeneeteeneeneeees 49
ComputeGndSpeedUsingMachANATIaCK.cccveriiiiieiiieiieieeeree et se s 49
ComputeGndSPeedUSINETTACK.coouiiiiiieriiiieeeeete ettt ettt st st eaae b 50
COMPULEGNATTIK ...oeiiiviieiiieciie ettt et e ettt e et e e tbeessbeeetaeessseeassseessseeessseesseeasseeensseenssenans 50
(0707001010l Ko7 oL O PSSRSO 50

il

COMPULETCPIMACK......viiiieiiicie ettt ettt ettt et e s b e s b e e b e e b e e saestaessbessseasseesseessaesssesssessseasseessenns 55

LD o) AN T4 LU PRRUS 60
DOTOAACCEIETATION ...ttt ettt ettt ettt e ettt e bt et e s ttesbeeseteeateenteeteeseesseesneesnsesnsesnseenseenseanseens 61
EStIMAtEINEXECAS ..e.veeuieteetieie ettt ettt ettt et e et e et e e st e bt eae e eeeseemeesseemeenseeseenseeaeseeneenseeneennenes 62
EStmMateNEXIMACKcoouiiiiiiiiieieee ettt ettt et ettt et b e et e b bt e 63
Generate WPtWINAPTOTILE.cc.coiiiiiiiiiiite ettt ettt st 64
GetTTaJECtOTYIDIALA. ...c..iiieiiieiiee ettt et et e e et e e tbe e s beeestbeeeaseeessaeesssaeasseeesssaessseeasseeensseessseaans 65
GEtTTaJGNATIK c..eiiiiiieciece ettt et s e s b e e b e e b e e teestaesabeasbeesseesseesssesssessseesseasseeseens 65
HandleDescentACCEIDECEL.........oouiiiiiiieie ettt sttt sttt 66
Interpolate WINAALDISTANCE.cccviiiiieeciieeeiie et estee ettt e etee e e s beeesaaeesebeeessaeessseessseeesseesssesensseenssens 68
Interpolate WIindWPtAITUAE.eovvieiieiieiie ettt ettt e e b e e b e esbeesteestaesebesssessseessaessaesseens 70
MachCasTranSTHONAITUACoouiiuieiieeeee ettt sttt ettt sees 70
RadialRAIAIINIEICEPL. ... eeeuieeiieiieiieiee sttt ettt ettt et et e e et e e steesaeesaeesatesabeentesnseenseenseaseens 70
REIAtIVELATLON. ...ttt ettt et e s bt e s bt e sateeabe e bt e bt e bt e sbeesateeateenteenbeenbeen 73
WDEINTUITL ...ttt ettt ettt e sttt e e sttt e e e s abte e s eabteeeesabteeeesabeeeesnnnes 75
SUITIITIATY ..ttt ettt ettt ettt et s bt sat e et e bt e bt e sbe e sue e satesate e bt e bt e bt e eaeeeateemteemteenbeenanesanesareeane 76
RETEIEIICES ...ttt ettt b e bt e s bt e et e e ate e te e beeebe e bt e nbeesaeeemteenbeebeenbeens 77
Appendix EXAmPIe Data SELScccviicviiiiiiiiiiiiieiieiie ettt ettt et e sae b e ebeesreestaestbestbeesbeesbeebesnbeerreeraens 79

iv

Nomenclature
2D: 2 dimensional
4D: 4 dimensional

ADS-B: Automatic Dependence Surveillance Broadcast

BOD: Bottom-Of-Descent
CAS: Calibrated Airspeed
DTG: Distance-To-Go
MSL: Mean Sea Level
RF: Radius-to-Fix

STAR: Standard Terminal Arrivals

TAS: True Airspeed

TCP: Trajectory Change Point
TOD: Top-Of-Descent

TTG: Time-To-Go

VTCP: Vertical Trajectory Change Point

Subscripts

Subscripts associated with waypoints and TCPs, e.g., TCP,, denote the location of the waypoint or TCP in
the TCP list. Larger numbers denote locations closer to the end of the list, with the end of the list being
the runway threshold. Subscripts in variables indicate that the variable is associated with the TCP with
that subscript, e.g., Altitude, is the altitude value associated with TCP,.

Units and Dimensions

Unless specifically defined otherwise, units (dimensions) are as follows:
time: seconds

position: degrees, + north and + east

altitude: feet, above MSL

distance: nautical miles

speed: knots

track: degrees, true, beginning at north, positive clockwise

vi

Abstract

This document describes an algorithm for the generation of a four
dimensional trajectory. Input data for this algorithm are similar to an
augmented Standard Terminal Arrival (STAR) with the augmentation in
the form of altitude or speed crossing restrictions at waypoints on the
route. This version of the algorithm accommodates constant radius turns
and cruise altitude waypoints with calibrated airspeed, versus Mach,
constraints. The algorithm calculates the altitude, speed, along path
distance, and along path time for each waypoint. Wind data at each of
these waypoints are also used for the calculation of ground speed and
turn radius.

I ntroduction

Concepts for self-spacing of aircraft operating into airport terminal areas have been under development
since the 1970's (refs. 1-20). Interest in these concepts has recently been renewed due to a combination of
emerging, enabling technology (Automatic Dependent Surveillance Broadcast data link, ADS-B) and the
continued growth in air traffic with the ever increasing demand on airport (and runway) throughput.
Terminal area self-spacing has the potential to provide an increase in runway capacity through an increase
in the accuracy of runway threshold crossing times, which can lead to a decrease of the variability of the
runway threshold crossing times. Current concepts use a trajectory based technique that allows for the
extension of self-spacing capabilities beyond the terminal area to a point prior to the top of the en route
descent.

The overall NASA Langley concept for a trajectory-based solution for en route and terminal area self-
spacing is fairly simple and was originally documented in reference 21. By assuming a 4D trajectory for
an aircraft and knowing that aircraft’s position, it is possible to determine where that aircraft is on its
trajectory. Knowing the position on the trajectory, the aircraft’s estimated time-to-go (TTG) to a point, in
this case the runway threshold, is known. To apply this to a self-spacing concept, a TTG is calculated for
a leading aircraft and for the ownship. Note that the trajectories do not need to be the same. The nominal
spacing time and spacing error can then be computed as:

nominal spacing time = planned spacing time interval + traffic TTG.

spacing error = ownship TTG — nominal spacing time.

The foundation of this spacing concept is the ability to generate a 4D trajectory. The algorithm
presented in this paper uses as input a simple, augmented 2D path definition (i.e., a traditional STAR,
with relevant speed and altitude crossing constraints) along with a forecast wind speed profile for each
waypoint. The algorithm then computes a full 4D trajectory defined by a series of trajectory change points
(TCPs). The input speed (Mach or CAS) or altitude crossing constraint includes the deceleration rate or
vertical angle value required to meet the constraint. The TCPs are computed such that speed values, Mach
or CAS, and altitudes change linearly between them. TCPs also define the beginning and ending segments
of turns, with the midpoint defined as a fly-by waypoint. The algorithm also uses the waypoint forecast
wind speed profile in a linear interpolation to calculate the wind speed at the altitude the computed
trajectory crosses the waypoint. Wind speed values are then used to calculate the ground speeds along the
path.

The major complexity in computing a 4D trajectory involves the interrelationship of ground speed with
the path distance around turns. In a turn, the length of the estimated ground path and the associated turn
radius will interact with the waypoint winds and with any change in the specified speed during the turn,
i.e., a speed crossing-restriction at the waypoint. Either of these conditions will cause a change in the
estimated turn radius. The change in the turn radius will affect the length of the ground path which can

1

then interact with the distance to the deceleration point, which thereby affects the turn radius calculation.
To accommodate these interactions, the algorithm uses a multi-pass technique in generating the 4D path,
with the ground path estimation from the previous calculation used as the starting condition for the
current calculation.

Algorithm Overview

The basic functions for this trajectory algorithm are shown in figure 1. Figure 1 also contains logic and
some simple calculations that are not included in the body of this document. Also note that waypoints are
considered to be TCPs but not all TCPs are waypoints.

For the 2D input, the first and last waypoints must be fully constrained, i.e., have both a speed and
altitude constraint defined. With the exception of the first waypoint, which is the waypoint farthest from
the runway threshold, constraints must also include a variable that defines the means for meeting that
constraint. For altitude constraints, this is the inertial descent angle; for speed constraints, it is the air
mass CAS deceleration rate. A separate, single Mach-to-CAS transition speed (CAS) value may also be
input for profiles that involve a constant Mach / CAS descent segment. Additionally, an altitude / CAS
restriction (e.g., in the U.S., the 10,000 ft / 250 kt restriction) may also be entered.

The algorithm computes the altitude and speed for each waypoint. It also calculates every point along
the path where an altitude or speed transition occurs. These points are considered vertical TCPs (VTCPs).
TCPs also define the beginning and ending segments of turns, with the midpoint defined as a fly-by
waypoint. Turn data are generated by dividing the turn into two parts (from the beginning of the turn to
the midpoint and from the midpoint to the end of the turn) to provide better ground speed (and resulting
turn radius) data relative to a single segment estimation. A fixed, average bank angle value is used in the
turn radius calculation. The algorithm also uses the forecast wind speed profile for a waypoint in a linear
interpolation to calculate the wind speed at the altitude the computed trajectory crosses the waypoint (if
the crossing altitude is not at a forecast altitude). For non-waypoint TCPs, the generator uses the forecast
wind speed profile from the two waypoints on either side of the TCP in a double linear interpolation
based on altitude and distance (to each waypoint). Of significant importance for the use of the data
generated by this algorithm is that altitude and speeds (Mach or CAS) change linearly between the TCPs,
thus allowing later calculations of DTG or TTG for any point on the path to be easily performed.

Trajectory calculation:
2D input data, crossing data,
and wind forecast data

v

Preprocess RF legs: For each waypoint identified as an RF turn initiation point, generate
one or two pseudo fly-by waypoints for the center of the turn.

v

Save the crossing angles, descent speeds, and the initial Mach: Save the altitude
crossing angles for each waypoint, the Mach for the first waypoint, the descent Mach,
and descent CAS values. These values may be overwritten and will need to be reset to
their original values for each iterative loop.

v

Generate the initial tracks and distances: Using great-circle calculations, determine the
distances and ground tracks between waypoints. Calculate the DTG for each waypoint.

v

Initialize the waypoint turn data: Waypoints that have more than a 3 degree change in
ground track from the previous waypoint are considered turn-waypoints. Mark each as
a turn-waypoint and insert a turn-entry and turn-exit TCP on each side of this waypoint.

while looping

Reinstate the descent speeds: Restore the descent Mach and descent CAS values to their
original values.

v

Compute the TCP_altitudes: Beginning at the runway (the last waypoint) work
backwards and compute the altitude at each prior TCP. If an altitude is computed to be
reached prior to the previous TCP, insert a new altitude TCP.

v

Copy crossing angles: Beginning at the runway, for TCPs that do not have crossing
angles, copy the downstream angle into this TCP.

v

Meet cruise CAS waypoint restriction: If required, change the descent Mach if there is a
cruise CAS restricted waypoint and the computed speed is above the required crossing
speed.

v

Add descent Mach waypoint: If the descent is to be performed initially in a Mach mode
and the descent Mach is different than the cruise Mach, change the descent waypoint
Mach as necessary and add any required, additional TCPs.

v

Compute the Mach-to-CAS TCP: If required, compute the Mach-to-CAS transition
altitude. Compute the DTG to this altitude and insert the Mach-to-CAS TCP.

v

[continued]

from

Figure 1. Basic functions.

[continued]

v

if the flag
for an altitude / CAS restriction, based on
prior computations, is true

else

Compute an altitude / CAS restriction TCP: In the U.S., this would be the 10,000ft /
250kt speed restriction. If the speed crossing the trajectory at the specific altitude is
greater than the CAS restriction (from the test on the first iteration), place a speed

restriction at this point on the profile.
¢A
-

Compute the TCP speeds: Beginning at the runway (the last waypoint) work backwards
and compute the speed at each prior TCP. If a speed is computed to be reached before
the next previous TCP, insert a new speed TCP.

v

Compute secondary speeds for each TCP: Compute the Mach (for a CAS TCP) or CAS
(for a Mach TCP) and ground speed for each TCP.

v

else

if this is not the last loop

Update turn data: For each turn waypoint, use the new speed values to compute the turn
radii. Update the data for the turn waypoint, turn-entry, and turn-exit TCPs.

v

Delete VTCPs: Delete the VTCPs. Remove all special vertical flags.

v

Update the DTG data: Beginning at the runway, work backwards and compute the DTG
for each TCP, adjusting for the turn distances. Set the flag to only do error testing to

false.
v

Check turn validity: Check that each turn is completed prior to the next waypoint or the
start of the next turn.

v

Restore the crossing angles: Restore the altitude crossing angles to their original values.

v

Update the DTG data: Beginning at the runway, work backwards and compute the DTG
for each TCP, adjusting for the turn distances. This is performed at this point only for
error testing. Set the flag to only do error testing to true.

»
»

\4

[continued]

Figure 1 (continued). Basic functions.

[continued]

v

else

if this is the first loop

v

Test for the need for an altitude / CAS restriction: In the U.S., this would be the
10,0001t / 250kt speed restriction. If the speed crossing the trajectory at the specific
altitude is greater than the CAS restriction, set a flag for this requirement to true and
reset the loop counter to its initial value (i.e., start over).

A 4

Recover the initial Mach segments: If the initial segments should be Mach but have
been internally converted to CAS, attempt to recover the Mach portion.

v

Insert CAS descent VTCPs: Insert vertical TCPs between long constant CAS descent
waypoints to aid in overcoming the TAS estimation error between the waypoints.

v

Compute the TCP times: Beginning at the runway (the last waypoint) work backwards
and compute the TTG to each TCP.

v

Compute TCP latitude and longitude data: Compute the altitude and longitude data for
the altitude, speed, and Mach / CAS TCPs.

v

terminate

Figure 1 (continued). Basic functions.

Algorithm Input Data

The algorithm takes as input a list of waypoints, their trajectory-specific data, and associated wind
profile data. The list order must begin with the first waypoint on the trajectory and end with the runway
threshold waypoint. The trajectory-specific data includes: the waypoint's name and latitude / longitude
data, e.g., Latitude, and Longitude,; an altitude crossing restriction, if one exists, and its associated
crossing angle, e.g., Crossing Altitude, and Crossing Angle,; and a speed crossing restriction (Mach or
CAY), if one exists, and its associated CAS rate, e.g., Crossing CAS, and Crossing Rate,. A value of 0 as
an input for an altitude or speed crossing constraint denotes that there is no constraint at this point. A
Crossing Mach may not occur after any non-zero Crossing CAS input. The units for Crossing Rate are
knots per second.

In this algorithm, a radius-to-fix (RF) segment is indicated by the addition of a center-of-turn position,
e.g., Center of Turn Latitude, and Center of Turn Longitude,, for the input waypoint at the initiation of
the turn. Additional requirements for the RF segment are provided in a subsequent section.

To accommodate a descent from the cruise altitude, a Mach value, Mach Descent Mach, may be
specified that is different from the cruise Mach value. A CAS value may also be specified for the Mach-
to-CAS transition speed, Mach Transition CAS, during the descent. Additionally, a CAS speed limit at a
defined altitude may also be included. In the U.S., this would typically be set to 250 kt at 10,000 ft.

For the wind forecast, a minimum of two altitude reports (altitude, wind speed, and wind direction)
should be provided at each waypoint. The altitudes should span the estimated altitude crossing at the
associated waypoint. The algorithm assumes that the input data are valid.

Internal Algorithm Variables

The significant variables computed by this algorithm are:

Altitude the computed altitude at the TCP
CAS the computed CAS at the TCP
DTG the computed, cumulative distance from the runway

Ground Speed the computed ground speed at the TCP

Ground Track the computed ground track at the TCP

Mach the computed Mach at the TCP

TG the computed, cumulative time from the runway

Additionally, the algorithm denotes TCPs in accordance with how they are generated. TCPs are identified
as:

e Input, from the input waypoint data;
e An internally generated, radius-to fix (RF) center of turn waypoint;

e Turn-entry, identifying a TCP that marks the start of a turn;

e Turn-exit, identifying a TCP that marks the end of a turn; and

e Vertical TCPs (VTCPs), denoting a change in the altitude or speed profile.
TCPs may also be marked with a vertical identifier denoting one of the following:
e Altitude, denoting a change in the descent angle;

e Speed, denoting a change in the CAS or Mach;

e Top of descent point, TOD;

o Altitude CAS restriction, denoting a speed change due to a speed restriction at a specific altitude, e.g.,
250 kt at 10,000'; and

e Mach-to-CAS, denoting the Mach-to-CAS transition point.

TCPs are also denoted relative to the associated primary speed value, i.e., the crossing speed is Mach or
CAS derived.

There are also several input variables that may become overwritten within the algorithm that are
required to be restored for subsequent calculation cycles within the algorithm. These variables include the
following:

o Saved Mach Descent Mach, which is the saved input value of Mach Descent Mach.

e Saved Mach Transition CAS, which is the saved input value of Mach Transition CAS.

o Saved Mach at First Waypoint, which is the saved input Mach value for the first waypoint, i.e.,
Crossing Machgirs waypoinr, assuming that one exists.

Description of Major Functions

The functions shown in figure 1 are described in detail in this section. The functions are presented in
the order as shown in figure 1. Secondary functions are described in a subsequent section. In these
descriptions, the waypoints, which are from the input data and are fixed geographic points, are considered
to be TCPs but not all TCPs are waypoints. Nesting levels in the pseudo-code description are denoted by
the level of indentation of the document formatting. Additionally, long sections of logic may end with end
of statements to enhance the legibility of the text.

Preprocess RF Legs

A radius-to-fix (RF) turn segment is a constant radius turn between two waypoints, with lines tangent
to the arc around a center of turn point (fig. 2). This function determines if a valid RF turn exists, and if
so, calculates a pseudo-waypoint relative to the center-of-turn point and inserts it into the waypoint list.
The calculated pseudo-waypoint then allows the remainder of the turn calculations performed by this
algorithm to be processed as a standard turn. This function is performed in the following manner:

TCFP;_; ‘/ TCP; (RF tumn initiation waypoint)
’I‘*_‘_\:_) -* ‘___pseudo_waypm“t
! ~
| ~\ [
1 AN |
! A
1 Ay
I M
I \
- TCP; 4 (tum exit)

|
I
L—

Center of turn point - >
CPi4)

Figure 2. Example of an RF turn.
error = false
Big Turn Error = false
A set of RF turn waypoints is identified by the inclusion of a non-zero value for the latitude and
longitude for the center of turn point in the data for the RF turn initiation waypoint. Because three
waypoints are needed in an RF turn calculation, two each for the determination of the inbound and
outbound track angles, testing is only performed to the number of the last waypoint - 2.

for (i = index number of the first waypoint + 1; i <index number of the last waypoint - 2; i =i + 1)

Determine if this is an RF turn waypoint via the inclusion of the turn center's latitude and
longitude data.

if ((Center Of Turn Latitude; # 0) and (Center Of Turn Longitude; # 0))
Determine the turn direction.

a; = arctangent2(sine(Longitude; - Longitude; ;) * cosine(Latitude;), cosine(Latitude; ;) *
sine(Latitude;) - sine(Latitude;.;) * cosine(Latitude;) * cosine(Longitude; - Longitude;.;))

as = arctangent2(sine(Longitude;.; - Longitude;) * cosine(Latitude;.;), cosine(Latitude;) *
sine(Latitude,. ;) - sine(Latitude;) * cosine(Latitude,.;) * cosine(Longitude;.; -
Longitude;))
deltax = DeltaAngle(a,, a3)
where the secondary function DeltaAngle is described in a subsequent section.
If deltax is positive, this is a right-hand turn.
if (deltax > 0) TurnSign = 1
else TurnSign = -1
Calculate the instantaneous angle at the ending waypoint.
a, = arctangent2(sine(Longitude;.; - Center Of Turn Longitude;) * cosine(Latitude;,),
cosine(Center Of Turn Latitude;) * sine(Latitude;.,) - sine(Center Of Turn Latitude;) *
cosine(Latitude;,;) * cosine(Longitude,., - Center Of Turn Longitude;)) +
TurnSign * 90
Adjust a; such that 0 > a; > 360
deltaa = DeltaAngle(a,, a,)
Correct the deltaa value if it is in the wrong direction.
if ((TurnSign > 0) and (deltaa < 0))
deltaa = deltaa + 360
else if (TurnSign < 0) and (deltaa > 0))

deltaa = deltaa - 360

If the turn is greater than 170°, break it into two parts so that the standard turn calculations
can be performed.

if (|deltaa| > 170) BigTurn = true
If the turn is less than 3° or more than 260°, it is in error.
if ((|deltaa| < 3) or (|deltaa| > 260)) error = true
Perform a center-of-turn test.
if (error = false)
The radius for point 1 must equal the radius for point 2.

r; = arccosine(sine(Center Of Turn Latitude;) * sine(Latitude;) + cosine(Center
Of Latitude;) * cosine(Latitude;) * cosine(Center Of Turn Longitude; -

9

Longitude;))
ry = arccosine(sine(Center Of Turn Latitude;) * sine(Latitude;.;) +
cosine(Center Of Turn Latitude;) * cosine(Latitude;.;) *
cosine(Center Of Turn Longitude; - Longitude;.;))

The radii are considered not equal if the difference is greater than 200 ft. The overall RF
leg is considered in error if the turn radius is greater than 10 nmi.

if (r; - 12| > (2007 6076)) or (r; > 10)) error = True

if (error = false)

If the turn is greater than 170°, generate two waypoints, otherwise, just generate one
waypoint.

if (BigTurn) n =2
elsen =1
a = TurnSign * 90
for k=1 k<n;k=k+1)
Calculate the pseudo-RF waypoint.
The following is the angle from the turn center toward the pseudo waypoint.
as;=a;-a
Adjust a; such that 0 > a; > 360
if (BigTurn)
if(k=1)ap=a;+0.25 *deltaa
elsea;, =az + 0.75 *deltaa
else
Just one new waypoint, split the turn in half.
ap =az + 0.5 *deltaa
Adjust a;p, such that 0 > a;, > 360
ifk=1)
RadialRadiallntercept(Latitude,, Longitude,, a;,

Center Of Turn Latitude;, Center Of Turn Longitude;, a,
Latitude,;, Longitude,y),

10

noting that Latitude,; and Longitude,sare returned values.
else

RadialRadiallntercept(Latitude;.;, Longitude;.;, a, + 180,

Center Of Turn Latitude; ;, Center Of Turn Longitude; ;, a;,
Latitude,; Longitude,),

The new waypoint is inserted at location i+/ in the waypoint list. This inserted
waypoint will appear as an input waypoint to the remainder of the algorithm. The
waypoint is inserted between waypoint; and waypoint;.; from the original list. The
function InsertWaypoint should be appropriate for the actual data structure
implementation of this function.
InsertWaypoint(i + 1)
Note that Wpt,,; is the newly created waypoint.
Mark Wpt+; as though it was an input waypoint and give it a unique name.
Also marking this waypoint as a special, RF turn center waypoint. This special
marking is used in subsequent sections to denoted that the center-of-turn point has
already been calculated.
Wpti+; = rf-turn-center
Latitude;.; = Latitude,

Longitude;; = Longitude,y

Copy the wind data from Wpt,, the RF initiation waypoint, to Wpt;.,, the pseudo-
waypoint.

Save the center of turn data. The Turn Data values are associated with each waypoint
or TCP record and contain, if appropriate, data relating to turn conditions for that
TCP.

Turn Data Center Latitude;.; = Center Of Turn Latitude;

Turn Data Center Longitude;.; = Center Of Turn Longitude;

Increment i because a waypoint was added and the new waypoint at i + / should not
be processed again.

i=i+1
endoffor (k=1 k<n k=k+1)
end of if (error = false)

end of if ((Center Of Turn Latitude; # 0) and (Center Of Turn Longitude; # 0))

11

end of for (i = index number of the first waypoint + 1, ...)

Generate Initial Tracks and Distances

This is an initialization function that initializes the Mach Segment flag, denoting that the speed in this
segment is based on Mach, and calculates the point-to-point distances and ground tracks between input
waypoints. Great circle equations are used for these calculations, noting that the various dimensional
conversions, e.g., degrees to radians, are not shown in the following text.

Generate the initial distances, the center-to-center distances, and ground tracks between input
waypoints

for (i = index number of the first waypoint, i < index number of the last waypoint; i =i + 1)
Start with setting the Mach segments flags to false.
Mach Segment; = false
Compute the waypoint-center to waypoint-center distances.
if (i = index number of the first waypoint) Center to Center Distance; = 0
else
Center to Center Distance; =
arccosine(sine(Latitude; ;) * sine(Latitude;) + cosine(Latitude;_;) * cosine(Latitude;) *
cosine(Longitude;.; - Longitude;))
Ground Track;.; =
arctangent2(sine(Longitude; - Longitude; ;) * cosine(Latitude;), cosine(Latitude; ;) *
sine(Latitude;) - sine(Latitude;.;) * cosine(Latitude;) * cosine(Longitude; -
Longitude; 1))
end of for (i = index number of the first waypoint; i <index number of the last waypoint; i =i + 1)
Now set the runway's ground track.
Ground Trackius waypoins = Ground Tracki waypoint - 1
The cumulative distance, DTG, is computed as follows:
DT Glast waypoint — 0

for (i = index number of the last waypoint, i > index number of the first waypoint; i =i- 1)

DTG;.; = DTG, + Center to Center Distance;

12

Initialize Waypoint Turn Data

The Initialize Waypoint Turn Data function is used to determine if a turn exists at a waypoint and if so,
inserts turn-entry and turn-exit TCPs. Waypoints that have more than a 3 degree change in ground track
between the previous waypoint and the next waypoint are considered turn-waypoints. The function is
performed in the following manner:

i = index number of the first waypoint + 1
Last Track = Ground Tracky,s waypoint
Note that the first and last waypoints cannot be turns.
while (i < index number of the last waypoint)
Track Angle After = Ground Track;
a = DeltaAngle(Last Track, Track Angle After)
Check for a turn that is greater than 170 degrees.
if (la| > 170)
Set an error and ignore the turn.
Mark this as an error condition.
a=10
If the turn is more than 3-degrees, compute the turn data.
if (la| > 3)
half turn =a /2
Track Angle Center = Last Track + half turn
This is the center of the turn, e.g., the original input waypoint.
Ground Track; = Track Angle Center
Turn Data Trackl; = Last Track
Turn Data Track2; = Track Angle After
If this is not an RF turn, then the turn radius needs to be calculated.
if (Wpt; # rf-turn-center) Turn Data Turn Radius; = 0
Turn Data Path Distance; = 0

Insert a new TCP at the end of the turn.

13

The new TCP is inserted at location i+/ in the TCP list. The TCP is inserted between TCP;
and TCP;,; from the original list. The function InsertWaypoint should be appropriate for the
actual data structure implementation of this function.
InsertWaypoint(i + 1)
Note that TCP;.; is the new TCP.
TCP;; = turn-exit
DTG i+, = DTG
Ground Track ;+; = Track Angle After
The start of the turn TCP is as follows,
InsertWaypoint(i)
TCP; = turn-entry
Note that the original TCP is now at index i + 1.
DTG; = DTG4,
Ground Track; = Last Track
Last Track = Track Angle After
i=i+2
end of if (|a| > 3)
else Last Track = Ground Track;
i=i+1
end of while (i < index number of the last waypoint)
Effectively, this function:

- Marks each turn-waypoint and sets its ground track angle to the computed angle at the midpoint of
the turn.

- Inserts a co-distance turn-entry TCP before this turn-waypoint with the ground track angle for this
turn-entry TCP set to the value of the inbound ground track angle.

- Inserts a co-distance turn-exit TCP after this turn-waypoint with the ground track angle for this
turn-exit TCP set to the value of the outbound ground track angle.

An example illustrating the inserted turn-start and turn-end TCPs is shown in figure 3.

14

Turn waypoint, Ground Track; = 105°

. & Turn-exit, Ground Track;4 j = 120°

Ground Track;_y = 90°

Turn-entry, Ground Track;_; = 90°

Ground Track;y 5 = 120°

Figure 3. Initialized turn waypoint.

Compute TCP Altitudes

Beginning with the last waypoint, the Compute TCP Altitudes function computes the altitudes at each
previous TCP and inserts any additional altitude TCPs that may be required to denote a change in the
altitude profile. The function uses the current altitude constraint (7CP; in fig. 4), searches backward for
the previous constraint (7CP;; in fig. 4), and then computes the distance required to meet this previous
constraint. The altitudes for all of the TCPs within this distance are computed and added to the data for
the TCPs. If the along-path distance to meet the previous constraint is not at a TCP, a new altitude VTCP
is inserted at this distance. An example of this is shown in figure 5. In addition, if the Crossing Angle for
a waypoint is set to -99, this denotes that the algorithm is to internally compute the Crossing Angle
between this and the next higher, altitude constrained waypoint, noting that this option should only be
used in situations where the relevant waypoint pairs are known to procedurally have a fixed angle
between them. This function is performed in the following steps:

Crossing Altitude;_3 = 11000 f

Crossing Altitude; = 5300 ft
Crossing Angle; = 2.3°

I'CPy 3 TCP; 5 TCP;_; ICF;

Figure 4. Input altitude crossing constraints.

Crossing Altitude;_z = 11000 f

S Altitude; 5 = 9560 ft
it _“_l_zfir”dei-f =7940f Crossing Altitude; = 5300 fi

=~~~ _ _Crossing Angle; = 2.3°

—_—

TCPE—S New TCFP TCP;'_Q TCP;-] TCPE-
Figure 5. Computed altitude profile with TCP added.

15

Set the current constraint index number, cc, equal to the index number of the last waypoint,
cc = index number of the last waypoint
Set the altitude of this waypoint to its crossing altitude,
Altitude.. = Crossing Altitude,,
Set a flag denoting that the TOD point has not been identified
Have TOD = false
While (cc > index number of the first waypoint)
If this is the TOD, mark this point.
if Have TOD is false and Altitude.. is equal or greater than Altitude,
Have TOD = true
mark this as the TOD point.
Determine if the previous constraint cannot be met.
If (Altitude.. > Crossing Altitude..)
The constraint has not been made.
If this is the last pass through the algorithm, mark this as an error condition.
Altitude.. = Crossing Altitude,.

Find the prior waypoint index number pc that has an altitude constraint, e.g., a crossing altitude
(Crossing Altitudepc # 0). This may not always be the previous (i.e., cc - I) waypoint.

Initial condition is the previous TCP.
pc=cc-1

while ((pc > index number of the first waypoint) and ((TCP,. # input waypoint) or
(Crossing Altitude ,. = 0))) pc = pc - 1

Save the previous crossing altitude,

Prior Altitude = Crossing Altitude,,

Save the current crossing altitude (7Test Altitude) at TCP,. and the descent angle (Test Angle)
noting that the first and last waypoints always have altitude constraints and except for the first

waypoint, all constrained altitude points must have descent angles.

Test Altitude = Crossing Altitude,..

16

Test Angle = Crossing Angle..
If the Test Angle value, i.e., AUTO DESCENT ANGLE, denotes that this is angle is to be
computed internally as a linear descent between the two altitude constrained waypoints then the
following calculations are performed:
if (Test Angle = AUTO DESCENT ANGLE)

dx = DTG, - DTG,

dy = Prior Altitude - Test Altitude

Test Angle = arctangent2 (dy, 6076 * dx)

Crossing Angle.. = Test Angle

Test for an extreme angle, e.g., 7.5°.

if (Test Angle > maximum allowable descent angle) mark this as an error condition.
Compute all of the TCP altitudes between the current TCP and the previous crossing waypoint.
k=cc
while k > pc

If the previous altitude has already been reached, set the remaining TCP altitudes to the
previous altitude.

if (Prior Altitude < Test Altitude)
for(k=k-1; k> pc, k=k- 1) Altitude, = Test Altitude
Set the altitude at the last test point.
Altitude,. = Test Altitude
else
Compute the distance from TCP; to the Prior Altitude using the altitude difference
between the Test Altitude and the Prior Altitude with the Test Angle. If there is no point at
this distance, add a TCP at that distance.
Compute the distance dx to make the altitude.
dx = (Prior Altitude - Test Altitude) / (6076 * tangent(Test Angle))

Compute the altitude z at the previous TCP.

z = ((DTGy.; - DTGy) * 6076) * tangent(Test Angle) + Test Altitude

17

If there is a TCP prior to this distance or if z is very close to the Prior Altitude, compute
and insert its altitude.

if ((DTGy.; < (DTG + dx)) or (|z - Prior Altitude| < some small value))
if (|z - Prior Altitude| < some small value) Altitude ;.; = Prior Altitude
else Altitude .; = z

Check to see if the constraint has been reached with a 100 ft tolerance; if not, set an
error condition.

if ((k-1) = pc)
if (|Altitude,. - Crossing Altitude,.| > 100ft) mark this as an error condition
Always set the crossing exactly to the crossing value.
Altitude,. = Crossing Altitude,.
Update the Test Altitude.
Test Altitude = Altitude .,
Decrement the counter to set it to the prior TCP.
k=k-1
end of if ((DTGy.; < (DTG + dx)) or (|z - Prior Altitude| < some small value))
else

The altitude constraint is reached prior to the TCP, a new VTCP will need to be
inserted at that point. The distance to the new TCP is,

d=DTGk+dx

Compute the ground track at distance d along the trajectory and save it as Saved
Ground Track.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location £ in the TCP list. The VTCP is inserted between
TCPy.; and TCP;, from the original list. The function InsertWaypoint should be
appropriate for the actual data structure implementation of this function.
InsertWaypoint(k)

Update the data for the new VTCP which is now TCP;.

if (VSegType, = no type) VSegType, = ALTITUDE

18

DTG, =d

Altitude;, = Prior Altitude

Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptInTurn and ComputeGndTrk are described in subsequent
sections.

if (WptinTurn(k)) Ground Track, = ComputeGndTrk(k, d)

else Ground Track;, = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of TCP;.
GenerateWptWindProfile(d, TCP,)

Test Altitude = Prior Altitude

Since TCPy, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc=cc+1
The function loops back to while k > pc.
Now go to the next altitude change segment on the profile.
cc=k
The function loops back to while cc > index number of the first waypoint.

Copy Crossing Angles
The Copy Crossing Angles is a simple function that starts with the next to last TCP and copies the
subsequent crossing angle if the current TCP does not have a crossing angle. E.g.,

for (i = index number of the last waypoint - 1; i > index number of the first waypoint; i =i - 1)
if (Crossing Angle; = 0) Crossing Angle; = Crossing Angle;.,

Meet Cruise CAS Waypoint Restriction

The Meet Cruise CAS Waypoint Restriction function changes, if required, the descent Mach if there is a
high altitude, CAS restricted waypoint and the computed speed is above the required crossing speed for
that CAS waypoint.

The calling function provides as input and retains the subsequent outputs for the following variables:
Todld, TodMach, TodMachRate, and MachCasAtTod. The variable Todld is the name of the top-of-
descent waypoint (TOD) and is initialized as an empty string by the calling program. This Meet Cruise
CAS Waypoint Restriction function may modify the Mach and speed change rate that occurs at the TOD,
TodMach and TodMachRate, respectively, and these values are then passed to subsequent functions that
require these data. The variable MachCasAtTod is a flag that if true, indicates that the Mach-to-CAS
transitions occurs at the TOD point.

19

If the Mach value for the first waypoint is not set, i.e., the path does not start with a Mach segment, and
the function terminates with MachCasAtTod set to false. Otherwise, the following is performed.

if (Crossing Mach s waypoine = 0) terminate this function. Otherwise,
Set the initial values.

MachCasAtTod = false

MachCasModified = false

CasIndex = index number of the first waypoint

AltAtMach = 0.

LastMach = 0

z=10

done = false

If the TOD Mach data have been modified in a previous invocation of Add Descent Mach Waypoint,
indicated by a non-empty value for Todld, reset their values.

if (Todld # empty)
fini = false
i = index number of the first waypoint
Find the waypoint with the name defined in Todld.
while ((i < (index number of the last waypoint)) and (fini = false))
if (Id; = Todld)
fini = true
Crossing Mach; = TodMach
Crossing CAS; =0
Crossing Rate; = TodMachRate
Todld = empty string
i=i+1
end of if (Todld # empty)

Find the first CAS waypoint.

20

fini = false
i = index number of the first waypoint
while ((i <index number of the last waypoint) and (fini = false))
if (Crossing CAS; > 0)
Caslndex = i
fini = true
i=i+1

Determine if the trajectory is already at the CAS altitude, i.c., the initial altitude is the CAS altitude,
and if so, start in a CAS mode, not Mach.

if (Crossing Altitude s waypoin: = Altitudecysinges)
done = true
for (k = index number of the first waypoint, k < Casindex; k =k + 1)
if (Crossing Machy > 0)
Change the route data so that the trajectory is starting in a CAS mode.

Invoke the secondary function MachToCas. This function is described in a subsequent
section.

Crossing CAS; = MachToCas(Crossing Machy, Altitudec,singe:)
Crossing Mach;, = 0
MachSegment, = false
end of if (Crossing Machy > 0)
if (done = false)
Find the last Mach value.
fini = false
i = index number of the first waypoint
while ((i < index number of the last waypoint) and (fini = false))
if (Crossing CAS;> 0) fini = true

else if (Crossing Mach; > 0) LastMach = Crossing Mach,;

21

i=i+1
Determine the descent Mach value.
if (Mach Descent Mach # 0) DescentMach = Mach Descent Mach
else DescentMach = LastMach
Determine the Mach-to-CAS transition CAS value.
if (Mach Transition CAS > 0)
MachCas = Mach Transition CAS
if (Mach Transition CAS < Crossing CAScasinder) MachCas = Crossing CAS casindex
else MachCas = Crossing CAScasindex
Find the last Mach altitude.
fini = false
i = index number of the first waypoint
while ((i < index number of the last waypoint) and (fini = false))
if (Crossing CAS; > 0) fini = true
else if (Crossing Altitude; > 0) AltAtMach = Crossing Altitude;
i=i+1
Determine if the Mach is slower than the descent CAS.

Invoke the secondary function MachCasTransitionAltitude which calculates the altitude where
the Mach and CAS are equal. This function is described in a subsequent section.

z = MachCasTransitionAltitude(MachCas, DescentMach)
if (z > Crossing Altitudeg, vwaypoini)

The path is already below the transition altitude, change the route data so it starts in a CAS
mode.

for (k = index number of the first waypoint, k < index number of the last waypoint;, k =k + 1)
done = true
if (Crossing Machy, > 0)

Crossing CASy, = MachCas
22

Crossing Mach;, = 0
MachSegment, = false
end of if (done = false)
if (done = false)
Find the last Mach value.
fini = false
i = index number of the first waypoint
while ((i < index number of the last waypoint) and (fini = false))
if (Crossing CAS; > 0) fini = true
else if (Crossing Mach; > 0) LastMach = Crossing Mach,;
i=i+1
Determine the descent Mach.
if (Mach Descent Mach # 0) DescentMach = Mach Descent Mach
else DescentMach = LastMach
Find the Mach-to-CAS transition CAS.
if (Mach Transition CAS > 0) MachCas = Mach Transition CAS
Make sure that the crossing restriction can be obtained.
if (Mach Transition CAS < Crossing CAScasindger) MachCas = Crossing CAS casindex
else MachCas = Crossing CAScusindex
Find the last Mach altitude.
fini = false
i = index number of the first waypoint
while ((i < index number of the last waypoint) and (fini = false))
if (Crossing CAS; > 0) fini = true
else if (Crossing Altitude; > 0) AltAtMach = Crossing Altitude;

i=i+1

23

Determine if the Mach is slower than the descent CAS.
z = MachCasTransitionAltitude(MachCas, DescentMach)
if (z > Crossing Altitudes,s vaypoin))

The path is already below the transition altitude, change the route data so it is starting in a
CAS mode.

for (k = index number of the first waypoint; k < index number of the last waypoint; k =k + 1)
done = true
if (Crossing Mach; > 0)
Crossing CAS, = MachCas
Crossing Mach, = 0
MachSegment, = false
end of if (done = false)

If the path still starts with a Mach segment, which may have already been modified in this function,
test for other special cases.

if (done = false)
If required, handle the special case of an accelerated descent.
if (DescentMach > LastMach)
Invoke the secondary function HandleDescentAccelDecel. This function handles the special
case of a Mach acceleration in the descent where the first CAS crossing restriction cannot be
met. This function is described in a subsequent section. This function may modify the

waypoint data.

HandleDescentAccelDecel(Caslndex, LastMach, MachCasModified, DescentMach,
MachCas)

If the descent data are changed, recalculate z.

if (MachCasModified)
z = MachCasTransitionAltitude (MachCas, DescentMach)
Next, update the waypoint data.
Mach Descent Mach = DescentMach

Mach Transition CAS = MachCas

24

end of if (DescentMach > LastMach)
if (z < Crossing Altitudecusingey)
At this point, the descent CAS or Mach needs to be changed.
m = CasToMach(MachCas, Crossing Altitudecysigex)
if (m > DescentMach)
Change the descent CAS.
MachCas = MachToCas(DescentMach, Crossing Altitudecysigex)
else
DescentMach = CasToMach(MachCas, Crossing Altitudecasinger)
Mach Descent Mach = DescentMach
z = Crossing Altitude cusindex

Perform an extreme limits test, assuming that a valid Mach value will be between 0.6 and 0.9
Mach.

if ((DescentMach > 0.9) or (DescentMach < 0.6)) mark this as an error condition
end of if (z < Crossing Altitudecusinger)

Make sure that there is sufficient distance to slow from the Mach-to-CAS transition speed to
make the crossing CAS.

if ((z = Crossing Altitudecysinae) and (MachCas > Crossing CAScusinger) and
(Crossing Ratecusinge: > 0) and (MachCasModified = false))

Find the distance at z. This is an iterative solution.
i = Caslndex - 1

fini = false

Calculate the headwind at the end point. This calculation the secondary function
InterpolateWindWptAltitude, described in a subsequent section.

InterpolateWindWptAltitude(Wind Profilecasides, Altitudecusmaer, Ws, Wd)
HeadWind = Ws * cosine(Wd - GndTrack cusnder)

CurrentGs = ComputeGndSpeedUsingTrack(Crossing CAS cusinders» GRATrack casides,
AllitudeCaslndex; WS, Wd)

Iterate = false

25

OnePass = true

MCasHold = MachCas

LastCut = 0

while (fini = false)
i = Caslndex - 1
while ((i > index number of the first waypoint) and (Altitude ; < z)) i =1i- 1
if ((Altitude; - Altitude;.;) <0) a = 0
else a = (z - Altitude;. ;) / (Altitude; - Altitude;. ;)
Calculate the distance, dx, required to reach the altitude.
dx =a * (DTG, - DTG;+;) + DTGi+; - DTG cusinder
InterpolateWindWptAltitude(Wind Profilecasides, z, Ws2, Wd2)
Hw2 = Ws2 * cosine(Wd2 - GndTrack;)
AvgHw = (HeadWind + Hw2) / 2

Invoke the secondary function EstimateNextCas. EstimateNextCas is an iterative function
to estimate the CAS value at the next waypoint.

CasTest =EstimateNextCas(Crossing CAScusinger» CurrentGs, true, MCasHold, AvgHw,
z, dx, Crossing Ratecusider)

If required, set up the iteration values, where the iteration value is in CAS.
if (OnePass = true)

if (CasTest < MachCas) Iterate = true

else fini = true

OnePass = false

Calculate the iteration step size.

LastCut = |[MachCas - CasTest|

Limit the step size to no smaller than 2 kt.

if (LastCut < 2) LastCut = 2

if (Iterate)
26

if (MachCas > CasTest) s = MachCas - LastCut
else s = MachCas + LastCut
LastCut = 0.5 * LastCut
if (s > MCasHold) s = MCasHold
Determine if the Mach-to-CAS estimate is valid.
if ((s + 0.25) > MachCas) and (|s - MachCas| < 1))
fini = true
Calculate the Mach-to-CAS altitude for the current estimate.
z = MachCasTransitionAltitude (MachCas, DescentMach)
Determine if a deceleration is needed prior to the TOD. Add a 50 ft buffer value.
if (z > (AltAtMach + 50))
Find the TOD waypoint.
fini2 = false
J = index number of the first waypoint
while ((j < index number of the last waypoint) and (fini2 = false))
if (Waypoint; is marked as the TOD point) fini2 = true
elsej=j+1
The altitude index for the test is the TOD altitude point.
if (fini2 and (i =j))
Mach Descent Mach = CasToMach(Mach Transition CAS, AltAtMach)
MachCasAtTod = true
end of if (z > (AltAtMach + 50))
end of if (((s + 0.25) > MachCas) and (|s - MachCas| < 1))
else
Mach Transition CAS = s

MachCas = s

27

z = MachCasTransitionAltitude(MachCas, DescentMach)
if (z > Altitude;) z = Altitude;
j=j+1
Add a test to limit the number of iterations to 10.
if G > 10) fini = true

end of if (Iterate)

end of while (fini = false)
end of if (done = false)

Add Descent Mach Waypoint

The Add Descent Mach Waypoint function changes the descent waypoint Mach if the descent Mach,
Mach Descent Mach, is different than the cruise Mach. The function also will add any required, additional
TCPs.

The calling program provides as input and retains the subsequent outputs for the following variables:
Todld, TodMach, and TodMachRate. The variable Todld is the name of the top-of-descent waypoint and
is initialized as a null string by the calling program. Since this function may overwrite the Mach and
speed change rate for an input waypoint, these variables allow the function to retain the original values for
Mach and speed change rate and to then reset these variables to their original values prior to recalculating
new values.

If the Mach value for the first waypoint is not set, i.e., the path does not start with a Mach segment, or
there is no defined descent Mach, i.e., Mach Descent Mach = 0, the function terminates. Otherwise,

If the previous TOD data for an input waypoint have been changed, these data are restored to their
original values.

fini = false

i = index number of the first waypoint

The last designated Mach waypoint,

LastMachindex = index number of the first waypoint
The first designated CAS waypoint,

FirstCaslndex = index number of the first waypoint
TodIndex = 0

Find the Mach and CAS waypoints.

fini = false
28

i = index number of the first waypoint
while ((i < index number of the last waypoint) and (fini = false))
if (Crossing Mach; > 0) LastMachindex = i
else if (Crossing CAS; > 0)
FirstCaslndex = i
fini = true
i=i+1
Find the TOD waypoint and Mach.
fini = false
i = index number of the first waypoint
while ((i <index number of the last waypoint) and (fini = false))
if ((Altitude; < Altitudej,s waypoin:) 0F (Cas Cross; > 0))
if (Altitude; # Altitudes s waypoin) TodIndex =i - 1
else Todlndex =i
fini = true
else if (Crossing Mach; > 0) MachAtTod = Crossing Mach,;

i=i+1

If the vertical segment type has not been defined, mark this as the TOD.

if ((Todlndex > 0) and (VSegTyperoaur = no type)) VSegTyperous = TOD ALTITUDE

Check for errors. There cannot be a programmed descent Mach if there is a downstream Mach

restriction.

if ((LastMachindex > Todlndex) or (FirstCasindex < TodIndex)) mark this as an error condition

else

Save the Mach values for all input waypoints so that they may be reset on subsequent passes back

to their original input values.
if (Waypointr,dmdex = input waypoint)

copy the name of Waypointrsgnae. into Todld

29

TodMach = Crossing Machroaindex
TodMachRate = Crossing Rater,umdex
if ((Waypointreainae: = input waypoint) and (Crossing Raterogimge: > 0))
CAS Rate = Crossing Rater,qmdex
else CAS Rate = 0.75 kt / sec (a default value)
The following is added to force a subsequent speed calculation.
Crossing Raterpgmaex = CAS Rate
If the aircraft will slow during the descent, do the following:
if (MachAtTod > Mach Descent Mach)
Overwrite the TOD Mach value.
Crossing Machr,gpaex = Mach Descent Mach
else
This is a special case where the aircraft is accelerating to the descent Mach.

Invoke the secondary function DoTodAcceleration. This function is described in a subsequent
section.

DoTodAcceleration(Todldx, MachAtTod)
Crossing Machr,gmaex = MachAtTod

Compute Mach-to-CASTCP
If a Mach-to-CAS transition is required, this functions computes the Mach-to-CAS altitude and inserts

a Mach-to-CAS TCP. This function is only performed if the input data starts with a Mach Crossing Speed
for the first waypoint. The function determines the appropriate Mach and CAS values, calculates the
altitude that these values are equal, and then determines the along-path distance where this altitude occurs
on the profile. A Mach-to-CAS TCP is then inserted into the TCP list.

Find the last Crossing Mach and the first Crossing CAS in the list.

First CAS=0

i = index number of the first waypoint

while ((i <index number of the last waypoint) and (First CAS = 0))

if (Crossing Mach; > 0)

Last Mach = Crossing Mach;
30

Last Mach Altitude = Altitude;
else if (Crossing CAS; > 0)
First CAS = Crossing CAS;
CAS Rate = CAS Rate;
i=i+1
If there is a Mach-to-CAS CAS transition speed input, use this value for the First CAS value.
if (Mach Transition CAS > 0) First CAS = Mach Transition CAS
Compute the Mach-to-CAS transition altitude.

z = ComputeMachCasAltitude(FirstCas, LastMach)

For an actual implementation, it would be beneficial to check for an error at this point. If z is greater
than the altitude associated with the Last Mach TCP or if z is less than the altitude associated with the
First CAS TCP, then an error should be noted.
Find where z first occurs.
i = index number of the first waypoint + 1
finished = false
while ((i < index number of the last waypoint) and (finished = false))
if (Altitude; > z) i =i + 1
else finished = true
Find the distance to this altitude.
x = Altitude, ; - Altitude;
if (x £0) ratio = 0
else ratio = (z - Altitude;) / x
d = ratio * (DTG.; - DTG,) + DTG;
Compute the ground track at distance d along the trajectory and save it as Saved Ground Track.
Saved Ground Track = GetTrajGndTrk(d)
Insert a new TCP at location i in the TCP list. The TCP is inserted between TCP,_; and TCP; from the
original list. The function InsertWaypoint should be appropriate for the actual data structure

implementation of this function.

InsertWaypoint('i)
31

Mark this TCP as the Mach-to-CAS transition TCP.

Add the data for this new TCP.

Crossing Mach; = Last Mach

Crossing CAS; = First CAS

CAS Rate; = CAS Rate

DTG;=d

Altitude; = z

Crossing Angle; = Crossing Angle;.;

Ground Track; = Saved Ground Track

Mach; = Last Mach

CAS; = First CAS

Compute and add the wind data at distance d along the path to the data of TCP;.
GenerateWptWindProfile(DTG,, TCP;)

Mark all TCPs from the first TCP (TCPji waypoin) to TCPy.; as Mach TCPs.

Compute Altitude/ CAS Restriction TCP
If an altitude / CAS restriction is required, the Compute Altitude / CAS Restriction TCP function

computes the altitude / CAS restriction point and insert an altitude / CAS TCP. This is the (U.S.) point
where the trajectory transitions through 10,000 ft and a 250 kt restriction is required. This function is only
performed if the previously computed flag NeedlOKRestriction is true. The function determines the
along-path distance where this altitude / CAS occurs on the profile. A TCP is then inserted into the TCP
list at this point. The restriction values are Descent Crossing Altitude and Descent Crossing CAS.

Find the first TCP that is below the Descent Crossing Altitude in the list.

i = index number of the first waypoint

k=i

fini = false

while ((i <index number of the last waypoint) and (fini = false))

if (Altitude; < Descent Crossing Altitude)
k=i

fini = true

32

i=i+1
Find the last CAS restriction prior to the first waypoint below Descent Crossing Altitude.
i=k-1
fini = false
Last CAS =0
while ((i > 0) and (fini = false))
if (Crossing CAS; > 0)
Last CAS = Crossing CAS;
fini = true
i=i-1
Determine if an altitude or CAS TCP is required. If it is, add it.
if ((TCPyis a Mach segment) and (Last CAS > Descent Crossing CAS))
i=k
Find the distance to this altitude.
x = Altitude, ; - Altitude;
if (x <£0) ratio = 0
else ratio = (Descent Crossing Altitude - Altitude,;) / x
d = ratio * (DTG.; - DTG,) + DTG;
Compute the ground track at distance d along the trajectory and save it as Saved Ground Track.
Saved Ground Track = GetTrajGndTrk(d)
Insert a new TCP at location i in the TCP list. The TCP is inserted between TCP,_; and TCP; from
the original list. The function InsertWaypoint should be appropriate for the actual data structure
implementation of this function.
InsertWaypoint('i)
Mark this TCP as the altitude / CAS restriction TCP.
VSegType; = altitude CAS restriction

TurnType; = no turn

33

Add the data for this new TCP.
Crossing Mach; = 0

Crossing CAS; = Descent Crossing CAS
Use a high value, arbitrary CAS rate.
CAS Rate; = 0.75 kt / sec

DTG;=d

Altitude; = Descent Crossing Altitude
Crossing Angle; = Crossing Angle;.;
Set the Mach flag for TCP; to false
Ground Track; = Saved Ground Track
Mach; = 0

CAS; = Descent Crossing CAS
Compute and add the wind data at distance d along the path to the data of 7CP;.
GenerateWptWindProfile(DTG,, TCP;)

Test for Altitude/ CAS Restriction Requirement
The Test for Altitude / CAS Restriction Requirement function determines if the addition of an altitude /

CAS restriction point is required. This is the (U.S.) point where the trajectory transitions through 10,000
ft and a 250 kt restriction is required. This function determines the value of the Needl0KRestriction flag.
The function can only be called after an initial, preliminary trajectory has been generated. The restriction
values are Descent Crossing Altitude and Descent Crossing CAS.
Needl0KRestriction = false
if ((Descent Crossing Altitude > 0) and (Descent Crossing CAS > 0)) ok = true
else ok = false
If we don't start above 10,0001t, skip this whole routine.
if (ok and (Altitude waypon: > Descent Crossing Altitude))
Find the first point below Descent Crossing Altitude
fini = false

i=0

34

while ((i <index number of the last waypoint) and (fini = false))
if (Altitude; < Descent Crossing Altitude)
Find the distance to this altitude.
x = Altitude, ; - Altitude;
if (x <0) ratio = 0
else ratio = (Descent Crossing Altitude - Altitude;) / x
s =ratio * (CAS,.; - CAS;) + CAS;

if (s > (Descent Crossing Cas + 2)) Needl0KRestriction = true

fini = true
i=i+1
Compute TCP Speeds

The Compute TCP Speeds function is similar to Compute TCP Altitudes in its design. Beginning with
the last waypoint, this function computes the Mach or CAS at each previous TCP and inserts any
additional speed TCPs that may be required to denote a change in the speed profile. The function uses the
current speed constraint, searches backward for the previous constraint, and then computes the distance
required to meet this previous constraint. The speeds for all of the TCPs within this distance are computed
and added to the data for the TCPs. If the along-path distance to meet the previous constraint is not at a
TCP, a new speed VTCP is inserted at this distance. This function invokes two secondary functions,
described in the subsequent text, with the invocation dependent on the constraint speed, whether it is a
Mach or a CAS value. This function is performed in the following steps:

Set the current constraint index number, cc, equal to the index number of the last waypoint,

cc = index number of the last waypoint
The speed of the first waypoint is set to its crossing speed.
if (Crossing Machyys waypoin: > 0)

Mach grsi vwaypoine = Crossing Machys vwaypoint

CAS first waypoine = MachToCas(Mach s waypoins, Altitude firs waypoint)
else

CAS first waypoint = Crossing CASfrstwaypoint

Mach st waypoine = CasToMach(CAS jirst waypoinss Altitude s waypoint)
The speed of the last waypoint is set to its crossing speed,
CAS .. = Crossing CAS,..

35

A flag signifying that Mach segment computation has begun is set to false,
Doing Mach = false
While (cc > index number of the first waypoint)
Set the Mach flag if the current TCP is the Mach-to-CAS transition point.
if (TCP.. = Mach Transition CAS) Doing Mach = true
if (Doing Mach) ComputeTcpMach(cc)
else ComputeTcpCas(cc)
end of while cc > index number of the first waypoint

Compute Secondary Speeds

The Compute Secondary Speeds function adds the Mach values to CAS TCPs, the CAS values to Mach
TCPs, and the ground speed values to all TCPs. This function is performed in the following steps:

Doing Mach = false
Working backwards from the runway, compute the relevant speeds.
for (i = index number of the last waypoint; i > index number of the first waypoint; i =i- 1)
Set the flag if the current TCP is the Mach-to-CAS transition point.
if (TCP; = Mach Transition CAS) Doing Mach = true
if (Doing Mach) Cas; = MachToCas(Mach,, Altitude;)
else Mach; = CasToMach(Cas,;, Altitude;)
Compute the ground track.
if (i = index number of the first waypoint) track = Ground Track;
else if (WptInTurn(i) or (TCP; = turn-exit)) track = Ground Track;
else track = Ground Track;_;
Compute the ground speed. This also requires the computation of the wind at this point.
InterpolateWindWptAltitude(Wind Profile,, Altitude, Wind Speed, Wind Direction)

Ground Speed; = ComputeGndSpeedUsingTrack (Cas,, track, Altitude, Wind Speed,
Wind Direction)

end of for (i = index number of the last waypoint, i > index number of the first waypoint; i =i- 1)

36

Update Turn Data

The Update Turn Data function computes the turn data for each turn waypoint and modifies the
associated waypoint's turn data sub-record. This function performs as follows:

KitsToFps = 1.69

Nominal Bank Angle = 22

index = index number of the first waypoint + 1

while (index < index number of the last waypoint)
Find the next input waypoint with a turn.

while ((index < index number of the last waypoint) and ((TCP;qex # input waypoint) or
(not WptinTurn(index)))) index = index + 1

If there are no errors and there is a turn of more than 3-degrees, compute the turn data.
if (index < index number of the last waypoint)
Find the start of the turn.
i =index -1
while (TCP; # turn-entry) i =i - 1
start =i
The following are all approximations and are based on a general, constant radius turn.

The start of turn to the midpoint data is as follows, noting that the ground speeds for all points
must be valid at this point.

The overall distance d for this part of the turn is,

d = DTGy - DTGingex

The special case with 0 distance between the points is,

if (d < 0) AvgGsFirstHalf = (Ground Speedy,,, + Ground Speed,,q..) / 2
else

The overall average ground speed is computed as follows, noting that it is the sum of
segment distance / overall distance * average segment ground speed.

AvgGsFirstHalf = 0
Sfor (j = start; j < (index - 1); j =j + 1)

dx = DTG/ - DTG/+1
37

AvgGsFirstHalf = AvgGsFirstHalf + (dx / d)
* (Ground Speed; + Ground Speed,; ;) / 2

Now, find the end of the turn.
i =index + 1
while (TCP; # turn-exit) i =i + 1
end =i
Now, find the midpoint to the end of the turn.
The overall distance for this part of the turn is,
d = DTGipgex - DTG ong
Test for the special case, 0 distance between the points.
if(d=<0)
AveGsLastHalf = (Ground Speed;q.x + Ground Speed,;) / 2
else

Compute the overall average ground speed noting that it is the sum of segment
distance / overall distance * average segment ground speed.

AvgGsLastHalf = 0
for (j =index; j<(end-1);j=j+ 1)
dx :DTG] - DTG]+]

AvgGsLastHalf = AvgGsLastHalf + (dx / d) *
(Ground Speed; + Ground Speed;.;) / 2

end of for (j = index; j<(end-1);j=j+ 1)
end of else if (d <0)
full turn = DeltaAngle(Ground Tracksy,, Ground Tracke,,)
half turn = full turn / 2
Compute the outputs from the average ground speed.
Average Ground Speed = (AvgGsFirstHalf + AvgGsLastHalf) / 2

Save the ground speed data in the turn data for this waypoint.

38

Turn Data Average Ground Speed;yg.. = Average Ground Speed

Compute the turn radius and associated data. This set of calculations is not performed if the
waypoint is a special, RF center-of-turn turn waypoint.

if (Wpt; # rf-turn-center)

The general equation is turn rate = ¢ tan(bank angle) / v. If the bank angle is a constant,
turn rate = c0 / v. The Nominal Bank Angle = 22 degrees.

c0 =573 *32.2/KtsToFps * tangent(Nominal Bank Angle)
w = c0/ Average Ground Speed

The time to make the turn is,

Turn Data Turn Timege, = |full turn| / w

The turn radius is,

Turn Data Turn Radius;ge. = (57.3 * KtsToFps * Average Ground Speed) /
(6076 *w)

The along-path distance for the turn is,

Turn Data Path Distance;uge, = |full turn| * Turn Data Turn Radius;,gex / 57.3
else

These are the data for an RF turn. The along-path distance for the turn is,

Turn Data Path Distance;uge, = |full turn| * Turn Data Turn Radius;,gex / 57.3

The time to make the turn is,

Turn Data Turn Time;,g.x = Turn Data Path Distance;,q.. / Average Ground Speed
* 3600

Save the turn data for the first half of the turn, denoted by the "1" in the variable name.
Turn Data Caslipgex = CASsiare

Turn Data Average Ground Speedl;,q.. = AvgGsFirstHalf

Turn Data Trackl;,g.. = Ground Track,,.

The Straight Distance values are the distances from the turn-entry TCP to the waypoint and
from the waypoint to the turn-exit TCP. See the example in figure 6.

Turn Data Straight Distancel iy = Turn Data Turn Radius i,qe. * tangent(|half turn|)

39

ICP; 5 Straight Distancel ;

TCP; (input waypoint)

TCP,_; (turn entry) Path Distance2;

— istance?,
Path Distancel, Straight Distance 2

half turn TCP; (turn exit)

Center of turn, 7 ‘1"'—"

TCP; 5
Turn Radius;

Figure 6. Turn distances for waypoint,.

The Path Distance values are the along-the-path distances from the turn-entry TCP to a point

one-half way along the turn and from this point to the turn-exit TCP. See the example in

figure 6.

Turn Data Path Distancel ;,qex = |half turn| * Turn Data Turn Radius;,gex / 57.3

Compute the midpoint waypoint data. This set of calculations is not performed if the
waypoint is a special, RF center-of-turn waypoint.

if (Wpt; # rf-turn-center)
w = c0/ AvgGsFirstHalf
Turn Data Turn Timel g = |half turn| / w
else
These are the data for an RF turn.
Turn Data Turn Timel ;4.c = Turn Data Path Distancel iq.. / AvgGsFirstHalf * 3600

The data for the midpoint to the end of the turn, denoted by the "2" in the variable name, are
as follows:

Turn Data Cas2;,gex = CASena
Turn Data Average Ground Speed2;,q.. = AvgGsLastHalf
Turn Data Track2,g.c = Ground Track ..

The distances for the second half of the turn are the same as for the first, but their calculations
are recomputed here for clarity.

Turn Data Straight Distance2;,q.. = Turn Data Turn Radius ;g * tangent(|half turn|)
Turn Data Path Distance2;,q.. = |half turn| * Turn Data Turn Radius;,gex / 57.3

Compute the data for the last half of the turn. Again, this set of calculations is not performed
if the waypoint is a special, RF center-of-turn waypoint.

40

if (Wpt; # rf-turn-center)
w = c0/ AvgGsLastHalf
Turn Data Turn Time2,,4.. = |half turn| / w
else
These are the data for an RF turn.
Turn Data Turn Time2;,4.. = Turn Data Path Distance?2;yg.. / AvgGsLastHalf * 3600
The DTG values are as follows:
DTG, = DTGjpger + Turn Data Path Distancel ;e
DTG.ng = DT Ginger - Turn Data Path Distance?2;, ex

Since the turn waypoints have been moved, the wind data need to be updated for the new
locations.

if (TCPyy, # input waypoint) GenerateWptWindProfile(DTGy, TCPyyari)
if (TCP,,q # input waypoint) GenerateWptWindProfile(DTG .4, TCP,pq)
end of if (index < index number of the last waypoint)
index = index + 1
end of while (index < index number of the last waypoint)

Delete TCPs

The Delete TCPs function deletes the altitude, speed, and Mach-to-CAS TCPs. The remaining TCPs
will only consist of input waypoints, turn-entry, and turn-exit TCPS. This function also removes any flags
that associate any remaining TCPs with a speed or altitude change, e.g., a waypoint marked as the 10,000
ft, 250 kt restriction.

Update DTG Data
The Update DTG Data function is performed after the turn data have been updated and the VTCPs

have been deleted. Only input, turn-entry, and turn-exit TCPs should be in the list at this time. If the input
test flag, TestOnly, is true, then only the testing portions of this function are used.
if (TestOnly = false) DT Gjivst waypoint = 0
i = index number of the last waypoint
while (i > index number of the first waypoint)
Determine if there is a turn at either end and adjust accordingly.

if (WptinTurn(i))

41

if (TestOnly = false) DTG, ; = DTG; + Turn Data Path Distancel;

The following is the difference between going directly from the waypoint to going along the
curved path.

PriorDistanceOffset = Turn Data Straight Distancel; - Turn Data Path Distancel,;
else PriorDistanceOffset = 0
Find the next input waypoint.
n=i-1
while (TCP, # input waypoint) n =n - 1
if (WptinTurn(n))

The following is the difference between going directly from the waypoint to going along the
curved path.

DistanceOffset = Turn Data Straight Distance2, - TurnData.PathDistance?2,
The DTG to the input waypoint is then:

if (TestOnly = false) DTG, = (Center to Center Distance; - PriorDistanceOffset -
DistanceOffset) + DTG,

If the DistanceOffset is greater than Center to Center Distance;, then the turn is too big.
if (DistanceOffset > Center to Center Distance;) mark this as an error condition
The turn-exit DTG is then,
if (TestOnly = false) DTG, .; = DTG, - Turn Data Path Distance2,
else if (TestOnly = false)
The next waypoint is not in a turn.
DTG, = Center to Center Distance; - PriorDistanceOffset + DTG;
1=n

end of while (i > 0)

42

Check Turn Validity
The Check Turn Validity function is performed after the turn data have been updated and the VTCPs

have been deleted. Only input, turn-entry, and turn-exit TCPs should be in the list at this time. The
function simple checks that there are no turns within turns by examining the DTG values.
for (i = index number of the first waypoint, i < index number of the last waypoint;, i =i + 1)

if (DTG; < DTG+;) mark this as an error condition

Recover thelnitial Mach Segments

This function, Recover the Initial Mach Segments, attempts to recover the Mach portion of the
trajectory if the initial segments should be Mach but have been internally converted to CAS in the
function Meet Cruise CAS Waypoint Restriction. This function uses the Mach value that was saved at the
start of this program from the first waypoint of the original route. This saved Mach value, First Waypoint
Mach, is compared to the Mach equivalent value of the CAS at the initial waypoints and if these Mach
values are the same, these waypoints are marked as Mach segments instead of CAS segments.

Only perform this function if the calculated trajectory does not start with a Mach segment but the
original route does start with a Mach value.

if ((Mach Segmentiygex mumber of the first waypoint = false) and (First Waypoint Mach # 0))
Mach = CasToMach(Crossing CASiugex number of the first waypoins AUitUACindex mumber of the first waypoint)
if (Mach = First Waypoint Mach)
fini = false
i = index number of the last waypoint
FirstCas = Crossing CASiudex number of the first waypoint
If there is no Mach transition altitude set, set the transition values.
if (Mach Transition Altitude = 0)
Mach Descent Mach = First Waypoint Mach
Mach Transition Mach = First Waypoint Mach
Mach Transition Cas = FirstCas
Mach Transition Altitude = Altitude;gex of first waypoint
while ((i < (index number of the last waypoint - 1)) and (fini = false))
Test that the CAS computed for the waypoint is the same as the FirstCas, that except for
the first waypoint that there is not speed crossing condition at the waypoint, and that the

altitude computed for the waypoint is the same as the altitude for the first waypoint.

if ((Cas; = FirstCas) and ((i = index number of the last waypoint) or
((Crossing Mach; = 0) and (Crossing CAS; = 0))) and

43

(Altitude; = Crossing Altitudei,gex pumber of the first waypoint))
If the previous conditions are turn, set this waypoint as a Mach segment.
Mach Segment; = true
Change the speed crossing values for the first waypoint.
if (Crossing CAS; > 0)
Crossing CAS; =0
Crossing Mach; = First Waypoint Mach
end of if ((Cas; = FirstCas)...)
else fini = true
i=i+1

Insert CAS Descent VTCPs

This function inserts vertical TCPs between constant CAS descent waypoints to improve the TAS
estimation when using the data provided by this algorithm. This updating occurs at 3,000 ft intervals.

Update Altitude = 3000
Find the first CAS point.
j=0
while ((Mach Segment; = true) and (j < index number of the last waypoint)) j =j + 1
for (i =j; i< (index number of the last waypoint - 1); i =1+ 1)
DeltaZ = Altitude; - Altitude; , ;
Update at 3000 ft intervals but skip the update if the waypoint is within 500 ft of the test altitude.
if ((DeltaZ > (Update Altitude + 500)) and (Cas; = Cas; + 1))
z = Altitude; - Update Altitude
dx = DTG; - DTG,
a = arctangent?2 (DeltaZ, 6076 * dx)
d = DTG, - Update Altitude / tan(a) / 6076

Compute the ground track at distance d along the trajectory and save it as Saved Ground
Track.

44

Saved Ground Track = GetTrajGndTrk(d)

k=i+1

Insert a new VTCP at location k in the TCP list. The VTCP is inserted between TCP,_; and
TCP; from the original list. The function /nsertWaypoint should be appropriate for the actual
data structure implementation of this function.

InsertWaypoint('k)

Update the waypoint-type data in the new waypoint.

WptType, = VICP

VSegType, = TAS adjustment

TurnTypey = no turn

Update the crossing data in the new waypoint.

Crossing Mach, = 0

Crossing CAS;, =0

Crossing Rate, = 0

CAS) = CASy+;

DTG, =d

Altitude, = z

Mach, = CasToMach(CAS;, Altitudey)

Mach Segment, = false

Crossing Angle, = Crossing Angle;

Ground Track, = Saved Ground Track

Compute and add the wind data at this waypoint.

GenerateWptWindProfile(DTG,, TCPy)

Compute the wind at the waypoint altitude and then waypoint's ground speed.
InterpolateWindWptAltitude(Wind Profile;, Altitude;, Ws, Wd)

Ground Speed, = ComputeGndSpeedUsingTrack(CAS;, Ground Tracky.;, Altitude;, Ws, Wd)

45

Compute TCP Times

The function Compute TCP Times calculates the time to each TCP. The calculations begin at the
runway (the last waypoint), working backwards, and compute the TTG to each TCP.

TTGndex mumber of the last waypoint = 0

for (i = index number of the last waypoint, i > index number of the first waypoint; i =i- 1)
Average Ground Speed = (Ground Speed; ;+ Ground Speed;) / 2
x = DTG, - DTG;

Test for an error condition where the distance is less than 0.

if (< 0)
If the distance is close to 0, e.g., within 200 ft., set the distance to the previous and ignore the
error.
if (x> (-200/6076))
DTG; = DTGy,
x=0

Allow a larger margin of error for an RF turn.
else if ((x >-0.05) and (TurnType; = turn-entry)) and (Center Of Turn Latitude; # 0))
DTG; = DTG,
x=10
else mark this as an error condition
Delta Time = 3600 * x / Average Ground Speed
TTG,.; = TTG; + Delta Time

Compute TCP Latitude and L ongitude Data

With the exception of the input waypoints, the Compute TCP Latitude and Longitude Data function
computes the latitude and longitude data for all of the TCPs.

In Turn = false
Last Base = index number of the first waypoint
Next Input = index number of the first waypoint

Turn Index = index number of the first waypoint

46

Turn is Clockwise = true
Turn Adjustment = 0
Base Latitude = Latitudey 45 pase
Base Longitude = Longitude; .5 pase
for (i = index number of the first waypoint; i < index number of the last waypoint; i =i + 1)
if (TCP; = turn-entry)
Turn Adjustment = 0
InTurn = True;
Find the major waypoint for this turn.
Next Input =i + 1

while ((TCPyext pu # input waypoint) and (Next Input < index number of the last waypoint))
Next Input = Next Input + 1

Turn Index = Next Input

a = DeltaAngle(Ground Track;, Ground Trackyex: mpus)
x = Turn Data Turn Radiust,m pmae / cosine(a)

if (a > 0) Turn Clockwise =true

else Turn Clockwise = false

if (Turn Clockwise) al = Ground Trackrym maex + 90
else al = Ground Trackrum mdex - 90

Now compute the relative latitude and longitude values. The function RelativeLatLon is
described in a subsequent section.

RelativeLatLong(Latituder,,, e, Longituder,, jaer, @l, x), returning Center Latitude and
Center Longitude

end of if (TCP; = turn-entry)
if (In Turn)
Turn Adjustment = 0
if (Turn Clockwise) al = Ground Track; - 90

else al = Ground Track; + 90
47

if (TCP; = input waypoint)
Turn Data Center Latitudei = Center Latitude
Turn Data Center Longitudei = Center Longitude

RelativeLatLong(Center Latitude, Center Longitude, al, Turn Data Turn Radiusr,,, ingex)
returning Turn Data Latitude; and Turn Data Longitude;

end of if (TCP; = input waypoint)

else RelativeLatLon(Center Latitude, Center Longitude, al, Turn Data Turn Radiusye mpu),
returning Latitude; and Longitude;

if (TCP; = turn-exit)

Turn Adjustment = Turn Data Straight Distance2 ., jndex -
Turn Data Path Distance2 1, mdex

In Turn = false
Last Base = Next Input
Base Latitude = Latitudey 45 pase
Base Longitude = Longitudey s puse
end of if (In Turn)
else
if (TCP; = input waypoint)
Turn Adjustment = 0
Last Base =i
Base Latitude = Latitudey s pase
Base Longitude = Longitudey s puse
else

RelativeLatLong(Base Latitude, Base Longitude, Ground Track;.;, DTGy pase - DTG, +
Turn Adjustment), returning Latitude; and Longitude;

end of for (i = index number of the first waypoint; i <index number of the last waypoint; i =i + 1)

48

Description of Secondary Functions

The secondary functions are listed in alphabetical order. Note that standard aeronautical functions, such
as CAS to Mach conversions, CasToMach, are not expanded in this document but may be found
numerous references, e.g., reference 22. It may also be of interest to include atmospheric temperature or
temperature deviation in the wind data input and calculate the temperature at the TCP crossing altitudes to
improve the calculation of the various speed terms.

BodDeceler ationDistance
The function BodDecelerationDistance estimates the distance required for the special case of a

deceleration to a CAS restricted waypoint from the Mach-to-CAS transition. This function is invoked
from HandleDescentAccelDecel, which passes in the index number for the bottom-of-descent (TOD)
waypoint, BodIndex, the Mach transition to CAS altitude, MachTransitionAlt, and the CAS at the Mach
transition to CAS, TransitionCas. The function returns the distance from the index point of the
deceleration, Distance.

Estimate the distance to the new Mach value. Begin by finding the time to do the deceleration.

t = (TransitionCas - Crossing CASpoaay) / Crossing Ratep,arax

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profile pouia, Altitude pogra, Ws, Wd)

Calculate the ground track at the current point.

if (WptInTurn(Bodldx)) track = Ground Trackpouii-

else track = Ground Trackg,qu

Calculate the ground speed over this segment.

BodGs = ComputeGndSpeedUsingTrack(Crossing CASpoaia track, Altitudegyqia, Ws, Wd)

DescentGs = ComputeGndSpeedUsingTrack(TransitionCas, track, MachTransitionAlt, Ws, Wd)

Calculate the average groundspeed, 4vgGS.

AvgGs = (BodGs + DescentGs) / 2

The distance estimate is AvgGs * ¢ .

Distance = AvgGs * t /3600

ComputeGndSpeedUsingM achAndTrack

The ComputeGndSpeedUsingMachAndTrack function computes a ground speed from track angle
(versus heading), track, Mach, Mach, altitude, Altitude, and wind data, Wind Speed and Wind Direction.

CAS = MachToCas(Mach, Altitude)

Ground Speed = ComputeGndSpeedUsingTrack(CAS, track, Altitude, Wind Speed, Wind Direction)

49

ComputeGndSpeedUsingT rack

The ComputeGndSpeedUsingTrack function computes a ground speed from track angle (versus
heading), track, CAS, CAS, altitude, Altitude, and wind data, Wind Speed and Wind Direction.

b = DeltaAngle(track, Wind Direction)

if (CAS<0)r=10

else r = (Wind Speed / CasToTas Conversion(CAS, Altitude)) * sine(b)
Limit the correction to something reasonable.

if(lr| >0.8) r=0.8 *r/|r|

heading = track + arcsine(r)

a = DeltaAngle(heading, Wind Direction)

TAS = CasToTas Conversion(CAS, Altitude)

Ground Speed = (Wind Speed’+ TAS® - 2 * Wind Speed * TAS * cosine(a))"’

ComputeGndTrk

The ComputeGndTrk function computes the ground track at the along-path distance equal to distance.,
where distance must lie between TCP;; and TCP;.;. It is assumed that the value for Ground Track; is
invalid. The function uses a linear interpolation based on DTG;.; and DTG, ;, with the index value i input
into the function and where the distance, distance, must lie between these points.

d=DTG,,-DITG,

if (d <0) Ground Track = Ground Track;,

else
a = (1 - (distance - DT ;1) /d) * DeltaAngle(Ground Track;.;, Ground Track;.;)
Ground Track = Ground Track;.; + a

ComputeT cpCas

The index variable cc is passed into and out of the ComputeTcpCas function. Beginning with the last
waypoint, this function computes the CAS at each previous TCP and inserts any additional speed TCPs
that may be required to denote a change in the speed profile. The function uses the current speed
constraint, searches backward for the previous constraint, and then computes the distance required to meet
this previous constraint. The speeds for all of the TCPs within this distance are computed and added to the
data for the TCPs. If the along-path distance to meet the previous constraint is not at a TCP, a new speed
VTCP is inserted at this distance. Because there is no general closed form solution to compute distances
to meet the deceleration constraints, an iterative technique is used in this function. This function is
performed in the following steps:

While ((cc > index number of the first waypoint) and (TCP,. # Mach Transition CAS))

Determine if the previous constraint cannot be met.
50

If (CAS,. > Crossing CAS,.)
If this is the last pass through the algorithm, mark this as an error condition
CAS,. = Crossing CAS,.

Find the prior waypoint index number pc that has a CAS constraint, e.g., a crossing CAS
(Crossing CASpc # 0). This may not always be the previous (i.e., cc - 1) waypoint.

The initial condition is the previous TCP.
pc=cc-1

while ((pc > index number of the first waypoint) and (TCP,. # Mach Transition CAS)
and (Crossing CAS ,. = 0)) pc = pc - 1

Save the previous crossing speed,

Prior Speed = Crossing CAS,.

Save the current crossing speed (Test Speed) at TCP.. and the deceleration rate (7est Rate) noting
that the first and last waypoints always have speed constraints and except for the first waypoint,
all constrained speed points must have deceleration rates.

Test Speed = Crossing CAS,.

Test Rate = Crossing Rate,.

Compute all of the TCP speeds between the current TCP and the previous crossing waypoint.
k=cc

while k> pc

If the previous speed has already been reached, set the remaining TCP speeds to the previous
speed.

if (Prior Speed < Test Speed)
for (k=k-1; k>pc,k=k-1)
CAS;, = Test Speed
Mach, = CasToMach(CAS;, Altitudey)
Set the speeds at the last test point.
CAS,,. = Test Speed
if (Machy,. = 0) Mach,. = CasToMach(CAS,., Altitude,.)

else

51

Estimate the distance required to meet the crossing restriction using the winds at the
current altitude. This is a first-estimation.

Compute the time to do the deceleration.

t = (Prior Speed - Test Speed) / Test Rate

Compute the wind speed and direction at the current altitude.
InterpolateWindWptAltitude(Wind Profile;, Altitude,, Wind Speedl, Wind Directionl)
The ground track at the current point is,

if (WptinTurn(k)) Track = Ground Track;

else Track = Ground Tracky;

Current Ground Speed = ComputeGndSpeedUsingTrack(Test Speed, Track,
Altitudey, Wind Speedl, Wind Directionl)

Compute the wind speed and direction at the prior altitude.
InterpolateWindWptAltitude(Wind Profiley.;, Altitude, Wind Speedi, Wind Directionl)
The ground speed at the prior point.

Prior Ground Speed = ComputeGndSpeedUsingTrack(Prior Speed, GndTracky.,,
Altitudey.;, Wind Speedl, Wind Directionl)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2
The distance estimate, dx, is Average Ground Speed *t.
dx = Average Ground Speed * t / 3600

Recalculate the distance required to meet the speed using the previous estimate distance
dx.

Begin by computing the altitude, 4/¢tD, at distance dx.

if (Altitude, > Altitudey.;) AltD = Altitude;,

else
AltD = (6076 * dx) * tangent(Crossing Angle;) + Altitude,
if (AltD > Altitudey.;) AltD = Altitude,

The new distance x is DTGy, + dx.

Compute the winds at A/tD and distance x.

52

InterpolateWindAtDistance(AltD, x, Wind Speed2, Wind Direction?2)
The track angle at this point, with GetTrajGndTrk defined in this section:
Track2 = GetTrajGndTrk(x)

The ground speed at altitude 4/¢tD is then,

Prior Ground Speed = ComputeGndSpeedUsingTrack(Prior Speed, Track2, AltD,
Wind Speed2, Wind Direction2)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2
dx = Average Ground Speed * t / 3600
If there is a TCP prior to dx, compute and insert its speed.
If the distance is very close to the waypoint, just set the speed.
if ((DTGy.; < (DTGy + dx + some small value))
if |1DTGy.; - DTGy - dx| < some small value) CASy.; = Prior Speed
else
Compute the speed at the waypoint using v* = v,° + 2ax to get v.
The headwind at the end point is,
HeadWind?2 = Wind Speed?2 * cosine(Wind Direction2 - Ground Tracky.;)
dx = DTGy - DTG

The value of CAS}.; is computed using function EstimateNextCas, described in
this section.

CASy.; = EstimateNextCas(Test Speed, Current Ground Speed, false,
Prior Speed, Head Wind2, Altitude,, dx, Crossing Rate,.)

Determine if the constraint is met.
if ((k-1) = pc)
Determine the allowable crossing window, accounting for special conditions.

if (((pc + 1) < index number of the last waypoint) and
(VSegType,. = MACH CAS)) CrossingWindow = 5

else CrossingWindow = 1

Was the crossing window speed met? If not, set this as an error.

53

if (|CAS,. - Crossing CAS,.| > CrossingWindow)
Mark this as an error condition

Always set the crossing exactly to the crossing speed.
CAS,. = Crossing CAS),.
Set the test speed to the computed speed.
Test Speed = CASy.;
Back up the index counter to the next intermediate TCP.
k=k-1
end of if ((DTGy.; < (DTG + dx + some small value))
else

The constraint occurs between this TCP and the previous TCP. A new VTCP needs
to be added at this point.

The along path distance d where the VTCP is to be inserted is:

d = DTGy + dx

Save the ground track value at this distance.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location £ in the TCP list. The VTCP is inserted between
TCPy.; and TCP;, from the original list. The function InsertWaypoint should be
appropriate for the actual data structure implementation of this function.
InsertWaypoint(k)

Update the data for the new VTCP which is now TCP;.

WptType, = VICP

if (VSegType, = no type) VSegType, = SPEED

TurnTypey = no turn

DTG, =d

The altitude at this point is computed as follows, recalling that the new waypoint is
TCPkZ

if (Altitude,; > Altitudey.;) Altitude, = Altitude.,

54

else Altitude, = (6076 * dx) * tangent(Crossing Angle,.;) + Altitudey;
CAS;, = Prior Speed

Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptInTurn and ComputeGndTrk are described in this sections.

if (WptinTurn(k)) Ground Track, = ComputeGndTrk(k, d)

else Ground Track;, = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of TCP;.
GenerateWptWindProfile(d, TCPy.)

Test Speed = Prior Speed

Since TCP;, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc=cc+1
end of while k > pc.
Now go to the next altitude change segment on the profile.
cc=k
end of while cc > index number of the first waypoint

ComputeT cpMach

The index variable cc is passed into and out of the ComputeTcpMach function. This function is similar
to ComputeTcpCas with the exception that the computed Mach rate will need to be recomputed with any
change of altitude. Beginning with the last Mach waypoint (the Mach waypoint that is closest to the
runway in terms of DTG), this function computes the Mach at each previous TCP and inserts any
additional speed TCPs that may be required to denote a change in the speed profile. The function uses the
current speed constraint, searches backward for the previous constraint, and then computes the distance
required to meet this previous constraint. The speeds for all of the TCPs within this distance are computed
and added to the data for the TCPs. If the along-path distance to meet the previous constraint is not at a
TCP, a new speed VTCP is inserted at this distance. Because there is no general closed form solution to
compute distances to meet the deceleration constraints, an iterative technique is used in this function. This
function is performed in the following steps:

While (cc > index number of the first waypoint)
Determine if the previous constraint cannot be met.
If (Mach,.. > Crossing Mach..)
If this is the last pass through the algorithm, mark this as an error condition
Mach,. = Crossing Mach,.

55

Find the prior waypoint index number pc that has a Mach constraint, e.g., a crossing Mach
(Crossing Machpc # 0). This may not always be the previous (i.e., cc - I) waypoint.

Initial condition is the previous TCP.
pc=cc-1
finished = false

while ((pc > index number of the first waypoint) and (TCP,. # Mach Transition CAS)
and (Crossing CAS ,. = 0)) pc = pc - 1

Save the previous crossing speed,

Prior Speed = Crossing Mach,,

Save the current crossing speed (7est Speed) at TCP,. and the deceleration rate (Test Rate) noting
that the first and last waypoints always have speed constraints and except for the first waypoint,
all constrained speed points must have deceleration rates.

Test Speed = Crossing Mach,.

Test Rate = CasToMach(Altitude.., Crossing Rate..)

Compute all of the TCP speeds between the current TCP and the previous crossing waypoint.
k=cc

while k > pc

If the previous speed has already been reached, set the remaining TCP speeds to the previous
speed.

if (Prior Speed < Test Speed)

fortk=k-1;k>pc;k=k-1)
Machy = Test Speed
CASy = MachToCas(Mach,, Altitudey,)
Mark TCPy as a Mach segment.

Set the speeds at the last test point.

Mach,, = Test Speed

CAS,. = MachToCas(Mach,., Altitude,.)

else

56

Estimate the distance required to meet the crossing restriction using the winds at the
current altitude. This is a first-estimation.

Compute the time to do the deceleration.

t = (Prior Speed - Test Speed) / Test Rate

Compute the wind speed and direction at the current altitude.
InterpolateWindWptAltitude(Wind Profile;, Altitude,, Wind Speedl, Wind Directionl)
The ground track at the current point is,

if (WptIinTurn(k)) Track = Ground Track;

else Track = Ground Tracky;

Current Ground Speed = ComputeGndSpeedUsingMachAndTrack(Test Speed, Track,
Altitudey, Wind Speedl, Wind Directionl)

Compute the wind speed and direction at the prior altitude.
InterpolateWindWptAltitude(Wind Profiley.;, Altitude, Wind Speedi, Wind Directionl)
The ground speed at the prior altitude and speed is,

Prior Ground Speed = ComputeGndSpeedUsingMachAndTrack(Prior Speed,
GndTracky.;, Altitude,.;, Wind Speedl, Wind Directionl)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2
The distance estimate, dx, is Average Ground Speed *t.
dx = Average Ground Speed * t / 3600
Compute the distance required to meet the speed using the previous estimate distance dx.
Begin by computing the altitude, 4/¢tD, at distance dx.
if (Altitude, > Altitudey.;) AltD = Altitude,
else
AltD = (6076 * dx) * tangent(Crossing Angle;) + Altitude,
if (AltD > Altitudey. ;) AltD = Altitudey,
Compute the average Mach rate.
MRatel = CasToMach(Crossing Rate,., Altitude;)

MRate2 = CasToMach(Crossing Rate.., AltD)
57

Test Rate = (MRatel + MRate2) /2

t = (Prior Speed - Test Speed) / Test Rate

The new distance x is DTG, + dx.

Compute the winds at A/tD and distance x.

InterpolateWindAtDistance(AltD, x, Wind Speed?2, Wind Direction2)

The track angle at this point, with GetTrajGndTrk defined in this section, is:
Track2 = GetTrajGndTrk(x)

The ground speed at altitude 4/tD is then,

Prior Ground Speed = ComputeGndSpeedUsingMachAndTrack(Prior Speed, Track2,
AltD, Wind Speed2, Wind Direction2)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2
dx = Average Ground Speed * t / 3600
If there is a TCP prior to dx, compute and insert its speed.
If the distance is very close to the waypoint, just set the speed.
if ((DTGy.; < (DTG + dx + some small value))
if IDTGy.; - DTGy - dx| < some small value)
Machy.; = Prior Speed
Mark TCPy as a Mach segment.
else
Compute the speed at the waypoint using v* = v,° + 2ax to get v.
The headwind at the end point is,
HeadWind2 = Wind Speed?2 * cosine(Wind Direction2 - Ground Tracky.;)
dx = DTGy - DTG
Compute the average Mach rate.
MRatel = CasToMach(Crossing Rate,., Altitude;.)

MRate2 = CasToMach(Crossing Rate,., Altitude;.;)

58

Test Rate = (MRatel + MRate2) /2

The value of Mach,.; is computed using function EstimateNextmach, described in
this section.

Machy.; = EstimateNextMach(Test Speed, Current Ground Speed, Prior Speed,
Head Wind2, Altitude,, dx, Test Rate)

Determine if the constraint is met.
if ((k-1) = pc)
Was the crossing speed met within 0.002 Mach? If not, set this as an error.
if ((Mach,, - Crossing Mach,.| > 0.002) Mark this as an error condition
Always set the crossing exactly to the crossing speed.
Machy,, = Crossing Mach,,
Set the test speed to the computed speed.
Test Speed = Machy.,
Back up the index counter to the next intermediate TCP.
k=k-1
end of if ((DTGy.; < (DTG + dx + some small value))
else

The constraint occurs between this TCP and the previous TCP. A new VTCP needs
to be added at this point.

The along path distance d where the VTCP is to be inserted is:

d = DTGy + dx

Save the ground track value at this distance.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location £ in the TCP list. The VTCP is inserted between
TCPy.; and TCP;, from the original list. The function InsertWaypoint should be
appropriate for the actual data structure implementation of this function.
InsertWaypoint(k)

Update the data for the new VTCP which is now TCP;.

WptType, = VICP
59

if (VSegType, = no type) VSegType, = SPEED
TurnTypey = no turn
DTGy =d

The altitude at this point is computed as follows, recalling that the new waypoint is
TCPkl

if (Altitudey.; > Altitudey. ;) Altitude, = Altitudey.

else Altitude, = (6076 * dx) * tangent(Crossing Angley.;) + Altitudey+;
Machy, = Prior Speed

Mark TCPy as a Mach segment.

Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptInTurn and ComputeGndTrk are described in this sections.

if (WptinTurn(k)) Ground Track, = ComputeGndTrk(k, d)

else Ground Track;, = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of TCP;.
GenerateWptWindProfile(d, TCPy.)

Test Speed = Prior Speed

Since TCPy, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc=cc+ 1
end of while k > pc.
Now go to the next altitude change segment on the profile.
cc=k
end of while cc > index number of the first waypoint.

DeltaAngle

The DeltadAngle function returns angle a, the difference between Anglel and Angle2. The returned
value may be negative, i.e., -180 degrees > DeltaAngle > 180 degrees.

a = Angle2 - Anglel

Adjust "a" such that 0 > a > 360

60

if (a>180)a=a- 360

DoTodAcceeration

The DoTodAcceleration function handles the special case when there is an acceleration to the descent
Mach at the top-of-descent. This function is invoked from Add Descent Mach Waypoint, which passes in
the index number for the TOD waypoint, TodIndex, and the Mach value at the TOD, MachAtTod. The
function will insert the Mach acceleration point into the waypoint list if a valid acceleration point can be
found.

Make an initial estimate of the distance to the new Mach value. The function
TodAccelerationDistance returns the values Valid , k, and dx.

TodAccelerationDistance(Todldx, MachAtTod, Mach Descent Mach, Valid , k, dx)
if (Valid)

Add the VTCP for the end of the TOD acceleration.

d = DTGroapa - dx

The original ground track will be needed for the new TCP, so save it.

OldGroundTrack = GetTrajGndTrk(d)

Save the wind data at this distance as a temporary TCP.

GenerateWptWindProfile(d, TemporaryTcp)

The new waypoint is downstream of the current value of .

k=Fk+1

InsertWaypoint(k)

Note that Wpt, is the newly created waypoint.

WptType, = VICP

TurnTypey = no turn

If the new waypoint is not already marked as a special vertical type, mark it as a top-of-descent
acceleration point.

if (VSegType, = NONE) VSegType, = TOD acceleration

DTG, =d

Calculate the altitude for the new TCP.

Altitudey, = Altituder i - (6076 * dx) * tangent(Crossing Angle +;)

Mach, = Mach Descent Mach
61

Mach Cross;, = Mach Descent Mach
MachSegment, = true
Set the Crossing Rate to the default value of 0.75.
Crossing Rate;, = 0.75
Add the appropriate ground track value.
if (WptinTurn(k)) Ground Track, = ComputeGndTrk(k, d)
else Ground Track;, = OldGroundTrack
Copy the wind data from TemporaryTcp into Wpt;.
end of if (Valid)
else set an error for being unable to accelerate to the descent Mach value.

EstimateNextCas

EstimateNextCas is an iterative function to estimate the CAS value, CAS, at the next TCP. Note that
there is no closed-form solution for this calculation of CAS. The input variable names described in this
function are from the calling routine and are, in order, the target CAS value, Test CAS, the ground speed
at the estimation starting point, Current Ground Speed, an estimation limiting flag, No Limit Flag, the
CAS at the estimation starting point, Prior CAS, the head wind at the estimation starting point, Head
Wind, the altitude at the estimation starting point, A/titude, the distance from the estimation starting point
to the point where the CAS is to be estimated, Distance, and the deceleration rate to be used in this
estimation, CAS Rate. Also, the input deceleration value must be greater than 0, CAS Rate > 0. The
function returns the estimated CAS value.

Guess CAS = Test CAS

Set up a condition to get at least one pass.
d =-10 * Distance

size = 1.01 * (Prior CAS - Guess CAS)
count =0

if ((Distance > 0) and (CAS Rate > ())

Iterate a solution. The counter count is used to terminate the iteration if the distance estimation
does reach a solution within 0.001 nmi.

while ((|Distance - d| > 0.001) and (count < 10))
if (Distance > d) Guess CAS = Guess CAS - size
else Guess CAS = Guess CAS + size

62

size = size /2
The estimated time t to reach this speed,
t = (Guess CAS - Test CAS) / CAS Rate
The new ground speed,
Gs2 = CasToTas Conversion(guess, Altitude) - Head Wind
d = ((Current Ground Speed + Gs2) /2) * (t/ 3600)
count = count + 1
end of the while loop
Limit the computed CAS, if necessary.
if ((NoLimit = false) and (Guess CAS > Prior CAS)) Guess CAS = Prior CAS
return Guess CAS

EstimateNextM ach

EstimateNextMach 1s an iterative function to estimate the Mach value, Mach, at the next TCP. Note
that there is no closed-form solution for this calculation. The input variable names described in this
function are from the calling routine. Also, the input deceleration value must be greater than 0, Mach
Rate > 0.

Mach = Test Speed

Set up a condition to get at least one pass.
d=-10*dx

size = 1.01 * (Prior Speed - Test Speed)
count =0

if ((dx > 0) and (Test Rate > 0))

Iterate a solution. The counter count is used to terminate the iteration if the distance estimation
does reach a solution within 0.001 n.mi.

while ((|d - dx| > 0.001) and (count < 10))
if (d > dx) Mach = Mach - size
else Mach = Mach + size
size = size /2
The estimated time t to reach this speed,

63

t = (Mach - Test Speed) / Test Rate
The new ground speed,
CAS = MachToCas(Mach, Altitude)
Gs2 = CasToTas Conversion(CAS, Altitude) - Head Wind2
d = ((Current Ground Speed + Gs2) /2) * (¢t / 3600)
count = count + 1
end of the while loop
Limit the computed Mach, if necessary.
if (Mach > Prior Speed) Mach = Prior Speed

GenerateWptWindProfile

The function GenerateWptWindProfile is used to compute new wind profile data. This function is a
double-linear interpolation using the wind data from the two bounding input waypoints to compute the
wind profile for a new VTCP, TCP,. The interpolations are between the wind altitudes from the input data
and the ratio of the distance d at a point between TCP;; and TCP; and the distance between TCP;; and
TCP. E.g.,

—Find the two bounding input waypoints, TCP.; and TCP; between which d lies, e.g.,
TCR-]EdZTCP,

— Using the altitudes from the wind profile of TCP;, compute and temporarily save the wind data at
these altitudes using the wind data from TCP;; (e.g., Wind Speedremporary, aitituder)-

— Compute the wind speed and wind direction for each altitude using the ratio r of the distances.
Assuming that the difference between DTG,.; and DTG; # 0, and that DTG,; > DTG,.

r= (DTG, -d)/ (DTG, - DTG

Iterate the following for each altitude in the profile.

Wind Speed), aiinaer = ((1 - 1) * Wind Speedremporary, antituder) + (v * Wind Speed; aiinder)
a = DeltaAngle(Wind Directionremporary, aitiuder» Wind Direction; auinder)

Wind Directiony, qnimager = Wind Directiony, auinger + (r * @)

64

Figure 7 is an example of the computation data for the wind computation at a 9,000 ft altitude. In this
example, TCP;_; has wind data at 10,000 and 8,000 ft and 7CP; has wind data at 9,000 ft.

Wind Data;_j,
10000 fi N (1-1) *Wind Data;_; Wind D
, ta:
\‘ computed for 9000 ft e atd;
4 T > Tt = Wind Data;
/ 9000 ft
’
Wind Datai_l’ ——; DTG;_; - d >l
800011 DTG;; - DTG;
¢
TCP, TCPy, TCP,

Figure 7. Example for computing a single wind data altitude.

GetTrajectoryData

The GetTrajectoryData function computes the trajectory data at the along-path distance equal to d and
saves these data in a temporary TCP record. The function uses a linear interpolation based on the DTG
values of the two TCPs bounding this distance and the distance d to compute the trajectory data at this
point.

GetTrajGndTrk
The GetTrajGndTrk function computes the ground track at the along-path distance, distance.

if ((distance < 0) or (distance > DTGt waypoiny)) Ground Track = Ground Trackyys ywaypoint
else
Find where distance is on the path.
i = index number of the last waypoint
while (distance > DTG;) i =i -1
if (distance = DTG;) Ground Track = Ground Track;
else
x =DTGi- DTG,
ifx<0)r=20
else r = (distance - DTG+) / x
ifr>0D)r=1
dx = (I - r) * DeltaAngle(Ground Track; Ground Track;s;)

Ground Track = Ground Track; + dx

65

HandleDescentAccel Decel

The function HandleDescentAccelDecel is designed to handle the special case of a Mach acceleration
in the descent where the first CAS crossing restriction cannot be met. The calling program provides as
input and retains the subsequent outputs for the following variables: Casindex, CruiseMach,
MachCasModified, DescentMach, and MachCas. The variable CasIndex is the index value in the TCP list
for the first CAS constrained waypoint. The variable CruiseMach is the last Mach crossing restriction
value prior to the first CAS segment. The variable MachCasModified is a flag returned by this function if
the DescentMach or MachCas values are changed. The variables DescentMach and MachCas are the
planned descent Mach and planned Mach-to-CAS transition CAS, respectively, and these values may be
modified by this function.

Initialize variables.

i=0
z=10
fini = false

MachCasModified = false
Perform up to two iterations to calculate any required Mach or CAS change in the descent.
while ((fini = false) and (i < 2))
Calculate z at the descent Mach and the Mach-to-CAS CAS.
z = MachCasTransitionAltitude(MachCas, DescentMach)
Determine if z is below the CAS crossing restriction.
if (z < Altitudecusinger)
Set the CAS to the value at this altitude, knowing the crossing restriction can't be met.
MachCas = MachToCas(DescentMach, Altitudecasinder)
else if (z > Altitude Crossys waypoini)
Set the Mach to the descent CAS at the cruise altitude.
m = CasToMach(MachCas, Altitudes waypoin:)
if (m > CruiseMach) DescentMach = m
if (MachCas <Crossing CAScusinder)
MachCas = Crossing CAScasindex
i=i+1

66

else fini = true
end of while ((fini = false) and (i < 2))
Find the TOD TCP.
fini = false
TodIndex = 0
i = index number of the first waypoint
while ((i < index number of the last waypoint) and (fini = false))
if ((Altitude; < Altitudeg s waypoin) 07 (Crossing CAS; > 0))
if ((Altitude; # Altitudeg s vaypoiny)) TodIndex =i - 1
else Todlndex =i
fini = true
i=i+1
end of while ((i < index number of the last waypoint) and (fini = false))
Calculate the entire decent distance.
d = DTG rodndex = DTG casindex
Estimate the distance, Daccel, to the new Mach value.
TodAccelerationDistance(TodIndex, CruiseMach, MachDescentMach, Valid, Accellndex, Daccel)
Estimate the distance, Ddecel, to the CAS crossing speed.
BodDecelerationDistance(Caslndex, z, Mach Transition CAS, Ddecel)
fini = false
m = DescentMach

The nominal speed values won't work, there is insufficient distance to obtain the acceleration and then
slow to the crossing speed. Iterate until a solution is found.

while ((fini = false) and (d < (Daccel + Ddecel)))
Iterate the solution.
Slightly change the Mach and then find the CAS.

m=m-0.002

67

if (m < Cruise Mach)
m = Cruise Mach
fini = true
Estimate the distance to the new Mach value.
TodAccelerationDistance(Todlndex, Cruise Mach, m, Valid, Accellndex, Daccel)
Find the altitude where the acceleration ends.

z = Crossing Altitude,s waypoint - (Daccel / d) * (Crossing Altitudes,s waypoint -
Crossing Altitudecusinge)

CAS = MachToCas(m, z)
Estimate the distance to the CAS crossing speed.
BodDecelerationDistance(Caslndex, z, CAS, Ddecel)
if (d > (Daccel + Ddecel))
fini = true
Modify the descent Mach and CAS values.
modified = true
DescentMach = m
Add a buffer to the CAS so that subsequent Mach-to-CAS calculation won't cause an error.
MachCas = CAS + 0.1
end of if (d > (Daccel + Ddecel))

I nter polateWindAtDistance
The function InterpolateWindAtDistance is used to compute the wind speed and direction at an

altitude, Altitude, for a specific distance, Distance, along the path. This function is a linear interpolation
using the wind data from the input waypoints that bound the along-path distance.

Find the bounding input waypoints.

i0 = index number of the first waypoint

J = index number of the first waypoint

fini = false

if (Distance < () Distance = 0
68

while ((fini = false) and (j < (index number of the last waypoint - 1)))
if ((TCP; = input waypoint) and (DTG, > Distance)) i0 = j
if (DTG; < Distance) fini = true
end of the while loop
il =i0+1
j=il
fini = false
while ((fini = false) and (j < index number of the last waypoint))
if ((TCP; = input waypoint) and (DTG; < Distance))
il=j
fini = true
end of if
j=i+1
end of the while loop
if (il > index number of the last waypoint) il = index number of the last waypoint
if (10 = il) InterpolateWindWptAltitude(TCP;, Altitude)
else
Interpolate the winds at each waypoint.
InterpolateWindWptAltitude(TCP;, Altitude), returning Spd0 and Dir(
InterpolateWindWptAltitude(TCP;;, Altitude), returning Spdl and Dirl
Interpolate the winds between the two waypoints.
r = (DTG - Distance) / (DTG, - DTG,;)
Wind Speed = ((1 - r) * Spd0) + (r * Spdl)
a = DeltaAngle(Dir0, Dirl)

Wind Direction = Dir0 + (r * a)

69

I nter polateWindWptAltitude
The function InterpolateWindWptAltitude is used to compute the wind speed and direction at an

altitude, Altitude, for a specific TCP. This function is a linear interpolation using the wind data from the
current TPC.
Find the index numbers, p0 and p/, for the bounding altitudes.
p0=20
pl=0
for (k= 1; k < Number of Wind Altitudes;; k =k + 1)
if (Wind Altitude; , < Altitude) p0 = k
if ((Wind Altitude; > Altitude)and (p1 = 0)) p1 =k
if (p1 = 0) pl = Number of Wind Altitudes;
If Altitude = Wind Altitude, or if Altitude = Wind Altitude,, then the wind data from that point is
used. Otherwise, Altitude is not at an altitude on the wind profile of TCP, i.e., z = Wind Altitude; ,
then:
if (Wind Altitude,; < Wind Altitude,y) r = 0
else r = (Altitude - Wind Altitude,,) / (Wind Altitude,;, - Wind Altitude,)
Wind Speed = ((1 - r) * Wind Speed,) + (r * Wind Speed,,;)
a = DeltaAngle(Wind Direction,, Wind Direction,,)
Wind Direction = Wind Direction,y + (r * a)

MachCasTransitionAltitude

The function MachCasTransitionAltitude is used to compute the altitude where the input Mach, Mach,
and CAS, Cas, values would be equivalent

z=(1-(({((0.2 * ((Cas/661.48)°) + 1)*°) - 1) / (((0.2 * (Mack’) + 1)*’) - 1))*"°)) / 0.00000687535

return the value of z.

RadialRadiall nter cept

The function RadialRadiallntercept determines if two place-and-radial sets, each defined by a latitude,
a longitude, and a track angle, will intersect and if so, calculates the latitude and longitude of the intercept
point. Inputs are values of latitude, Latitude, longitude, Longitude, and angle, Angle; one set of each for
the two place-and-radial sets. If a valid intercept can be calculated, then the intercept point's latitude and
longitude are output, NewLatitude and NewLongitude, and the function returns a valid indication.
Otherwise, the function returns an invalid indication.

Calculate the distance and the track angle between the two input positions.

70

distance; ; = arccosine(sine(Latitude;) * sine(Latitude,) + cosine(Latitude;) * cosine(Latitude;) *
cosine(Longitude; - Longitude;))

track; ; = arctangent2(sine(Longitude, - Longitude;) * cosine(Latitude,), cosine(Latitude;) *
sine(Latitude,) - sine(Latitude;) * cosine(Latitude,) * cosine(Longitude, - Longitude,))

Check for error in the intercept calculation.
error = false
track; = Angle; - track; ; + 90
Adjust track; such that 0 > track; > 360
track; = Angle; - track; ; + 90
Adjust track; such that 0 > track; > 360
Determine the quadrant.
ang; = track, + 180
Adjust ang; such that 0 > ang; > 360
if ((|DeltadAngle(trackl , track2)| < 2) or (|DeltaAngle(trackl , angl)| < 2))
Determine if the angles are really 180 degrees apart.
ang, = Angle, + 180
Adjust ang, such that 0 > ang, > 360
angs; = DeltaAngle(Angle,, ang,)
angy = DeltaAngle(Angle,, track; ;)
if (lang3| > 2) or (|ang4| > 2)) error = true
if (error = false)
RelativeLatLong(Latitude,;, Longitude,, track; ,, distance;, /2, NewLatitude, NewLongitude)
else
Determine the quadrant.
if (track; < 90) quadrantl = 1
else if (track; < 180) quadrantl = 2

else if (track; <270) quadrant] = 3

71

else quadrantl = 4
if (track; < 90) quadrant2 = 1
else if (track; < 180) quadrant2 = 2
else if (track; < 270) quadrant2 = 3
else quadrant? = 4
if (quadrant] = 1)
if ((quadrant2 = 2) or (quadrant2 = 3)) error = true
if ((quadrant2 = 1) and (chktkl < chktk2)) error = true
else if (quadrantl = 2)
if ((quadrant2 = 1) or (quadrant2 = 4)) error = true
if ((quadrant2 = 2) and (chktkl > chktk2)) error = true
else if (quadrantl = 3)
if ((quadrant2 = 1) or (quadrant2 = 2) or (quadrant2 = 4)) error = true
if (track; > track;) error = true
else
if ((quadrant2 = 1) or (quadrant2 = 2) or (quadrant2 = 3)) error = true
if (track; < track;) error = true
if (error = false)
trx; = |Angle; - track; ;|
Adjust trx; such that 0 > trx; > 360
trx; = |Angle; - (track; ; + 180)|
Adjust trx; such that 0 > trx; > 360
if (trx; > 180) trx; = 360 - trx;
if (trx, > 180) trx; = 360 - trx,
angs = 180 - trx; - trx;

if ((angs = 0) or ((angs-180) = 0) or (distance; , = 0)) error = true
72

if (error = false)
distance, = distance; ; * sine(trx,) / sine(angs)
if (distance, < 0) distance, = - distance,
if (distance, > max_intercept_range) error = true

else RelativeLatLong(Latitude;, Longitude;, Angle;, distance, NewLatitude,
NewlLongitude)

if (error) return false

else return true

RelativeL atL on

The function RelativeLatLon computes the latitude and longitude from input values of latitude,
BaselLat, longitude, BaseLon, angle, Angle, and range, Range.

if (Angle = 180) Latitude = -Range / 60 + BaseLat
else Latitude = ((Range * cos(Angle)) / 60) + BaseLat
if ((BaseLat = 0) or (BaseLat = 180)) Longitude = BaseLon
else if (Angle = 90) Longitude = BaseLon + Range / (60 * cos(BaseLat))
else if (Angle = 270) Longitude = BaseLon - Range / (60 * cos(BaselLat))
else
rl = tangent(45 + 0.5 * Latitude)
r2 = tangent(45 + 0.5* BaseLat)
if ((rl =0) or (r2 = 0)) Longitude = 20, just some number, mark this as an error condition.
else Longitude = BaseLon + (180 / pi *(tangent(Angle)* (log(vl) - log(r2))))
TodAccelerationDistance
The TodAccelerationDistance function estimates the distance required for the special case of an
acceleration from the top-of-descent Mach to the descent Mach at the top-of-descent. This function is
invoked from HandleDescentAccelDecel and DoTodAcceleration, which passes in the index number for
the TOD waypoint, TodIndex, and the Mach value at the TOD, MachAtTod. The function returns a
validity flag to indicate if a TOD acceleration is valid, Valid, and if valid, the indices in the TCP list
where the acceleration occurs, Accellndex, and the distance from the index point of the acceleration,

Distance.

Perform an initialization of flags and counters.

fini = false
73

skip = true

k = TodlIndex

Make an initial guess of the distance to the new Mach value.
Descent Speed = Mach Descent Mach

Mach Rate; = CasToMach(0.75 kt / sec, Altituderoinaer)
Compute the time required to do the deceleration.

t = (Mach Descent Mach — MachAtTod) / Mach Rate,

Compute the wind speed and direction at the current altitude.
InterpolateWindWptAltitude(Wind Profileroamder, Altituderogimae, Wind Speed, Wind Direction)
Get the ground track at the current point.

if (WptInTurn(Waypointroaimae:)) track = Ground Trackroamdex + 1
else track = Ground Trackr,amaex

TOD Ground Speed = ComputeGndSpeedUsingMachAndTrack(MachAtTod, track, Altituderouiger,
Wind Speed, Wind Direction)

Descent Ground Speed = ComputeGndSpeedUsingMachAndTrack(Mach Descent Mach, track,
Altituderogimae, Wind Speed, Wind Direction)

The average ground speed is as follows:
Average Ground Speed = (TOD Ground Speed + Descent Ground Speed) / 2
The distance estimate, dx, is Average Ground Speed * t with a conversion to nm.
dx = Average Ground Speed * t / 3600
Now compute better estimates, doing this twice to refine the estimation.
for(i=1;i<2;i=i+1)

skip = false

Determine if this distance is beyond the next downstream waypoint.

k = Todlndex

d = DTGroammdex - dx

while ((k < (index number of the last waypoint — 1)) and (DTGy; > d))
74

if ((k# Todlndex) and (Crossing Rate, > 0)) skip = True;

k=k+1
Compute the wind speed and direction at the new altitude.
InterpolateWindWptAltitude(Waypoint,, Altitude,, Wind Speed, Wind Direction)
The ground speed at the this point is:

Descent Ground Speed = ComputeGndSpeedUsingMachAndTrack(Mach Descent Mach, Ground
Tracky, Altitude;, Wind Speed, Wind Direction)

The average ground speed is:
Average Ground Speed = (TOD Ground Speed + Descent Ground Speed) / 2
The distance, dx, is:
dx = Average Ground Speed * t / 3600
If there is a valid deceleration point, add it.
Valid = not skip
Accellndex =k
Distance = dx

WptInTurn

The WptInTurn function simply determines if the waypoint is between a turn-entry TCP and a turn-exit
TCP. If this is true, then the function returns a value of true, otherwise it returns a value of false.

fini = false
within = false
j=i+1
while ((fini = false) and (j < (index number of the last waypoint)))
if (TurnType; = turn-entry) fini = true
else if (TurnType; = turn-exit)
fini = true
within = true
j=j+1

return within
75

Summary

The algorithm described in this document takes as input a list of waypoints, their trajectory-specific
data, and associated wind profile data. A full 4D trajectory can then be generated by the techniques
described. A software prototype has been developed from this documentation. An example of the data

input and the prototype-generated output is provided in the Appendix.

76

Refer ences

I.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Abbott, T. S.; and Moen, G. C,: Effect of Display Size on Utilization of Traffic Situation Display for Self-
Spacing Task, NASA TP-1885, 1981.

Abbott, Terence S.: A Compensatory Algorithm for the Slow-Down Effect on Constant-Time-Separation
Approaches, NASA TM-4285, 1991.

Sorensen, J. A.; Hollister, W.; Burgess, M.; and Davis, D.: Traffic Alert and Collision Avoidance System
(TCAS) - Cockpit Display of Traffic Information (CDTI) Investigation, DOT/FAA/RD-91/8, 1991.

Williams, D. H.: Time-Based Self-Spacing Techniques Using Cockpit Display of Traffic Information
During Approach to Landing in a Terminal Area Vectoring Environment, NASA TM-84601, 1983.

Koenke, E.; and Abramson, P.: DAG-TM Concept Element 11, Terminal Arrival: Self Spacing for Merging
and In-trail Separation, Advanced Air Transportation Technologies Project, 2004.

Abbott, T. S.: Speed Control Law for Precision Terminal Area In-Trail Self Spacing, NASA TM 2002-
211742, 2002.

Osaguera-Lohr, R. M.; Lohr, G. W.; Abbott, T. S.; and Eischeid, T. M.: Evaluation Of Operational
Procedures For Using A Time-Based Airborne Interarrival Spacing Tool, AIAA-2002-5824, 2002.

Lohr, G. W.; Osaguera-Lohr, R. M.; and Abbott, T. S.: Flight Evaluation of a Time-based Airborne Inter-
arrival Spacing Tool, Paper 56, Proceedings of the 5th USA/Europe ATM Seminar at Budapest, Hungary,
2003.

Krishnamurthy, K.; Barmore, B.; Bussink, F. J.; Weitz, L.; and Dahlene, L.: Fast-Time Evaluations Of
Airborne Merging and Spacing In Terminal Arrival Operations, AIAA-2005-6143, 2005.

Barmore, B.; Abbott, T. S.; and Capron, W. R.: Evaluation of Airborne Precision spacing in a Human-in-
the-Loop Experiment, AIAA-2005-7402, 2005.

Hoffman, E.; Ivanescu, D.; Shaw, C.; and Zeghal, K.: Analysis of Constant Time Delay Airborne Spacing
Between Aircraft of Mixed Types in Varying Wind Conditions, Paper 77, Proceedings of the 5th
USA/Europe ATM Seminar at Budapest, Hungary, 2003.

Ivanescu, D.; Powell, D.; Shaw, C.; Hoffman, E.; and Zeghal, K.: Effect Of Aircraft Self~-Merging In
Sequence On An Airborne Collision Avoidance System, AIAA 2004-4994, 2004.

Weitz, L.; Hurtado, J. E.; and Bussink, F. J. L.: Increasing Runway Capacity for Continuous Descent
Approaches Through Airborne Precision Spacing, AIAA 2005-6142, 2005.

Barmore, B. E.; Abbott, T. S.; and Krishnamurthy, K.: Airborne-Managed Spacing in Multiple Arrival
Streams, Proceedings of the 24th Congress of the International Council of Aeronautical Sciences,, 2004.

Baxley, B.; Barmore, B.; Bone, R.; and Abbott, T. S.: Operational Concept for Flight Crews to Participate
in Merging and Spacing of Aircraft, 2006 AIAA Aviation Technology, Integration and Operations
Conference, 2006.

Lohr, G. W.; Oseguera-Lohr, R. M.; Abbott, T. S.; Capron, W. R.; and Howell, C. T.: Airborne Evaluation
and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool, NASA/TM-2005-213772, 2005.

Oseguera-Lohr, R. M.; and Nadler, E. D.: Effects of an Approach Spacing Flight Deck Tool on Pilot
Eyescan, NASA/TM-2004-212987, 2004.

Lohr, G. W.; Oseguera-Lohr, R. M.; Abbott, T. S.; and Capron, W. R.: 4 Time-Based Airborne Inter-
Arrival Spacing Tool: Flight Evaluation Result, ATC Quarterly, Vol 13 no 2, 2005.

Barmore, B.; Krishnamurthy, K.; Capron, W.; Baxley, B.; and Abbott, T. S.: An Experimental Validation of
Merging and Spacing by Flight Crew, 2006 AIAA Aviation Technology, Integration and Operations
Conference, 2006.

Krishnamurthy, K.; Barmore, B.; and Bussink, F. J. L.: dirborne Precision Spacing in Merging Terminal
Arrival Routes: A Fast-time Simulation Study, Proceedings of the 6th USA/Europe ATM Seminar, 2005.

71

21. Abbott, T. S.: A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts,
NASA CR-2007-214899, 2007.

22. Olson, Wayne M.: dircraft Performance Flight Testing, AFFTC-TIH-99-01, 2000.

78

Appendix Example Data Sets
Input Trajectory Data

An example input trajectory data set is provided in Table Al.

The descent Mach is 0.82. The Mach-to-CAS transition speed for this example is 310 knots. Note that
Waypoint-18 is the runway threshold at a 50 ft crossing height. No RF turns are shown.

Table Al. Example of trajectory input data.

Crossing | Crossing | Crossing | Crossing | Crossing
Identifier Latitude | Longitude | Altitude Angle CAS Mach Rate

Waypoint-01 31.87476 -103.244 37000 0 0 0.78 0
Waypoint-02 32.48133 -99.8635 0 0 0 0 0
Waypoint-03 32.20548 -98.9531 0 0 0 0 0
Waypoint-04 32.19398 -98.6621 0 0 0 0 0
Waypoint-05 32.17042 -98.113 0 0 0 0 0
Waypoint-06 32.15959 -97.8777 0 0 0 0 0
Waypoint-07 32.34026 -97.6623 0 0 0 0 0
Waypoint-08 32.46908 -97.5079 0 0 0 0 0
Waypoint-09 32.64444 -97.2967 11700 3.0 0 0 0
Waypoint-10 32.71448 -97.2119 11000 1.1 0 0 0
Waypoint-11 32.74948 -97.1695 0 0 0 0 0
Waypoint-12 32.97496 -97.1783 0 0 0 0 0
Waypoint-13 33.10724 -97.1754 5300 2.3 220 0 0.5
Waypoint-14 33.10658 -97.0537 4300 1.8 0 0 0
Waypoint-15 33.03645 -97.0541 0 0 0 0 0
Waypoint-16 33.00561 -97.0542 2400 3.1 170 0 0.5
Waypoint-17 32.95953 -97.0544 1495 3.0 127 0 0.75
Waypoint-18 32.91582 -97.0546 660 3.0 127 0 0.75

79

Input Wind Data
An example wind speed data set is provided in Table A2.

Table A2. Example of wind speed input data.

Wind Wind

Identifier Altitude Speed | Direction
Waypoint-01 0 20 180
10000 50 270

20000 60 340

40000 70 350

Waypoint-02 0 20 180
10000 50 270

20000 60 340

40000 70 350

Waypoint-03 0 20 180
10000 50 270

20000 60 340

40000 70 350

Waypoint-04 0 20 180
10000 50 270

20000 60 340

40000 70 350

Waypoint-05 0 20 180
10000 50 270

20000 60 340

40000 70 350

Waypoint-06 0 20 180
10000 50 270

20000 60 340

40000 70 350

Waypoint-07 0 20 160
10000 50 240

20000 60 320

40000 70 330

80

Table A2 (continued). Example of wind speed input data.

Wind Wind

Identifier Altitude Speed | Direction
Waypoint-08 0 20 160
10000 50 240

20000 60 330

40000 70 340

Waypoint-09 0 20 160
10000 50 240

20000 60 330

40000 70 340

Waypoint-10 0 20 160
10000 50 240

20000 50 330

40000 60 340

Waypoint-11 0 20 160
10000 50 240

20000 50 330

40000 60 340

Waypoint-12 0 20 160
10000 50 240

20000 50 330

40000 60 340

Waypoint-13 0 20 160
10000 50 240

20000 50 330

40000 60 340

Waypoint-14 0 20 160
10000 40 240

20000 50 330

40000 60 340

81

Table A2 (continued). Example of wind speed input data.

Wind Wind

Identifier Altitude Speed | Direction
Waypoint-15 0 20 160
10000 40 240

20000 50 330

40000 60 340

Waypoint-16 0 20 160
10000 40 240

20000 50 330

40000 60 340

Waypoint-17 0 20 160
10000 40 240

20000 50 330

40000 60 340

Waypoint-18 0 20 160
10000 40 240

20000 50 330

40000 60 340

Output Trajectory Data

An example of the data available from this trajectory algorithm is provided in Table A3. Not shown,
but also available, are the latitude and longitude data for each TCP.

Table A3. Example of the trajectory output data.

Mach | Ground
TCP type Identifier Altitude | Mach | CAS | Segment | Speed | Track DTG TTG
Input Waypoint-01 37000 | 0.78 | 252.5 true 450.7 77.1 | 366.06 | 3214.8
Turn-entry 37000 | 0.78 | 252.5 true 450.7 77.1 192.89 | 1831.4
Input Waypoint-02 37000 | 0.78 | 252.5 true 469.9 933 190.64 1813.8
Turn-exit 37000 | 0.78 | 252.5 true 487.5 | 109.5 188.39 | 1796.9
Turn-entry 37000 | 0.78 | 252.5 true 487.5 | 109.5 142.90 | 1461.0
Input Waypoint-03 37000 | 0.78 | 252.5 true 478.6 101 141.68 1451.9
Turn-exit 37000 | 0.78 | 252.5 true 469.1 92.6 | 140.46 | 14426

82

Table A3 (continued). Example of the trajectory output data.

Mach | Ground
TCP type Identifier Altitude | Mach | CAS | Segment | Speed | Track DTG TTG

Input Waypoint-04 37000 | 0.78 | 252.5 true 469.1 92.8 126.90 1338.6
VTCP 37000 | 0.78 | 252.5 true 469.3 93 125.46 1327.5
VTCP 36306 | 0.82 | 271.2 true 494.5 93 123.28 1311.2
VTCP 30337 | 0.82 310 false 509.6 93 104.53 1176.8
Input Waypoint-05 28569 | 0.793 310 false 497.2 93 98.98 1137.1
Turn-entry 25777 | 0.751 310 false 478.5 93 90.21 1072.4
Input Waypoint-06 24818 | 0.737 310 false 446.6 | 069.1 87.20 1048.9
Turn-exit 23858 | 0.723 310 false 4154 | 452 84.19 | 1023.8
Input Waypoint-07 19976 | 0.672 310 false 3934 | 453 72.00 915.2
Input Waypoint-08 16474 | 0.629 310 false 404.6 | 454 61.00 816.0
Input Waypoint-09 11700 | 0.576 | 310 false 409.4 | 455 46.01 683.4
VTCP 11432 | 0.574 | 310 false 408.5 45.5 43.71 663.1
Input Waypoint-10 11000 | 0.524 | 284.6 false 378.1 45.5 40.01 629.3
VTCP 11000 | 0.519 | 282 false 375.1 45.5 39.65 625.8
Turn-entry 10811 | 0.507 | 276.4 false 3684 | 455 38.87 618.3
Input Waypoint-11 10382 | 0.479 | 262.9 false 340.6 | 21.8 37.12 600.5
VTCP 10000 | 0.453 250 false 324.7 19.3 35.55 583.5
Turn-exit 9954 | 0.452 | 250 false 308.9 | 358.1 35.36 581.4
Input Waypoint-12 7105 | 0.429 250 false 307.7 1.1 23.69 445.1
VTCP 6474 | 0424 | 250 false 307.3 1.1 21.10 414.8
Turn-entry 5793 | 0.391 | 233.1 false 286.5 1.1 18.31 381.0
Input Waypoint-13 5300 | 0.366 | 220 false 270 | 457 16.29 354.9
Turn-exit 4909 | 0.363 220 false 245 90.3 14.27 326.6
Turn-entry 4556 | 0.361 220 false 2421 903 12.42 299.3
Input Waypoint-14 4300 | 0.359 220 false 2154 | 1353 11.08 278.2
VTCP 3987 | 0.357 | 220 false 204.1 | 164.4 10.21 263.2
Turn-exit 3831 | 0.35] 2159 false 197 | 180.3 9.74 254.7
Input Waypoint-15 3009 | 0.305 | 191.2 false 170.7 | 180.2 7.24 205.8
Input Waypoint-16 2400 | 0.268 170 false 148.8 | 180.2 5.39 164.1
VTCP 2140 | 0.267 170 false 148.9 | 180.2 4.65 146.2

Table A3 (continued). Example of the trajectory output data.

83

Mach | Ground
TCP type Identifier Altitude | Mach | CAS | Segment | Speed | Track | DTG TTG
Input Waypoint-17 1495 | 0.197 127 false 105.5 | 180.2 2.62 88.9
Input Waypoint-18 660 | 0.194 127 false 106.9 | 180.2 0.00 0.0

84

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) [2. REPORT TYPE
01-07 - 2014 Contractor Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

A Trajectory Algorithm to Support En Route and Terminal Area
Self-Spacing Concepts: Third Revision

5a. CONTRACT NUMBER
NNL10AA14B

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Abbott, Terence S.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
305295.02.31.07.01.03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR'S ACRONYM(S)
NASA

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/CR-2014-218288

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited

Subject Category 03

Availahility: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES

This document is arevision to NASA-CR-2010-216204,
dated February 2010.

Langley Technical Monitor: Bryan E. Barmore

14. ABSTRACT

This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are
similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing
restrictions at waypoints on the route. This version of the algorithm accommodates constant radius turns and cruise altitude
waypoints with calibrated airspeed, versus Mach, constraints. The algorithm calculates the altitude, speed, along path distance,
and aong path time for each waypoint. Wind data at each of these waypoints are also used for the calculation of ground speed

and turn radius.

15. SUBJECT TERMS

Algorithm; Calibrating; Crossing; Ground speed; Trajectories; Wind measurements

16. SECURITY CLASSIFICATION OF:
ABSTRACT

a. REPORT |b. ABSTRACT |c. THIS PAGE

U U U uu

17. LIMITATION OF |18. NUMBER
OF

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)
(443) 757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

