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Abstract—Adding similar features and bug fixes often requires
porting program patches from reference implementations and
adapting them to target implementations. Porting errors may
result from faulty adaptations or inconsistent updates. This paper
investigates (1) the types of porting errors found in practice,
and (2) how to detect and characterize potential porting errors.
Analyzing version histories, we define five categories of porting
errors, including incorrect control- and data-flow, code redun-
dancy, inconsistent identifier renamings, etc. Leveraging this
categorization, we design a static control- and data-dependence
analysis technique, SPA, to detect and characterize porting
inconsistencies. Our evaluation on code from four open-source
projects shows that SPA can detect porting inconsistencies with
65% to 73% precision and 90% recall, and identify inconsistency
types with 58% to 63% precision and 92% to 100% recall. In a
comparison with two existing error detection tools, SPA improves
precision by 14 to 17 percentage points.

I. INTRODUCTION

Developers often port code from one implementation to

another in order to implement similar features or bug fixes.

A recent case study of OpenBSD, NetBSD, and FreeBSD

found that 11% to 16% code changes are ported from peer

projects [17]. Also, when libraries and frameworks evolve their

APIs, client applications make similar updates to use the new

APIs correctly [3]. In a large code base, typically 10% to

30% of the code is considered as code clones [10], which

often require similar updates during software evolution [12].

When porting changes from one implementation to another,

developers generally need to adapt the ported changes to fit

the new context. The code in the reference often serves as

a template that is pasted into the target implementation, and

then later adapted [11].

The process of adapting a change to fit another context

can be error-prone, often resulting in porting errors. Chou

et al. report that a significant portion of operating system

bugs comes from ported edits [4]. In a case study of clone

related bugs, Juergens et al. discover that “nearly every
second, unintentional inconsistent changes to clones lead to
a fault” [9]. Li et al. identify errors in Linux and FreeBSD

resulting from developers forgetting to rename identifiers after

porting code [14]. Jiang et al. [8] present evidence of porting

errors when similar code appears in different contexts. Porting

errors can also happen when developers evolve ported code

differently [5], [9].

When developers port code from a reference to a target con-

text, they usually expect the ported code to behave similarly.

Existing tool support for detecting semantic inconsistencies in

ported code is limited. For example, Li et al. and Juergens

et al. find inconsistent clones using a lexical clone detection

analysis [9], [14]. Jiang et al. and Gabel et al. report clone

related bugs by comparing the syntax tree structures for two

clones [5], [8]. Such syntactic and lexical analyses are not

sufficient to detect the semantic inconsistencies arising from

updates to the ported code in different contexts.

The goal of this work is to assist developers in porting

edits from one context to another, by detecting semantic

inconsistencies that may indicate a porting error. As a first

step towards this goal, we study the extent and characteristics

of porting errors that occur in practice to better understand

the types of porting errors and their fixes. In our study,

we work backwards by first mining the version histories of

Linux and FreeBSD to detect commit messages containing

porting error related keywords. We then analyze three types

of source code commits—fix-inducing, error-inducing, and

reference—and their corresponding patches. A patch is the set

of program statements that are added, deleted, or modified in

a program version with respect to its previous version. Note

that modified statements can also be represented as deleted

statements in the old version and added statements in the

new version. We use Sliverski et al.’s fix-inducing change

identification method [20] to identify the patch that originally

introduced the porting error. We then use Repertoire [17] to

find a reference patch that served as the template for the error-

inducing patch. Through manual investigation of the reference

patch, the error-inducing patch, and the fix patch, we find that

many of the porting errors result from incorrect adaptation of

the ported code, including inconsistent identifier renamings,

different control- and data-flow contexts in the reference and

target implementations, and code redundancy.

Leveraging this characterization of porting errors, we design

and implement SPA, an algorithm to detect and characterize

porting inconsistencies. SPA detects semantic inconsistencies

that arise due to the interactions between program statements

in the ported code and program statements surrounding the

ported code. SPA takes two code patches as input: a reference

patch (Refold and Refnew) and a target patch (Tarold and

Tarnew). SPA analyzes the reference and target patches to

identify the ported code, and then uses static control- and data-

dependence analyses to identify the impact of the ported code

on the reference and target contexts. Finally, SPA compares the



impact of the ported code on the reference and target semantics

to detect and characterize porting inconsistencies.

To evaluate the accuracy of SPA, we perform an empirical

evaluation on four large open-source codebases: FreeBSD,

Linux, Eclipse CDT, and Mozilla, and compare the results with

two state-of-the-art tools, DejaVu [5] and Jiang et al.’s clone

related bug detection tool [8]. The results of our study show

that SPA identifies semantic porting inconsistencies with 65%

to 73% precision and 90% recall and identifies inconsistency

types with 58% to 63% precision and 92% to 100% recall. SPA

outperforms two related error detection tools with a precision

improvement of 14 to 17 percentage points.

We make the following contributions:

• We conduct a comprehensive study of the extent and

characteristics of porting errors reported for real-world

systems. We identify categories of common porting errors

related to inconsistent control flow, inconsistent data flow,

inconsistent identifier renaming, and code redundancy.

• Leveraging information about commonly found porting

errors, we design and implement a novel algorithm, SPA,

to detect potential porting errors based on inconsistent

semantics of ported code between the reference and target

contexts.

• We conduct an empirical evaluation of SPA’s ability to

detect and characterize porting inconsistencies in four

large open-source codebases.

The rest of the paper is organized as follows. Section II

discusses an empirical study of porting errors in Linux and

FreeBSD. Section III discusses SPA’s methodology for de-

tecting and characterizing porting inconsistencies. Section IV

presents an empirical evaluation of SPA’s capability to detect

and characterize porting inconsistencies. Section V discusses

related work. Finally, Section VI summarizes our work and

directions for future work.

II. AN EMPIRICAL STUDY OF PORTING ERRORS

We conduct an empirical study of porting errors documented

in real world projects to better understand the extent and

characteristics of porting errors found in practice. In this study,

we focus on porting errors that arise when porting a patch to

a similar, but not identical, context within the same project.

We first identify porting errors that are reported and fixed by

developers using the version histories from two large, open-

source projects. We then manually analyze these errors to

understand the characteristics of the errors as well as the

fixes. Most of the errors found in the artifacts used in our

study can largely be characterized into five categories. In the

remainder of this section, we present the study setup, results,

and a description of the five categories of porting errors. We

first define several key terms used in this work.

Definition 2.1: A program patch, p := Δ(v1, v2), is the

set of syntactic program differences between two program

versions, v1 and v2, where each element in the set is an atomic

program statement that corresponds to an edit operation, e.g.,

insert, delete, move, and update.

Definition 2.2: Ported code is a pair of atomic program

statements sr and st in patches pr and pt respectively, such

that sr and st are syntactically similar and are also edited

similarly.

Definition 2.3: Context of ported code is the set of program

statements in a method that are not part of the ported code.

A. Study Method

We mine the commit logs and analyze version histories for

Linux and FreeBSD. Table I shows the size of the two projects

in KLOC, the evolution period under study, and the number

of unique developers who made commits during that period.

Developers often document fixes to porting errors in com-

mit messages. To detect how many bug fixes are related to

porting, we find commit logs that contain at least one porting

related keyword: copy, cut, paste, or porting, and at

least one error related keyword: error, bug, mistake,

fix, or defect. A sample commit message in FreeBSD

is “Fix cut&paste bug which would result in
a panic...” The corresponding code patch fixes the port-

ing error.

To understand the nature of porting errors, we work back-

wards from a porting error fix by extracting three patches:

(a) the fix patch, pf , where the porting error is fixed, (b) the

target patch, pt, where the porting error is introduced into the

codebase, and (c) the reference patch, pr, which contains edits

that serve as the template for the ported code. A fix patch pf is

the program patch associated with the mined commit message.

For example, the fix patch corresponding to the commit

message shown above, is represented by the colored lines in

the IR-1 example in Table II. From the program locations

edited in pf , we use cvs annotate or git blame, to

identify the target patch, pt, which introduced the porting error.

This process is similar to how Sliwerski et al. [20] identify

a fix-inducing patch. We then use the REPERTOIRE tool to

identify a set of candidate reference patches that may serve as

the template for the target patch pt [18]. The reference patch,

by definition, has a commit date prior to the revision date of

a target patch; hence, we consider patches available until the

target patch date as candidate reference patches. Finally, we

select the reference patch, pr, through a manual inspection of

the possible candidates. For example, in the IR-1 example in

Table II where the developer forgot to update an identifier bp
to rabp after porting code fragments from the reference patch,

we expect the reference patch to contain the unaltered code

fragment related to bp. When multiple patches contain similar

unaltered code fragments, we select a patch with the maximum

number of similar lines.

B. Porting Errors Characterization

In our study we were able to identify 113 and 182 porting

errors documented in FreeBSD and Linux version histories

over the course of 18 years and 3 years respectively. Based

on the porting errors analyzed in our study, we were able to

classify the errors into five different categories. We use the



code snippets in Table II to discuss each of the categories of

porting errors below.

TABLE I
STUDY SUBJECTS

KLOC developers years
Linux 14,998 6,839 3
FreeBSD 4,479 405 18

ICF: Inconsistent Control Flow. Many porting errors arise

from edits that are ported to a different control flow context

and are not adapted correctly with respect to the context. In

the ICF example shown in Table II, there is an extra for
loop, highlighted in gray , in the reference context. Thus,

the continue statement in the reference code is intended to

match the inner for loop. In the target context, however,

there is only one for loop. Thus, the continue statement

(marked in red) unintentionally matches the wrong for loop.

The corresponding fix patch removes the continue state-

ment in the target context to fix the error.

IR: Inconsistent Renaming. Developers often forget to adapt

variable, type, and constant names according to the target

context and these inconsistent renamings lead to porting errors.

This type of porting error is further split into two sub-

categories:

IR-1: Inconsistent renamings of identifiers. Developers re-

name some occurrences of an identifier i, but forget to update

all occurrences of the identifier i consistently. For example,

pointer bp is updated to pointer rabp three times, missing

the instances marked in red in the IR-1 example in Table II.

IR-2: Inconsistent renamings of related identifiers. Develop-

ers consistently rename an identifier, but forget to update all

related identifiers. In the IR-2 example in Table II, all instances

of the OFDM related macro IWL_FIRST_OFDM_RATE are

updated to the CCK related macro IWL_FIRST_CCK-
_RATE. However, the variable ofdm and the related macro

lowest_present_ofdm are not updated to cck and the

related macro lowest_present_cck. The corresponding

fix patch replaces the token ofdm with the token cck to fix

this error.

IDF: Inconsistent Data Flow. This inconsistency occurs when

developers mistakenly insert code to a different data initializa-

tion context. In the IDF example in Table II, the first argument

of the strcmp method optarg is initialized differently in the

reference and target edits. optarg is an environment variable

initialized by the getopt() call that parses the command

line arguments and stores the next argument to optarg.

Hence, the function call getopt() and the use of variable

optarg should occur as a pair. In the reference context,

optarg is used after getopt() and thus is initialized

properly. In the target context, however, there is no call to

getopt(). Thus, optarg is not initialized properly.

RDN: Redundant operations. Developers may inadvertently

introduce redundant operations when they port code to the

wrong place, e.g., where it already performs the same opera-

tion, or they may not update ported edits correctly to ensure
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Fig. 1. Relationship between different types of porting errors

there are no redundant computations in the target context.

In the RDN example in Table II, a code fragment related

to memcpy was ported to the same function body twice under

the same scope in FreeBSD. The corresponding patch removes

memcpy and the buffer initialization statements to correct

the redundant operations.

OTH: Others. Other porting errors we identified include

incorrect formatting, e.g., indentation, that does not match with

the rest of the target code structure, or unadapted comments

that do not describe the target code correctly. For example,

in FreeBSD file src/sys/geom/stripe/g_stripe.h,

version 1.3, a comment related to “Concat Name” was

updated not to “Stripe Name”.

C. Distribution of Porting Errors in FreeBSD and Linux

TABLE III
DISTRIBUTION OF PORTING ERRORS

ICF IR IDF RDN OTH Total
Linux 23 74 26 47 25 182

12.64% 40.66% 14.29% 25.82% 13.74%
FreeBSD 9 54 32 14 28 113

7.96% 47.78% 28.31% 12.39% 24.78%

By manually inspecting the sets of reference patch, pr,

target patch, pt, porting error fix patch, pf , associated commit

messages, and bug descriptions, we categorize the porting

errors into the five categories described above. Table III shows

a distribution of the 113 cases of FreeBSD and 182 cases of

Linux across the five categories of porting errors. The results

show that a majority of porting errors are due to inconsistent

renaming of identifiers (IR)—47.78% and 40.66% in FreeBSD

and Linux respectively. The errors related to control (ICF) and

data (IDF) flow inconsistency make up more than 25% of the

total porting errors. The rest of the errors are either due to

redundant operations (RDN)—12.39% and 25.82%, or wrong

indentation and comments (OTH)—24.78% and 13.74% in

FreeBSD and Linux respectively.

The error categories are not mutually exclusive. For exam-

ple, an inconsistent renaming error (IR) may also cause an

inconsistent data initialization error (IDF)—17.7% and 1.6%

of the porting errors in FreeBSD and Linux respectively are

both types IR and IDF. An inconsistent data initialization error

(IDF) may also generate redundant operations (RDN)—1.8%

in FreeBSD and 2.7% in Linux. Sometimes, an inconsistent

control flow (ICF) may also initialize the data erroneously



TABLE II
EXAMPLES OF PORTING ERRORS OF DIFFERENT TYPES

ICF : Inconsistent Control Flow
FreeBSD commit: src/sys/kern/sched_4bsd.c, version 1.90, Author: davidxu, Date: 2006/11/14
Log: Fix a copy-paste bug in NON-KSE case.
Reference File: src/sys/kern/sched_4bsd.c Target File: src/sys/kern/sched_4bsd.c
FOREACH_KSEGRP_IN_PROC(p, kg) {

awake = 0;

FOREACH_THREAD_IN_GROUP(kg, td) {

...
+ if (ke->ke_cpticks == 0)
+ continue;

...
+ if(FSHIFT >= CCPU_SHIFT) {
+ ke->ke_pctcpu += (realstathz == 100)
+ ? ((fixpt_t) ke->ke_cpticks) <<
+ ... } ... } ... }

FOREACH_THREAD_IN_PROC(p, td) {
awake = 0;
...

+ if (ke->ke_cpticks ==!= 0)
+ continue;

{
...

+ if(FSHIFT >= CCPU_SHIFT) {
+ ke->ke_pctcpu += (realstathz == 100)
+ ? ((fixpt_t) ke->ke_cpticks) <<
+ ... } ... }

IR-1. Inconsistent renamings of identifiers
FreeBSD commit: src/sys/kern/vfs_bio.c , version 1.351, Author: phk, Date: 2003-01-05
Log: Fix cut&paste bug which would result in a panic because buffer was being biodone’ed multiple times.
Reference File: src/sys/kern/vfs_bio.c Target File: src/sys/kern/vfs_bio.c

+ if (( bp ->b_flags & B_CACHE) == 0) {

...

+ bp ->b_iocmd = BIO_READ;

+ bp ->b_flags &= ˜B_INVAL;

...
+ if (vp->v_type == VCHR)

+ VOP_SPECSTRATEGY(vp, bp );

+ else
+ VOP_STRATEGY(vp, bp );

...
}

+ if (( rabp >b_flags & B_CACHE) == 0) {

...

+ rabp ->b_flags |= B_ASYNC;

+ rabp ->b_flags &= ˜B_INVAL;

...
+ if (vp->v_type == VCHR)
+ VOP_SPECSTRATEGY(vp, bp rabp);
+ else
+ VOP_STRATEGY(vp, bp rabp);
...
}

IR-2. Inconsistent renamings of related identifiers
Linux commit: 5edd0b946a0afeb1d0364a3654328b046fb818a2, Author: Emmanuel Grumbach, Date: 2013-11-20
Log: Fix a copy paste error in iwl calc basic rates which leads to a wrong calculation of CCK basic rates.
Reference File: ../wireless/iwlwifi/dvm/rxon.c Target File: ../wireless/iwlwifi/dvm/rxon.c
...

+if (IWL_RATE_24M_INDEX < lowest_present_ ofdm )

+ ofdm |= IWL_RATE_24M_MASK >> IWL_FIRST_

OFDM _RATE;
...

...
+ if (IWL_RATE_11M_INDEX < lowest_present_ofdmcck)
+ ofdmcck |= IWL_RATE_11M_MASK >> IWL_FIRST_

CCK _RATE;
...

IDF: Inconsistent Data Flow
FreeBSD commit: src/sbin/gpt/gpt.c, version 1.16, Author: marcel, Date: 2006-07-07
Log: Fix cut-n-paste bug: compare argument s against known aliases, not the global optarg.
Reference File: src/sbin/gpt/gpt.c Target File: src/sbin/gpt/gpt.c
main(int argc, char *argv[]) {
...
while ((ch = getopt(argc, argv,...)) != -1)

switch (ch) {
...

+ case ’o’:
+ if (strcmp(optarg, "space") == 0) {
+ opt = FS_OPTSPACE;

... } ... }

parse_uuid(const char *s, uuid_t *uuid) {
...
switch (*s) {

+ case ’e’:
+ if (strcmp(optarg s, "efi") == 0) {
+ uuid_t efi = GPT_ENT_TYPE_EFI;

... } ... } }

RDN: Redundant operations
Linux commit: f9c2fdbab1f1854f2bfcc75c326d0f4537ec2a7e, Author: John W. Linville, Date: 2011-04-29
Log: Looks like a copy-n-paste error, identical lines are a few lines below the ones removed, ...
Reference File: src/sys/dev/mxge/if_mxge.c Target File: src/sys/dev/mxge/if_mxge.c
memset(&tsf_tlv, 0x00, sizeof(struct

mwifiex_ie_types_tsf_timestamp));
...
+ memcpy(*buffer, &tsf_tlv, sizeof(tsf_tlv.header));
+ *buffer += sizeof(tsf_tlv.header);

+ memcpy(*buffer, &tsf_val, sizeof(tsf_val));
+ *buffer += sizeof(tsf_val);

memcpy(&tsf_val,bss_desc->time_stamp,sizeof(tsf_val))
;

..
+ memcpy(*buffer, &tsf_val, sizeof(tsf_val));
+ *buffer += sizeof(tsf_val);

Ported lines start with “+”. The errors are marked in red. The fixes are highlighted in green



(IDF)—0.9% in FreeBSD and 1.6% in Linux. Figure 1 shows

the distribution of the five porting error types in FreeBSD and

Linux.

D. Threats to Validity

Construct Validity. We rely on the method of mining for

porting error related keywords in the commit messages. It is

possible that developers may not document porting errors in

commit messages when fixing porting errors.

Internal Validity. We assume that porting mistakes happen due

to poor adaptation, which may not be always true. The five

types of common porting errors are derived from the analyzed

data and thus are subject to the experimenter’s interpretation

or categorization bias.

External validity. We study porting errors in FreeBSD and

Linux. Both of these projects are written in C. Thus our

categorization of porting errors may be biased towards C

language features. Also, we study porting bugs within a

project boundary. Our observations may differ for cross-system

porting errors. Though our results may not generalize to other

systems, we believe our study of two long-surviving, large

scale operating systems provides meaningful insights.

III. SPA APPROACH

This section presents a semantic porting analysis algorithm,

SPA. It detects and categorizes inconsistencies in sequential

program-flow and incorrect identifier renaming within the

scope of a single method. Our key intuition is that semantic

inconsistencies in porting arise due to the interactions between

ported code and the impacted context, when the contexts differ

between the reference and the target implementations.

A. Overview

An overview of the SPA process is shown in Figure 2.

To detect potential semantic inconsistencies, SPA takes as

input a reference patch that specifies the syntactic differences

between Refold and Refnew and a target patch that specifies

the syntactic differences between Tarold and Tarnew. We

first extract the set of edit operations, such as insertion and

deletion of program statements, from the target (Etar ) and

reference (Eref ) patches. In step 2 of Figure 2, we estimate

which of the edit operations correspond to the set of program

statements that are ported from Refnew to Tarnew. The AST

nodes corresponding to the ported statements are stored in

the ported node pairs (PNP ) set. We then compute the

statements impacted by the ported statements in the reference

(Iref ) and the target (Itar ) in step 3. We use standard control

and data dependence analyses to compute the impact of the

ported statements on the other statements (the context). In

step 4, the information computed in the previous steps is used

to detect and categorize the potential porting inconsistencies

according to the types presented in Section II1. Finally, the

inconsistencies are reported in step 5.

1Type OTH (unadapted indentation or comments) is not included in the
scope of our diagnosis as this requires textual or lexical analysis and does not
involve the semantics of code fragments.

We illustrate the SPA approach with an example shown in

Table IV. The example is an adapted version of code fragments

from FreeBSD. The code is ported from a reference method,

freebsd4_getfsstat, to a target method, osf1_get-
fsstat. Lines marked with “+” are the ported code. The

reference and target contexts are syntactically different. In

osf1_getfsstat, the ported lines T9 and T10 appear after

two if statements at lines T4 and T6. No such if statements

are present in freebsd4_getfsstat. Also, the variable

buf is initialized at line T12. Thus, T13 is in a different

data initialization context in the target than its corresponding

line R6 in the reference.

The program statements that are changed between the old

and new versions are highlighted in gray and the ported edits

are marked with “+” in Table IV. Ported edits T9, T10 and

T13 in Tarnew correspond to R4, R5 and R6 in Refnew
respectively. The ported edits in Tarnew are control-dependent

on T4 and data-dependent on T1, T2 and T12. Also T11,

T14, and T15 are data-dependent on the ported edits T10
and T13. All of these statements are treated as impacted

statements. Similarly, R1, R2, and R8 are marked as impacted

statements in Refnew. Next, we present the details of how

impacted ported nodes are generated.

B. Identify the Impact of the Ported Code

We present the three main steps to identify the porting con-

text that may impact or may be impacted by the ported code.

The inputs to SPA are two patches specifying the syntactic

differences between Refold and Refnew and between Tarold
and Tarnew: ptar := Δ(Tarold, Tarnew) and pref := Δ(Refold,

Refnew).

Step 1. Identify Edits in the Reference and Target: SPA

computes the syntactic edit operations (insert, delete, move,

or update) required on the abstract syntax trees (ASTs) to

transform Refold to Refnew and Tarold to Tarnew [?]. This

algorithm is inspired by Meng et al.’s edit script generation

and extends its implementation [15], [16]. For the code shown

in Table IV, three edit (insert) operations are identified in the

reference patch, and five edit operations are identified in the

target patch. SPA uses the edit operations to generate the edited
nodes Eref and Etar, corresponding to Refnew and Tarnew
respectively. An edited node ep is an AST node corresponding

to an edited statement in a program patch p. The source lines

corresponding to the edited nodes are highlighted using a gray

background in Table IV.

Step 2. Identify Ported Nodes: SPA determines the cor-

respondence of statements in the ported code between the

reference and the target. It is possible that when a developer

adapts ported code from one context to another, she may also

insert or delete additional code; hence, there may be edited

nodes that do not correspond to ported code. A ported node
pair is a pair of AST nodes (r, t), where r ∈ Eref and

t ∈ Etar, and r and t have a unique correspondence with

each other. This unique correspondence is determined by a

function clone that takes two arbitrary AST nodes as input

and outputs true if the AST node types are identical and their
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Fig. 2. SPA Workflow

TABLE IV
EXAMPLE ADOPTED AND SIMPLIFIED PORTING EXAMPLE TAKEN FROM FREEBSD

Refnew Tarnew

R1.int freebsd4_getfsstat(int flags, int bufsize
, ostatfs osb) {

R2. statfs buf = null;
R3. int error = 0;

T1.int osf1_getfsstat(int flags, int bufsize,
osf1statfs osb) {

T2. statfs buf = null;
T3. int error = 0;
T4. if (flags == GETFSSTAT)
T5. return 0;
T6. if (flags == WAIT)
T7. flags = MNT_WAIT;
T8.

R4.+ int count = bufsize / ostatfs.sizeof();
R5.+ int size = count * statfs.sizeof();
R6.+ error = copyout(osb, buf, size);

T9.+ int count = bufsize / ostatfsosf1statfs.
sizeof();

T10.+ int size = count * statfs.sizeof();
T11. if(size > 0)
T12. buf = new statfs();
T13.+ error = copyout(osb, buf, size);

R7.
R8. return error;
R9.}

T14. error = copyout(osb, buf, size);
T15. return error;
T16.}

Edited lines in a new version w.r.t. the old version are presented in dark background. The ported lines begin with +. The red lines are inconsistent statements

detected by SPA.

labels are also similar above a certain threshold based on bi-

gram similarity [19]. A bi-gram similarity detects the ratio of

the total number of bi-grams common between two strings

to the average number of bi-grams representing the strings.

The output ranges from 0 to 1. A high value indicates that

strings are either identical or very similar i.e., when developers

rename identifiers after porting. We set the similarity threshold

to a high value of 0.8 to ensure that the matched labels are

very similar to each other, indicating truly ported nodes. Our

definition of ported node pair is very restrictive to reduce

false positives in the later steps; we only consider one-to-one

correspondences between a reference and a target node, and

ignore node pairs with one-to-many correspondences.

PNP = {(r, t)|r ∈ Eref ∧ t ∈ Etar ∧ clone(r, t)} (1)

PNP is a set of ported node pairs where each pair (r, t) ∈
PNP represents a node ported from a reference patch to a tar-

get patch as defined in Equation 1. Each node in the pair (r, t)
is referred to as a ported node. For example, the nodes corre-

sponding to statements R5 and T10 in Table IV have the same

AST node type (declaration) and label (size= count
+ statfs.size()), hence clone(R5, T10) is true and

(R5,T10) is a ported node pair. However, no AST nodes in

Eref are syntactically similar to the AST node corresponding

to statement T11 in Etar. Therefore, T11 is not a member

of any ported node pairs. All of the statements identified with

“+” in Table IV have corresponding AST nodes in PNP .

Step 3. Identify Impacted Nodes: Next, SPA identifies the

AST nodes in Refnew and Tarnew that are either impacted by

or impact the semantics of the ported nodes. The impacted

nodes include all of the ported nodes, and the subset of

the context nodes that may affect the porting semantics or

may be affected by the ported nodes. SPA identifies the

impacted nodes using static intra-procedural data- and control-

dependence analyses [21] with respect to the ported nodes.

This step bears resemblance to how Sydit identifies the context

of edit operations using control and data analysis [15].

Data Dependence. Statement S2 is data dependent on S1, if

S1 defines a variable v and S2 uses v, such that there exists

a path from S1 to S2 along which v is not killed (redefined).

Control Dependence. Statement S2 is control dependent on

S1, if execution of S2 depends on the decision made at S1.

Definition 3.1: A program dependence graph, PDG :=
〈DN,DE〉, is a set of vertices DN representing program

statements, and a set of edges, DE ⊆ DN×DN , representing

the control and data dependencies between statements.

A control dependence graph (CDG) is a sub-graph of a

PDG, where the edges represent control dependencies between

vertices (program locations), whereas a data dependence graph

(DDG) is a sub-graph of the PDG where the edges represent

data dependencies between vertices.

In SPA, we construct the PDG vertices using AST nodes,

each of which represents an atomic program statement, and the

edges correspond to the control and data dependences between

statements. The impacted nodes in Refnew and Tarnew are



derived from their respective program dependence graphs,

PDGref and PDGtar . Given a set of vertices mapping to

ported nodes Vp ⊆ Refnew and the PDG for Refnew, we

generate the impacted nodes Iref . The impacted nodes map

to vertices in the PDG reachable from Vp along the control

and data dependence edges. Similarly, we find Itar from Vp ⊆
Tarnew. The vertices corresponding to statements T6 and T7
in Table IV are not control or data dependent on ported code,

hence they are not in the impact set.

C. Detect and Categorize Porting Inconsistencies

SPA categorizes porting inconsistencies according to the

types presented in Section II, using ported node pairs, PNP ,

impacted nodes, Iref and Itar, and the data- and control-

dependence information computed in the previous steps.

ICF: Inconsistent Control Flow. To detect ICF inconsis-

tencies, SPA performs the following steps:

• Given a pair of ported nodes, (r, t), we construct isomor-

phic sub-graphs starting from r in CDGref and from t in

CDGtar . A pair of vertices (vr, vt), where vr ∈ CDGref

and vt ∈ CDGtar , is isomorphic if (i) the vertex labels

have identical AST types and similar syntactic structures

(e.g., nodes ‘a = a + b’ and ‘x = y + z’ have same AST

type and syntactic structure), and (ii) the vertices have the

same relative position with respect to the ported nodes.

We extend Komondoor et al.’s program slicing based

clone detection algorithm [13] to construct the isomorphic

sub-graphs.

• Detect inconsistent nodes in the context with respect to

(r, t) and add them to the respective inconsistent sets,

ICref and ICtar . A node in Iref (Itar) is inconsistent if

it is reachable from r (t) in CDGref (CDGtar ), but it

is not contained in the respective isomorphic subgraph.

The nodes corresponding to statements R4 and T9 in Ta-

ble IV are a ported node pair. R4 is not control dependent

on any node within the method body, while T9 is control

dependent on T4 along the true control edge. T4 is then added

to ICtar , as it is reachable from ported node T9 although it

does not have a corresponding node in the reference.

IR: Inconsistent Renaming. To detect this inconsistency,

we first construct the isomorphic sub-graphs on CDGref and

CDGtar with respect to the ported node pairs, as described

earlier. For each isomorphic node pair in CDGref and CDGtar,

we extract the corresponding identifiers, i.e., variables, types,

and method names, and align them based on their syntactic

similarity. For example, given two isomorphic nodes with

labels ‘a = b+ c’ and ‘x = y + z’, variable a is aligned with

x, variable b is aligned with y, and variable c is aligned with

z. We rank each identifier mapping with a confidence value

based on the number of times the mapping is encountered.

Using these alignments, we generate two identifier maps:

(a) IdMapref , a map from each reference identifier to its

corresponding target identifiers, and (b) IdMaptar, a map

from each target identifier to its corresponding reference

identifiers. If a one–to–many or a many–to–one relation is

found in the maps, then an IR inconsistency is detected. We

consider identifier mappings with the lowest (or, all when

there is a tie) confidence values as the incorrect mappings,

and characterize the vertices in the isomorphic sub-graphs

corresponding to the incorrect mappings as inconsistent.

Table V shows an example of IdMapref generated

from Table IV. SPA generates a map entry (osf1statfs
→ostatfs) from the method signatures and (osf1statfs
→osf1statfs) from the isomorphic nodes R4 and T9.

Since the reference variable osf1statfs maps to two target

variables, osf1statfs and ostatfs, an IR inconsistency

is detected.

TABLE V
IDENTIFIER MAPPING FROM TABLE IV

Isomorphic Nodes Identifier Map (IdMapref )

(R1,T1)
flags → flags (1), bufsize → bufsize (1)
osf1statfs → ostatfs (1), osb → osb (1)

(R4,T9)
count → count (1) , bufsize → bufsize (2)
osf1statfs → ostatfs (1), osf1statfs (1)

The inconsistent mapping is highlighted in red.

Sometimes developers forget to update related identifiers,

as shown in the IR-2 example in Table II. To detect this

inconsistency, we carry out a similar process at the granularity

of tokens as opposed to identifiers after separating identifier

names using separators ‘-’, ‘ ’, or a camel case convention.

For example, OFDM is mapped to CCK once, while ofdm is

mapped to ofdm twice.

IDF: Inconsistent Data Flow. IDF inconsistency detection

is similar to our ICF diagnosis but uses data dependence

graphs (DDG) instead of CDGs.

In Table IV, R6 and T13 are statements corresponding

to a ported node pair. In the reference implementation, R6
is data dependent on R2 for the definition of variable buf.

However, statement T13 in the target implementation is data

dependent on the definition of buf at T2 and T12. Although

R2 and T2 are isomorphic, the dependence on T12 creates an

additional data dependence in the target implementation that

is not present in the reference implementation. Therefore, the

node corresponding to T12 is added to ICtar.

Similarly, R5 and T10 are statements corresponding to a

ported node pair, and both define variable size. However, in

the reference implementation, size is used at statement R6,

while in the target implementation, size is used at statements

T11, T13, and T14. Although R6 and T13 are isomorphic,

T11 and T14 create additional data dependences in the

target implementation that are not present in the reference

implementation. Therefore, the nodes corresponding to T11
and T14 are added to ICtar.

RDN: Redundant operations. To detect redundant ported

code, SPA checks for pairs of vertices in CDGtar that have

identical labels and types and that are control dependent on

the same impacted vertex. Note that we only look for an RDN

inconsistency in Tarnew. In Table VI, statements T13 and T14
in the target implementation have identical syntax, and both

are control dependent on the impacted statement T4. Thus,

SPA characterizes the nodes corresponding to statements T13
and T14 as redundant.



Table VI shows the nodes that are inconsistent with respect

to the ported code in Table IV, along with their corresponding

inconsistency types.
TABLE VI

CHARACTERIZATION OF PORTING INCONSISTENCIES IN TABLE IV

Inconsistent Control Dependent Nodes
(ICF) T4

Inconsistent Identifier Renaming
(IR) T9 (identifier: ostatfs)

Inconsistent Data Dependent Nodes
(IDF) T11,T12,T14

Redundant Nodes
(RDN) T13,T14

D. Implementation

SPA is implemented using several existing tool chains. First,

we extend LASE [16] and Sydit [15], which extract edit scripts

to automate systematic program changes. SPA also extends the

control and data dependence analysis of Sydit to identify the

impact of ported nodes in the reference and target programs

respectively. The dependency analysis uses crystal [2], a static

analysis framework to analyze Java source code.

IV. EXPERIMENTAL RESULTS

In this section, we present an empirical evaluation of

SPA’s ability to detect and diagnose porting inconsistencies

in FreeBSD, Linux, Eclipse CDT, and Mozilla. We compare

the accuracy of the results computed by SPA with the results

computed by two state-of-the-art tools, Jiang et al.’s clone

related error detection tool [8] and DejaVu [5]. Jiang et al.

model the context of ported code in terms of their immediate

preceding lines, even if the context does not have any control

or data dependence on ported code. Though DejaVu extends

Jiang et al. by refining clone detection results to determine

ported code, it still suffers from the same limitation as Jiang

et al., as the context is identified based on physical location

proximity not on control and data flow dependences with the

ported code.

We also compute SPA’s accuracy to characterize potential

inconsistencies based on the categories defined in Section II.

To this end we investigate two research questions:

• RQ1. Can SPA accurately detect porting inconsistencies?

• RQ2. Can SPA accurately categorize different types of

porting inconsistencies?

A. Study Subjects

To evaluate SPA, we use porting examples from four dif-

ferent projects: FreeBSD, Linux, Eclipse CDT, and Mozilla.

Except for Mozilla, the reference and target patches for each

artifact are computed using REPERTOIRE [17]. From these, we

randomly select (a) 20 examples from FreeBSD, (b) 10 exam-

ples from Linux, (c) 60 examples from Eclipse CDT that are

ported from CDT versions CDT_2_0 to CDT_8_1_1, and (d)

42 Mozilla examples from the annotated data set of copy-paste

errors provided by Gabel et al. [5]. The FreeBSD and Linux

artifacts are from the data sets used in Section II. To retrieve

a large number of porting instances, we choose CDT_2_0
and CDT_8_1_1 versions which are 98 months apart. The

Mozilla examples were obtained from DejaVu’s annotated data

set2, because Dejavu is not an open-source tool. In the Mozilla

examples, we treat an entire program as a program patch

whose old version is empty, because SPA works on program

patches as opposed to entire programs. We use a combination

of commit logs and manual inspection to annotate the types of

potential porting errors in selected target patches of the subject

artifacts.

The current version of SPA analyzes only Java source code,

so we convert the C and C++ porting examples from Linux,

FreeBSD and Mozilla examples using a free C/C++ to Java

code converter [1].

B. Study Methodology

We measure SPA’s capability to detect and categorize port-

ing errors in terms of precision and recall. For each error

type e defined in Section II, suppose that S is the set of

examples where a porting inconsistency is detected by SPA and

its error type is reported by SPA to be e. Suppose that A is the

set of examples where a porting inconsistency is manually

determined to be of type e. Then the precision and recall

of SPA in categorizing porting inconsistencies are defined as

follows:

Precision. the percentage of porting inconsistencies of type

e found by SPA that are also known to be type e i.e.,
|A ∩ S|
|S|

Recall. the percentage of the known inconsistencies of type

e, which are also found to be type e by SPA, i.e.,
|A ∩ S|
|A|

To evaluate the accuracy of SPA’s error detection capability,

we calculate precision and recall without considering individ-

ual error types.

C. Study Results and Discussions

RQ1. Can SPA accurately detect porting inconsistencies?
We compare SPA’s ability to detect porting inconsistencies

with Jiang et al.’s clone related bug detection algorithm [8]3

and DejaVu [5]. Table VII summarizes the comparison of SPA

with Jiang et al. using the Eclipse CDT artifact and with

DejaVu on the Mozilla examples. The first row represents the

number of potential porting errors, regardless of error type,

that were detected by the respective tools. We also report the

number of false positives, false negatives, precision, and recall

of the error detection capability of each tool. The results of our

study show that SPA improves the error detection capabilities

considerably over Jiang et al. SPA improves the precision from

48% to 65%, and marginally improves the recall from 87% to

90%.

Out of the 42 randomly selected examples from the DejaVu

annotated Mozilla data set, our manual inspection shows that

only 25 of them contain true porting inconsistencies. Thus,

DejaVu’s precision is 59.52%. For the same data set, SPA

reports inconsistencies for 34 examples. Thus, SPA’s precision

2http://wwwcsif.cs.ucdavis.edu/∼gabel/research/dejavu mozilla.zip
3Jiang et al.’s clone detector Deckard and the associated clone bug detector

were downloaded from https://github.com/skyhover/Deckard.



in detecting errors on the Mozilla data set is 73.53% as

shown in Table VII. Because this data set does not contain

any examples where DejaVu fails to report an inconsistency,

we are unable to assess the number of false negatives for

either DejaVu or SPA. Furthermore, because our comparison

is limited to the data set where DejaVu already found porting

inconsistencies, the precision of SPA could be lower if the

comparison was done on a different data set.

We find that SPA reduces false positives over Jiang et al.’s

tool and DejaVu in 14 and 8 cases respectively. For example,

consider a case when a variable is initialized differently in the

reference and target contexts. Later, both the reference and

the target contexts reinitialize the variable in the same manner

before using it in the ported code. In this case, SPA correctly

does not report any inconsistency unlike other tools, because

there is no data flow between the inconsistent initialization

and the ported code.

The cases where all three tools incorrectly detect inconsis-

tencies include porting code from a while context to a for
context, porting code from an if context to a switch-case

context, etc.

TABLE VII
INCONSISTENCY DETECTION RESULTS FOR ECLIPSE CDT AND MOZILLA

Eclipse CDT Mozilla
SPA Jiang’s Tool SPA DejaVu

Detected 43 56 34 42
False Positive 15 29 9 17
False Negative 3 4 - -
Precision 65.11% 48.21% 73.53%* 59.52%*
Recall 90.32% 87.09% - -

*The comparison is done on the data set where DejaVu already reported
porting errors.

RQ2. Can SPA accurately categorize different types of
porting inconsistencies?

Table VIII shows the precision and recall for SPA in

categorizing potential porting errors in FreeBSD and Linux

for the error types ICF, IR-1, IR-2, IDF, and RDN. SPA

has precision ranging from 50% for ICF to 100% for RDN.

The recall for SPA ranges from 62.5% for RDN to 100% for

ICF and IDF w.r.t. the porting errors reported in the version

histories (see 2nd row in Table VIII). Version history based

evaluation is often conservative in the sense that when there is

TABLE VIII
INCONSISTENCY CHARACTERIZATION RESULTS ON FREEBSD AND LINUX

ICF IR-1 IR-2 IDF RDN
SPA Detected 10 8 6 9 5

From commit logs 5 8 5 6 8
Precision 50% 87.5% 66.66% 66.66% 100%
Recall 100% 87.5% 80% 100% 62.5%

Manually annotated 7 8 5 8 8
Precision 70% 87.5% 66.66% 87.5% 100%
Recall 100% 87.5% 80% 100% 62.5%

no mention of porting errors in the commit messages, it does

not necessarily imply the absence of porting inconsistencies.

To overcome this limitation, we compare SPA results against

the type and location of inconsistencies that were identified

by manual inspection of individual patches. The comparison

against this annotated set is shown in Rows 5-7 in Table VIII.

Table IX summarizes the number of porting inconsistencies

for each error type, and the precision and recall based on the

manually identified error types for Eclipse CDT and Mozilla

data sets. In Eclipse CDT, SPA detects and characterizes 62

porting inconsistencies—77% are ICF, 16% are IR-1, 12% are

IR-2, and 40% are IDF. In Mozilla, SPA detects 54 instances

of porting inconsistencies, of which 28%, 22%, 7%, and 43%

are of type ICF, IR-1, IR-2, and IDF respectively. No RDN

inconsistency is reported in these two data sets. On average,

SPA achieves 58% precision and 92% recall in Eclipse CDT,

and 63% precision and 100% recall in Mozilla data set.

In detecting ICF inconsistencies, SPA may report false

positives when, for example, code is ported from a for
block to an equivalent while block, because these two loops

have different syntaxes. SPA may generate a false positive of

type IR-1 when the relative ordering of program variables is

changed, but the semantics remain unchanged, e.g., a statement

x = x+y in the reference implementation is modified to x = y+x

in the target. When characterizing IR-2 inconsistencies, SPA

may report false positives when, for instance, the names cannot

be tokenized properly due to inconsistent naming conventions.

For example, if a ported node pair contains the variables

fooBar and foobar, SPA correctly splits the first one into

foo and Bar but does not split foobar. Thus, SPA misaligns

the tokens. In the case of IDF inconsistencies, SPA may report

a false positive when, for example, a variable is declared

and defined in a single program statement in the reference,

but the declaration and definition are separate statements in

the target. Here, SPA reports an inconsistency because the

AST node types are different (declaration versus assignment).

With respect to false negatives, SPA is not able to detect

redundancies that require a deeper semantic analysis, such as

redundant locking calls in a concurrency construct.

In spite of these limitations, there are some suc-

cess stories. A bug was fixed in FreeBSD source file:

src/sys/dev/mxge/if_mxge.c, version 1.27, with a

commit message: “Fix an mbuf leak caused by a cut&paste
bug where the small ring’s mbufs were never freed, but the
big ring was freed twice”. A buffer rx_big was mistakenly

freed twice. SPA detects this bug successfully and categorizes

it as an RDN bug, which is also confirmed by the developers

and took 26 releases and 432 days to detect and fix. Jiang et

al’s tool is not able to detect this bug since it does not handle

redundancy.

Another identifier renaming bug was fixed in Linux

at commit id 2b9460. Code was ported from method

mlx4_ib_post_send to mlx4_ib_post_recv, but

variable send_cq was never updated to recv_cq. This bug

caused a queue overflow in the infiniband driver module

(a high-speed network driver) and took 974 days to fix. SPA



TABLE IX
SPA INCONSISTENCY DIAGNOSIS RESULTS

Eclipse CDT Mozilla
ICF IR-1 IR-2 IDF Total ICF IR-1 IR-2 IDF Total

SPA Detected 33 (53%) 7 (11%) 5 (8%) 17 (27%) 62 15(28%) 12 (22%) 4 (7%) 23 (43%) 54
Annotated 23 7 4 5 39 13 6 2 13 34
False Positive 12 2 2 12 26 2 6 2 10 20
False Negative 2 2 1 0 3 0 0 0 0 0
Precision 63.63% 71.43% 60% 29.41% 58.06% 86.66% 50.0% 50.0% 56.52% 62.96%
Recall 91.30% 71.43% 75% 100% 92.31% 100% 100% 100% 100% 100%

we do not detect any RDN inconsistency here.

successfully detected this error. Other tools were unable to

detect this error because they do not check whether related

variables were updated consistently (IR-2).

V. RELATED WORK

Juergens et al. [9] conduct an empirical study on the

impact of inconsistent clones in a code base. They detect

inconsistent clones using a suffix-tree based, lexical clone

detection algorithm. Their interviews with developers confirm

that inconsistencies in the found clones are indeed bugs and

report that “nearly every second, unintentional inconsistent
changes to clones lead to a fault.”

Chou et al. show that porting is an important source of

bugs in operating systems [4]. In 65% of the ported code, at

least one identifier is renamed, and in 27% cases at least one

statement is inserted, modified, or deleted [14]. An incorrect

adaptation of ported code often leads to porting errors [8]. This

observation is aligned with our findings—where we find 113

and 182 porting errors by mining FreeBSD and Linux version

histories respectively.

Using CP-Miner, a mining based clone detection tool, Li et

al. find 28 and 23 errors in Linux and FreeBSD respectively,

which developers created by forgetting to rename identifiers

consistently after copy and paste [14]. Jablonski et al. [6]

detect similar errors by tracking copy-paste code within an

Eclipse IDE and by comparing the corresponding AST rep-

resentations. Though the results of these studies are aligned

with our findings of IR inconsistencies, we observe that such

inconsistent renaming is a special case of a more general cate-

gory of porting inconsistencies—forgetting to adapt identifiers

according to the target context (IR-1 and IR-2).

SPA detects a broader scope of inconsistent renamings by

tokenizing function names, file names, and identifier names us-

ing a camel case naming convention and mapping correspond-

ing tokens. Our algorithm detects an inconsistency when a

token in one context maps to multiple tokens in the other con-

text. For example, when code is ported from Export.java
to Import.java, SPA checks whether all names related

to export are updated to import.

Jiang et al. show that an inconsistent context can also

cause porting errors [8]. However, their definition of context is

limited to the innermost control flow construct surrounding the

cloned code. They identify syntactic clones using AST level

similarity [7], and then detect inconsistencies by comparing

the contexts. While their diagnosis partially overlaps with our

categorization of porting errors (ICF and IR-1), they do not

report renaming errors on groups of identifiers (IR-2), data

flow inconsistencies (IDF), or redundant operations (RDN).

Also, their error detection analysis is purely syntactic, and

thus suffers from a higher rate of false positives than our

semantic, control- and data-flow based approach. SPA reports

17 percentage point better precision and 3 percentage point

more recall in detecting porting inconsistencies than Jiang et

al. on the Eclipse CDT data set.
DejaVu extends the work by Jiang et al. by using several

filtering heuristics, such as assessing textual similarity and

pruning non-cloned contexts, to improve its precision [5].

As shown in our evaluation, SPA’s error detection still out-

performs DejaVu with 14 percentage point better precision.

Also, DejaVu does not report potential error types, while SPA

automatically characterizes the detected inconsistencies to help

developers detect porting errors.

VI. CONCLUSION

When porting code from one context to another, the se-

mantics of the ported code often change due to differences

in the surrounding contexts. Developers may overlook such

subtle differences, inadvertently creating a porting error. By

analyzing the version histories for Linux and FreeBSD, we

identify five common categories of porting errors, and then use

this categorization to design SPA, a novel algorithm to detect

and characterize semantic inconsistencies in ported code. Our

evaluation of SPA on several large open-source code bases

shows that SPA can detect porting inconsistencies with high

precision and recall, and it outperforms the precision of two

state-of-the-art techniques with 14 to 17 percentage point.
As part of our future work, we plan to investigate methods

for further reducing false positives, such as comparing the

dynamic program behaviors of ported code. Based on the

observation that not all inconsistencies lead to an error, we

also plan to investigate heuristics to rank the inconsistencies

based on their error potential. Finally, we plan to integrate SPA

with an integrated development environment so that developers

can detect porting inconsistencies during the porting process.
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[21] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? In Proceedings of the 2005 international workshop on Mining
software repositories, MSR ’05, pages 1–5, New York, NY, USA, 2005.
ACM.

[22] M. Weiser. Program slicing. In Proceedings of the 5th international con-
ference on Software engineering, ICSE ’81, pages 439–449, Piscataway,
NJ, USA, 1981. IEEE Press.


