Seedling Growth Experiments (SG-1 and SG-2) Experiment Status

Current Status of the ARC EMCS Payloads

David Heathcote, Ph.D.
Lockheed Martin

POIWG #35

January 27, 2014
Experiment Hardware

All the ARC ISS Space Biology Project EMCS Experiments use the same hardware suite.

- Proven *highly successful* starting with the Tropi series of experiments in 2006.

EMCS Facility

EMCS Experiment Containers (ECs) MWA set up for Sample Processing with ARC-developed EUE

ARC Cassettes (5 per EC)

EMCS Cold Stowage Bag with Cassettes
Hardware Capabilities for Science

The combination of the EMCS facility with the ARC-developed EUE provides tremendous flexibility for biological investigations.

EMCS
- Automated experiment scheduling capability.
- Controls atmospheric composition, temperature, and humidity.
- Provides artificial gravity levels with 2 independent rotors (0g, 1g, etc.).
- Each rotor holds 4 Experiment Containers.
- Flexible imaging capability.

ARC EUE
- Interface between EC and ARC-developed Cassettes.
- Watering system for initiating experiment.
- Provides White LED growth lighting (parallel to rotor g vector).
- Provides Red and/or Blue LED stimulus lighting (normal to g vector).

ARC Seed Cassettes
- Miniaturized growth chambers, 5 per EC.
- Typically planted with 14 – 20 seeds/cassette for botanical experiments.
- Can also support other model organisms.
Science Variables

Each EC can be independently programed (except g level)

- Red or Blue LED Light
- Red or Blue LED Light (or no stimulus)

- G-level of each Rotor programmable between 0g and 2g.
- White Growth Light
- G-vector
- G-gradient

- Each Cassette can contain a specific genetic mutant or model organism.
- Image data for analysis of responses downlinked in near real time.
- Cassettes frozen at end of run to preserve RNA, genomics, proteomics etc.
The Seedling Growth Experiments

BACKGROUND

The Seed Growth Series is the result of a cooperative agreement between NASA and ESA to combine the proposals of a NASA PI and an ESA PI to maximize science return.

- NASA PI: Dr. John Kiss.
 - Emphasis on plant tropic responses using EMCS Image Data.
- ESA PI: Dr. Javier Medina.
 - Emphasis on structure and biochemistry using frozen samples.

Three experiments are in development SG-1, SG-2 and SG-3.
- SG-1 & SG-2 are NASA-led.
- SG-3 is ESA-led.

A fourth experiment (SG-4) is optional and may be developed, if agreed by the parties, to extend the investigation based on results obtained.
Seedling Growth-1 and -2

EXPERIMENT PERSONNEL

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Affiliation</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigators</td>
<td>John Z. Kiss, Ph.D.</td>
<td>University of Mississippi, MS (NASA)</td>
<td>Marianne.K.Steele@nasa.gov</td>
</tr>
<tr>
<td></td>
<td>F. Javier Medina, Ph.D.</td>
<td>CIB-CSIC, Madrid, Spain (ESA)</td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td>Marianne Steele, Ph.D.</td>
<td></td>
<td>Marianne.K.Steele@nasa.gov</td>
</tr>
<tr>
<td></td>
<td>(650) 604-0523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deputy Project Manager/</td>
<td>Dave Heathcote, Ph.D.</td>
<td></td>
<td>David.G.Heathcote@nasa.gov</td>
</tr>
<tr>
<td>Operations Lead</td>
<td>(650) 604-1303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Scientist</td>
<td>Gwo-Shing Sun, Ph.D.</td>
<td></td>
<td>Gwo-Shing.Sun-1@nasa.gov</td>
</tr>
<tr>
<td></td>
<td>(650) 604-3343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload Scientist</td>
<td>John Freeman, Ph.D.</td>
<td></td>
<td>John.L.Freeman@nasa.gov</td>
</tr>
<tr>
<td></td>
<td>(650) 604-2144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA POC</td>
<td>Jeffrey Smith</td>
<td></td>
<td>Jeffrey.D.Smith@nasa.gov</td>
</tr>
<tr>
<td></td>
<td>(650) 604-0880</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

N-USOC

Knut Fossum (Project Manager)
Mona Schiefloe (SG-1 ExAM)
Liz Helena Coelho (SG-2 ExAM)

Gjert Aanes
Jørgen-Eli Danielsen
Knut Olav Helleseng
Karl Eric Hancock
Tore Martin Hauan
Irene Karoliussen
Basit Mohammad

EADS/Astrium

Maria Birlem (SG-2 EMCS PIM)
Reinhard Born
Thomas Niedermaier (SG-1 EMCS PIM)

MSFC POIC SUPPORT

Amy Haas (SG-1 & 2 PIM)
Kevin Hargrave (Ops Lead)
Chris Traylor (PARC)

And many more!
EXPERIMENT SUMMARY

The objective of the Seedling Growth-1 experiment is to determine how gravity and light responses in plants influence each other and to better understand the cellular signaling mechanisms involved in plant tropisms.

Launch: SpaceX-2, March 1st, 2013
Operations: Increment 35

- All four planned 6-day runs were completed successfully
 - Run 1 - Mar 22 - 28, 2013
 - Run 2 - May 2 - 8 (delayed by EMCS Rotor Belt Replacement)
 - Run 3 - May 10 - 17
 - Run 4 - May 18 - 24

- All planned images of seedling growth and tropic responses were successfully captured and are being analyzed by the PIs
- Seed cassettes were transferred to MELFI at the end of each run
- Frozen samples and empty ECs are planned to return on SpX-3 (March 2014)
 - ECs must be recovered at early destow to refurbish for SpX-4 (SG-2)
 - Frozen samples return to JSC in GLACIER
 - ESA Representative will receive samples from JSC Cold Stowage Group and arrange transport to ESA PI lab in Spain
EXPERIMENT SUMMARY

The objective of the Seedling Growth-2 experiment is to determine how gravity and light responses in plants influence each other and to determine the combined influences of light and gravity on plant development through the identification of changes in the mechanisms and regulation of essential cellular functions. These experiments rely in a large part on the use of known Arabidopsis thaliana mutant plants that are genetically altered in specific light-, auxin- or cell division- regulated processes.

Launch: SpaceX-4, June 2014 (TBC)
Operations: Increment 39/40

• **Three 6-day runs are planned:**
 - Run 1 - Continuation of Dr. Kiss’ SG-1 objectives - stimulus at 0.5 g
 • Four ECs, uses 1 EMCS rotor only
 - Run 2 - Continuation of Dr. Kiss’ SG-1 objectives - stimulus at 0.8 g
 • Four ECs, uses 1 EMCS rotor only
 - Run 3 - Primarily supports Dr. Medina’s objectives - at 0 and 1.0 g
 • Eight ECs, uses both EMCS rotors.

• Images of seedling growth and tropic responses will be captured for PI’s analysis.
• Seed cassettes will be transferred to MELFI at the end of each run.
• Frozen samples and empty ECs are planned to return on SpX-5 (October 2014, TBC)
 • Frozen samples return to JSC in GLACIER
 • ESA Representative will receive samples from JSC Cold Stowage Group and arrange transport to ESA PI lab in Spain.
Seedling Growth-2

CREW ACTIVITIES
On-orbit activities are similar or identical to Seedling Growth 1 Experiment.
Crew Activities - minor updates only:
 Procedure titles
 Execution notes
 On Board Training

• EMCS Gas Valve open/close
• Load and unload ECs in and out of EMCS for each experiment run.
• MWA and video set up and configure.
• Remove seed cassettes from the ECs at end of each experiment run.
• Place seed cassettes into the EMCS Cold Stowage Bags and insert into MELFI.
• Place EMCS Cold Stowage Bags from MELFI into Double Cold Bag for on orbit transfer to GLACIER for return to Earth.
Seedling Growth-2

GROUND COMMANDING

- All commanding is performed by the EMCS controllers at N-USOC.
- Commanding is required for EMCS file uplink, power up and power down, hydration, video initiation and downlink.
- Nominally, once initiated, the experiment sequence is largely controlled by EMCS scheduling software.
 - Command windows are requested to allow correction of any off-nominal conditions.
 - Data telemetry and digital images are monitored at N-USOC and ARC MMOC.
- Contingency commanding windows are required to react to off-nominal situations.
 - Critical timing of scheduled experiment events requires ground controllers to be able to react to off-nominal situations rapidly.
Seedling Growth-2

Sample Processing by Crew at the end of each experiment run

- Set up MWA and video camera (over the shoulder view).
- ECs/Seed Cassettes removed from EMCS rotor and transferred to MWA.
- Seed Cassettes removed from EC/EUE, placed in EMCS Cold Bags.
- Cold Bags inserted into MELFI – Time constraints from rotor stop to MELFI insertion.
 - Run 1 & 2 and Run 3, Rotor B less than 45 min
 - Run 3, Rotor A, less than 1hr 45 min

Sample Processing by Crew for return to Earth

- Transfer samples from MELFI to cooled double cold bag on-orbit transfer.
- Transfer samples from double cold bag to GLACIER on vehicle for return to Earth.
- For any transfer, the total time that samples can be exposed to ambient temperature must be less than three minutes to avoid sample degradation.
- Activity requires two crew members to ensure this limit is met.
Seedling Growth-2

EXPERIMENT CONSTRAINTS

- Experiment must be started no later than 1.0 month after arrival at the ISS.
- 3 six-day experiment runs are planned for this experiment. Ideally, runs will be performed consecutively, back to back.
- After the crew loads ECs into EMCS, the experiment run is initiated by ground commanding.
- Samples (Seed Cassettes) are collected at the end of each 6-day run and stored in MELFI.
- In flight seedling images provided to Dr. Kiss and Dr. Medina near real time.
 - Via FTP protocol from N-USOC server
- Return on SpaceX-3: Frozen samples in GLACIER; ECs at ambient.
 - After Splash down, Cold Stowage Group transfers samples to JSC, maintaining -80°C.
 - At JSC, samples will be turned over to ESA rep for shipment to ESA PI in Madrid, Spain.
 - ECs and EUE turned over to ARC representative. Location and timing TBD.
 - Likely Early Recovery needed in CA to support hardware refurbishment
Seedling Growth-2 Realtime Operations Interface

- **CREW**
- **PAYCOM**
- **OC**
- **POD**
- **PRO**

- **SEEDLING GROWTH**
- **EMCS OPS**
- **LIS**

- **SCIENCE STATUS**
 - SG Science Issues
 - SG Science Crew Ops
 - Sample Processing
 - Sample & EC Return

- **EMCS STATUS**
 - EMCS Facility performance
 - EMCS Crew Ops
 - N₂ and VES Usage
 - Commanding
Seedling Growth-2 Realtime Operations Interface

Real Time Contacts

N-USOC (Console coverage 24/7 during experiment runs)
Project Manager Carina Helle Berg carina.berg@ciris.no
SG-2 ExAM Liz Helena Coelho liz.coelho@ciris.no

Ground Controllers
Karl Eric Hancock karl.eric.hancock@ciris.no
Tore Martin Hauan tore.hauan@ciris.no

EMCS Operations
Brit-Eli Danielsen brit-eli.danielsen@ciris.no
Irene Karoliussen irene.karoliussen@ciris.no
Abdul Basit Mohammad Abdul.mohammad@ciris.no
Mona Schiefloe mona.schiefloe@ciris.no

ARC (Console coverage during crew operations only)
Project Manager Marianne Steele Marianne.K.Steele@nasa.gov
Deputy Project Manager David Heathcote david.g.heathcote@nasa.gov
Seedling Growth-2

SCHEDULE 2013 – 2014

- Schedule Test N-USOC September 30th to October 8th, 2013 ✓ complete
- OVT/EVT N-USOC December 9th to 16th, 2013 ✓ complete
- Return of SG-1 EC/EUE – SpaceX-3 March 2014
- MSFC Sims TBD, Planned
- Flight Build – May, 2014
- Launch – SpaceX-4, NET June 6th, 2014
- On-Orbit Operations – ASAP after on dock – 3 x 6 day runs, June/July 2014
- Return Seed Cassettes and EC/EUE Assemblies – SpaceX-5, October 2014
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>ASAP</td>
<td>As Soon as Possible</td>
</tr>
<tr>
<td>EADS</td>
<td>European Aeronautic Defense & Space Company</td>
</tr>
<tr>
<td>EC</td>
<td>Experiment Container</td>
</tr>
<tr>
<td>EMCS</td>
<td>European Modular Cultivation System</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>EUE</td>
<td>Experiment Unique Equipment</td>
</tr>
<tr>
<td>EVT</td>
<td>Experiment Verification Test</td>
</tr>
<tr>
<td>ExAM</td>
<td>Experiment Activity Manager (N-USOC)</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GLACIER</td>
<td>General Laboratory Active Cryogenic ISS Experiment Refrigerator</td>
</tr>
<tr>
<td>IPLAT</td>
<td>ISS Payload Label Approval Team</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>JSC</td>
<td>Johnson Space Center</td>
</tr>
<tr>
<td>MELFI</td>
<td>Minus Eighty Laboratory Freezer for ISS</td>
</tr>
<tr>
<td>MMOC</td>
<td>Multi Mission Operations Center</td>
</tr>
<tr>
<td>MSFC</td>
<td>Marshall Space Flight Center</td>
</tr>
<tr>
<td>MWA</td>
<td>Maintenance Work Area</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Agency</td>
</tr>
<tr>
<td>NET</td>
<td>No Earlier Than</td>
</tr>
<tr>
<td>N-USOC</td>
<td>Norwegian User Support Operations Center</td>
</tr>
<tr>
<td>OVT</td>
<td>Operations Verification Test</td>
</tr>
<tr>
<td>PARC</td>
<td>Payload Activity Requirements Coordinator</td>
</tr>
<tr>
<td>PD</td>
<td>Payload Developer</td>
</tr>
<tr>
<td>PI</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>PIM</td>
<td>Payload Integration Manager</td>
</tr>
<tr>
<td>POC</td>
<td>Point of Contact</td>
</tr>
<tr>
<td>SG-1</td>
<td>Seedling Growth-1 experiment</td>
</tr>
<tr>
<td>SpX</td>
<td>Space-X</td>
</tr>
<tr>
<td>TBC</td>
<td>To Be Confirmed</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
</tr>
</tbody>
</table>
Back-up Slides

The ARC Seed Cassette

Cassette Base
Gaskets
0.2μm filters
Retaining Plate

#17 Whatman
Gridded Nitrocellulose Membrane

Screws

Foil Tape
Gas Permeable Membrane

Cassette Cover

Transparent Anti-fogging Heater

Aluminum Spacer
Thermal Spacer
Back-up Slides
Seed Cassette Images