NASA Ames Planetary Mapping

Making NASA’s data more rapidly and universally available

http://irg.arc.nas.gov
Intelligent Robotics Group
NASA Ames Research Center

Contact: terry.fong@nasa.gov
Really Big Data

Why do we need to build automated systems to handle large volumes of Planetary data?

We are in the midst of a major geospatial information explosion. For the first time, 10's of Terabytes of map data are being collected by robotic explorers.

Approximate data volumes from various Mars (red) and Lunar (blue) missions.

Data volumes are in Terabytes!

Really Big Images

Why do we need to build **automated systems** to handle large volumes of Planetary data?

- In the past, widely used maps such as the Viking MDIM mosaic took *years* to produce.

- Today, human intensive processes can be automated so that data can be processed & distributed more rapidly.
Some of our Projects

Automated 3D surface reconstruction, mosaicking, gigapixel imaging

• Bridging the gap between PDS and Geo-browser platforms
 Enabling faster, easier, and universal access

• Developers in the Lunar Mapping and Modeling Program (LMMP)
 Providing stereo-derived topography and imagery from Apollo Metric Camera scans

• LROC & HiRISE Team Members
 Validating and estimating the errors of LROC-derived DTMs

• Assorted other projects:
 Vision Workbench, Ames Stereo Pipeline, Neo-Geography Toolkit, Small body mapping
Our Automated Pipeline

Unified architecture for processing & serving planetary data through web services

- Our geospatial data pipeline has been developed to automatically produce high-quality planetary maps and models.

- It is extremely flexible & extensible, supporting many data source and open standards & protocols.

- Our software stack runs on Pleiades, the NASA Ames supercomputer.
Ames Stereo Pipeline

Open-source automated stereogrammetry software

Models from traditional stereo cameras using the TSAI format.

Models of the other planets using USGS’s ISIS cube files.

Models of Earth using Digital Globe Stereo 1B imagery.

Models of Earth using imagery that contains an RPC Model.
Ames Stereo Pipeline (ASP)

Open-source automated stereogrammetry software

- What it is…
 - Command-line tools for computing clusters and super computers
 - C++ code hosted on GitHub
 - Binaries available for Linux and OS-X
 - Apache 2 license

- Data processed with ASP
 - Apollo Metric Camera
 - Digital Globe 1B products
 - Lunar Reconnaissance Orbital Camera (LROC-NA)
 - Mars High Resolution Imaging Science Experiment (HiRISE)
 - Mars Orbiter Camera (MOC)
 - MRO Context Camera (CTX)

tiny.cc/ames-stereo-pipeline
Apollo Zone DEM

High-resolution terrain model (digital elevation map)

- Mosaic of 4,000 images
 - Apollo Metric Camera
 - 73,728 x 368,640 pixels

- Equatorial Lunar Surface (38S-34N lat)
 - 1,024 pixel / deg
 - Vert. acc 40.9m (LOLA)
 - Vert. stdv 37.8m
 - Horiz. acc 91.3m (LOLA)

- Controlled to LOLA through LRO-WAC

- 40,000 CPU hours (4 days on NASA Pleiades)
Albedo Reconstruction

Scalability from single core to super computer (GNU parallel)

• **Image formation model:**
 Camera Transfer Function, Albedo, Exposure Estimation, Surface Reflectance, and Shadow

• For the Moon, uses Lunar-Lambertian Model (can be extended to non-Lunar surfaces) to reduce the effect of varying illumination

• Overlapping images allows for shadow removal

Original

Reconstructed albedo
Albedo Reconstruction

Hadley Rille (Apollo Metric Camera images)
Albedo Reconstruction

Hadley Rille (Apollo Metric Camera images)
Apollo Zone DIM

High-resolution base map (digital image mosaic)

<table>
<thead>
<tr>
<th>Data</th>
<th>Resolution</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRO-WAC</td>
<td>100 m/pixel</td>
<td>100%</td>
</tr>
<tr>
<td>LRO-NAC</td>
<td>1 m/pixel</td>
<td>< 2% (early 2013)</td>
</tr>
<tr>
<td>Apollo Metric</td>
<td>10 m/pixel</td>
<td>18%</td>
</tr>
</tbody>
</table>
Mosaicking & Blending

Highly accurate reconstruction, blending, and error modeling
ASP for Earth

Cryospheric mapping for Earth science (glaciology, climate change, etc)

Jakobshavn Glacier, Greenland
- 6 input images
- 2500 km² coverage
- 5 m/post

WorldView DEM Mosaic (7/9/10-7/11/10)
ASP for Earth

Non-vegetated areas

100% scale (0.5 m/pixel)

1.15 km
ASP for Earth

60% success rate processing Digital Globe stereo pairs without human input

- Colorized DEM of the Basalt Hills Quarry
- Used for planetary rover analog testing
- Based on DigitalGlobe WorldView imagery

SRTM DEM (~31 Meters / Pixel)
USGS NED DEM (9 Meters / Pixel)
ASV WV 1 DEM (0.5 Meters / Pixel)
NASA / Google

Explore the Moon and Mars in 3D

• “Google Moon” & “Google Mars” provide data availability & fusion for planetary data

• Includes “live” imagery of Mars from the THEMIS camera (appears on-line 2-4 days after downlink)

• Guided tours of the Moon and Mars narrated by Buzz Aldrin, Jack Schmitt, Ira Flatow, and Bill Nye.

Try it for yourself in Google Earth 5.0!

Modern / Historical Base Maps
High Resolution 3D Terrain
Geospatial Image Browsing/Indexing
Tours Narrated by Notable Scientists and Astronauts
Geologic Maps
Geo-located Panoramic Imagery

This work was done at ARC under a reimbursable space act agreement (RSAA). The RSAA does not imply exclusive access to NASA data or to our team.
Google Moon
Released July 20, 2009

• “Moon for Google Earth”
 • Co-developed with Google
 • IRG created content, processing scripts, and base maps
 • Built in to Google Earth 5.0

• Content
 • Global maps: topography, geologic, historical, etc.
 • Spacecraft imagery: Apollo, Clementine, Lunar Orbiter
 • 3D models of spacecraft, landers, and crew rovers.
 • Tours (Andy Chaikin, Buzz Aldrin and Jack Schmidt)
 • And much more …
Google Mars
Released February 2, 2009

• “Mars for Google Earth”
 • Co-developed with Google
 • IRG created content, processing scripts, and base maps
 • Built in to Google Earth 5.0

• Content
 • Global maps: topography, infrared, historical, etc.
 • Imager footprints & overlays: HiRISE, CTX, MOC, etc.
 • MER tracks & panoramas
 • Tours (Bill Nye & Ira Flatow)
 • Live from Mars: THEMIS images within hours
 • And much more …
Intelligent Robotics Group
NASA Ames Research Center

Bringing the Mars experience to WorldWide Telescope

- Featuring the largest digital image mosaic of Mars ever created
- Data sets for WWT Mars were created using the NASA Nebula cloud computer
- Guided tours of Mars narrated by Dr. Carol Stoker and Dr. Jim Garvin

http://worldwidetelescope.org

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>MOC</th>
<th>HiRISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of images</td>
<td>74,359</td>
<td>13,342</td>
</tr>
<tr>
<td>Pixels / Image</td>
<td>16 Megapixels</td>
<td>1.25 Gigapixels</td>
</tr>
<tr>
<td>Total Image Tiles</td>
<td>~38 Million</td>
<td>~526 Million</td>
</tr>
<tr>
<td>Total Mosaic Size</td>
<td>843 Gigabytes</td>
<td>12 Terabytes</td>
</tr>
</tbody>
</table>
WWT Mars Base Layers

New global maps and historical imagery

Global Imagery

Color MDIM v2 (merged w/ MOC-WAC mosaic)
Mars Topography (MOLA)

Historical Imagery

Nathaniel Green (1877)
Giovanni Schiaparelli (1890)
Percival Lowell (1896)
Eugene Antoniadi (1909)
MEC-1 Prototype (USAF) (1962)
WWT High Resolution Layers

From Mars Global Surveyor and Mars Reconnaissance Orbiter

74,359 Mars Global Surveyor MOC Images

13,342 Mars Reconnaissance Orbiter HiRISE Observations
Access to Planetary Data
Providing 2D and 3D NASA imagery to cutting-edge geo-browser platforms

• NASA has done an exemplary job of archiving its data and making it publicly available (e.g. the PDS and DAACs), but these archives were not designed for immediate, on-demand access to the data.

• We believe that there is a need to bridge the gap between the PDS and users who are not “data experts.”

• Ubiquitous, freely available geo-browser platforms are technologically well-suited to this task, and a natural fit to fill this gap.
Live Data into Google Earth

Continuous, automatic data release

Mission Instrument Team Provides
(via public or private URL)

- Spacecraft Orbit
 lon, lat, alt, time (CSV file)

- Data Footprint
 lat,lon of vertices (CSV file)

- Instrument data
 (ISIS cube, PNG, JPEG, etc.)

KML Convert
(using ARC Neo-Geography Toolkit)

data pull
(periodic)

publish to Google Earth