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In this paper, genetic algorithm based and gradient-based topology optimization is presented in 

application to a real hardware design problem. Preliminary design of a planetary lander mockup 

structure is accomplished using these methods that prove to provide major weight savings by 

addressing the structural efficiency during the design cycle.  This paper presents two alternative 

formulations of the topology optimization problem. The first is the widely-used gradient-based 

implementation using commercially available algorithms.  The second is formulated using genetic 

algorithms and internally developed capabilities.  These two approaches are applied to a practical 

design problem for hardware that has been built, tested and proven to be functional. Both 

formulations converged on similar solutions and therefore were proven to be equally valid 

implementations of the process.  This paper discusses both of these formulations at a high level. 

Nomenclature 

GA  = Genetic Algorithm 

ISRU  = In-situ resource utilization 

FEA  = Finite Element Analysis 

RESOLVE = Regolith and Environment Science and Oxygen and Lunar Volatiles and Extraction 

SIMP  = Solid Isotropic Microstructure with Penalization 

F  = Applied Force 

U  =  Total Displacement 

C   =  Compliance 

X-TOOLSS= eXploration Toolset for the Optimization of Launch and Space Systems 

EC = Evolutionary Computing 

NASA = National Aeronautics and Space Administration 

I. Introduction 

his paper presents the reinforcement design methodology 

used to design a mockup lander built for the Artemis Jr., 

Rover and RESOLVE demonstration in Hawaii.  The lander 

mockup (Fig. 1) was designed to be capable of sustaining the 

weight of the rover while driving up the ramps and moving to a 

parking position on the lander.  The final lander design consists 

of two decks for the placement of mock-up tanks and propulsion 

thrusters.  The deck stiffeners were sized and formed using 

topology optimization techniques.  

 Topology optimization provides an excellent preliminary 

design tool for primary structures.  It efficiently explores the 

design space by adding and removing material using Finite 
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Figure 1:  Manufactured Mockup Lander 
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Element Analysis (FEA) to find the most efficient load paths.  This process gives greater assurance that the final 

design, if the design space accurately reflects reality, will have acceptable margins of safety when the final stress 

analysis is performed.  This allows more robust and efficient designs to be generated more quickly.   

 This paper is intended to objectively compare the two distinct approaches for topology optimization in terms of 

practical considerations.  This paper is not intended to comment on or further the theory of topology optimization, 

but to present practical results as to the experience of its use in the design process.  In the literature, great emphasis 

is placed upon utilizing the exact solution of the optimization. However, in practice, the exact optimum as presented 

by the results of the topology optimization is not always as useful due to manufacturing constraints, uncertainties in 

loads, and other uncertainties present in preliminary design.  What is of importance is having a result that is close to 

the global optimal solution and then interpreting the results correctly to be incorporated into the design.   

 While not necessarily producing useful exact results, topology optimization can provide designers with a “map” 

of strategic material placement or reinforcement placement (such as angles or I-beams).  Interpreting the shape of 

the resulting geometry can provide the designer with a starting point design that has higher structural efficiency and 

quicker design time compared to conventional approaches.  

 With this in mind, speed of problem setup, speed of the final solution, and confidence the solution has the global 

optima are the metrics of importance when comparing these two approaches.  For this problem (like many other 

problems), the ultimate driver for the final design was to minimize the total mass.   

 The primary goal of this research was to evaluate GA and gradient-based design methods for use in future design 

cycles.  While the mockup planetary lander was not intended for flight, the techniques identified and explored in its 

design are directly being used in efforts to develop a flight pallet lander.  Going through this process provided 

insight into how to interpret the results of topology optimization and explore which methods are appropriate to use 

early in the design process to have high impact on the final design.  

 This paper will provide the reader with a brief and high-level description of the topology optimization problem.  

Several references are provided for both the genetic algorithm formulation as well as the traditional methods that 

provide a much more detailed look at the process.   

II. Process of Topology Optimization 

Topology optimization is the process of using FEA to 

identify the optimal material distribution that creates the most 

efficient load path.  This is accomplished by first discretizing 

an initial design space into finite elements and then using a 

selection process to remove elements from that design space 

using an objective function.   Figure 2 shows the initial 

discretized two-dimensional design space for a cantilevered 

beam type model.  The two primary approaches other than 

genetic algorithms are the Evolutionary Structural 

Optimization Methods
2
 and the Solid Isotropic Microstructure 

with Penalization (SIMP) approach originally developed by 

Bendsoe.
12

  These approaches both trim away unnecessary 

elements (though the objective function for these approaches 

is different) until only the minimum amount of structure or 

material needed remains.  The objective function typically consists of minimizing compliance or strain energy, 

which results in a structure that has maximized stiffness and therefore higher structural efficiency.
5
 

III. Description of Approaches 

The RESOLVE mockup lander deck was designed using two topology optimization approaches. First, the SIMP 

method was used as provided by the commercial implementation of Altair’s Optistruct
4
, then a generational genetic 

algorithm using blended crossover was used to drive the topology optimization using an approach developed by the 

NASA eXploration Toolset for the Optimization Of Launch and Space Systems (X-TOOLSS) team (Section III B.).   

There is some debate in the literature as to which method is most appropriate
8,10

 therefore, both methods were 

used for this design problem and the results compared.  These methods were used to find the optimum locations to 

reinforce the planetary lander top and bottom deck plates given an out-of-plane loading.  These two methods, while 

generally used to minimize the same objective function, approach the problem differently.   First a brief and high-

level description of the SIMP method is given.  There is extensive treatment of this approach in the literature
5,13

.  A 

Figure 2:  Finite Element Design Space 
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more detailed look at the GA formulation is given in this paper as this was a capability developed internally and was 

of primary research interest to the authors. 

 

A. SIMP Method in Topology Optimization 

For this paper, Altair’s Optistruct was used to perform the optimization.  Optistruct uses the SIMP method, 

which formulates the design space as a continuous function. Each element’s density is assigned as a continuous 

variable with a range from 0 to 1, with 0 meaning none of that element’s material is needed, 1 meaning the entire 

element is needed and intermediate values representing fictitious material.  The density is typically given with a 

penalization parameter that drives the optimization to discrete values and avoids intermediate densities as much as 

possible.
13

  Then a gradient-based optimization algorithm solves the topology optimization problem using an 

iterative approach by evaluating the objective function, assessing the sensitivities of the design variables, and then 

choosing the next step (this information was obtained using Optistruct User’s Guide to ensure that this was the 

approach implemented)
4
.   

The SIMP method for topology optimization has found widespread use in the literature and commercial 

implementations because of its quick convergence and its capability to handle very large design spaces, i.e., very 

dense meshes
8
.  However, gradient-based algorithms have the disadvantage of potentially getting trapped in local 

optima, and do not inherently search the entire design domain
10,11

.  This is where genetic algorithms have found 

roles in topology optimization.  The following sections go into high level detail about how genetic algorithms work 

and how they are applied to the topology optimization problem.   

 

B. Genetic Algorithm-Based Topology Optimization 

The eXploration Toolset for Optimization Of Launch and Space Systems (X-TOOLSS) is an evolutionary 

computation (EC) toolset that includes GAs and other types of ECs.  X-TOOLSS is currently being developed by 

NASA Marshall Space Flight Center and university partners
6,7,9

.  Genetic algorithms are based on the “survival of 

the fittest” concept.  They develop optimal solutions for prospective designs by eliminating weak candidate designs. 

The power of EC techniques lies in their ability to discover unique, innovative, and often non-intuitive designs by 

thoroughly interrogating an entire design space. Furthermore, ECs drive the whole system to a global optimum and 

are able to avoid becoming “trapped” in local optima.  The X-

TOOLSS GA capability was used to drive the topology optimization. 

The GA topology optimization is formulated differently than the 

gradient-based approach.  First, the setup of the design space is not 

based upon varying the density of each element. Instead, the topology 

problem is formulated as a void‐solid problem where a set of discrete 

design variables corresponding to each element has only two values, 

1 or 0 (“on” or “off”)
1,3

.  This is also known as a bit-array 

presentation
10

.  The GA use the bit-array as chromosomes to turn on 

or off specific elements, which adds and removes material to 

minimize the objective function (discussed in Section IV. B), finding 

the most efficient load path.  

However, for this implementation, mesh connectivity becomes an 

issue.  Solutions exist in the design space that do not have a continuous 

path connecting all elements to the boundary conditions of the finite 

element model.  If these solutions occur they are highly penalized 

(compared to the objective function) based on the number of “groups” 

of disconnected elements that remain.  An example of an entirely 

disconnected topology is shown in Figure 3.  This helps to drive the 

algorithm back toward a connected solution.  The other issue that 

occurs is that it is possible to have one group of elements connected to 

the boundary conditions with many other groups of elements that are 

disconnected entirely (demonstrated in Figure 4).  For these cases, the 

groups of disconnected elements are simply switched to void leaving 

only the connected group remaining
1
 (result demonstrated in Figure 5).  

However, as stated by Wang, S. Y., et. al,
10

 this formulation has 

difficulty in providing the appropriate information back to the GA as 

many elements that are not used in the function evaluation remain in the design space and therefore incurs a higher 

computational cost.
10

  Therefore the time to convergence can be greatly increased.  Future work will include efforts 

Figure 3:  Disconnected Topology 

Figure 4:  Groups of Disconnected 

Elements 
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to alleviate this issue, but as shown in the results, it does not 

inherently invalidate the process; it does however, significantly 

decrease the efficiency of the optimization.  Mesh connectivity 

is stated as being one of the major challenges for genetic 

algorithm-based topology optimization
10

.   

Non-gradient based methods have been contested in the 

literature as being inefficient, as well as not providing 

significantly better results than traditional gradient-based 

methods
8
.  However, there are several potential advantages of 

GA-based optimization.  First, as mentioned previously, using 

GAs can provide a global search of the design space, whereas 

methods such as the SIMP method can be trapped in local 

optima.  Another advantage of GA’s is their ability to handle 

non-analytic functions, as no derivative information is required.  

This means the analytic setup of the problem can be simplified, 

at the cost of computational efficiency, but for a designer this 

could be an attribute if there is not a clear understanding of how the design space and structural responses are related 

and could help to provide insight into the problem.  

There are, however, several disadvantages to using GAs for topology optimization.  First, GA’s require a very 

large number of function evaluations, on the order of tens of thousands, and this number is also directly related to 

the number of design variables.  The problem is formulated as a void-solid problem and the size of the design space 

can be calculated as 2
Number of Elements

.  This requires significant function evaluations, thus making this approach 

somewhat unattractive.  However, if an exact result is not needed, only the implication of a global solution, and the 

results of the topology optimization problem are going to be interpreted and redesigned by a human designer (as in 

this case), then this problem can be overcome by reducing the design space (decreasing the mesh density) to provide 

an approximate look at the optimum material distribution. 

By comparing the GA results to the gradient results it can give the designer confidence that an optimal solution 

has been found.  The following sections will discuss the design space setup and results of the optimization for each 

method. 

IV. Optimization Setup and Results 

The goal for this problem was to determine a reinforcement design that takes the entire load, leaving the top plate 

unloaded and as thin as possible to reduce mass.  The formulation of this problem is slightly different from most 

topology optimization problems as it is an out-of-plane loading problem, where most problems are performed for in-

plane loading scenarios such as the cantilever beam model.  

A Finite Element Model (FEM) of the top deck 

was created as shown in Figure 6.  As this was the 

only design area of interest for this problem, the 

finite element model simulated the legs using 

conservative boundary conditions.  Pinned 

boundary conditions were used to represent the 

lander legs. The inner ring was also pinned in 

locations where support struts were to be located 

attaching the top and bottom deck of the lander.   

In Optistruct only one load case can be used for 

the compliance minimization problem, therefore 

the primary load case of interest would be for the 

rover resting on the top deck.  This was 

represented by applying ¼ of the rover weight at 

each of the four expected wheel locations. 

 

 

   

 

 

Figure 5:  Topology after Filtering for 

Disconnected Groups 

Figure 6:  Optistruct Design Space for Resolve Lander 

Upper Deck Optimization 
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A.  Optistruct Results for Lander Deck Design 

The gradient-based topology optimization was performed using Altair’s Optistruct.  The total design space can 

be seen in Figure 6.  The deck was discretized into 7477 elements.  For this case, every element was specified as a 

design variable.  The topology optimization design problem is accomplished using compliance minimization.  

Compliance is defined as: 

 

      
 

Where F is the force and U is the total displacement
12

.  

Typically the objective is to minimize compliance while 

constraining mass to be some fraction of the original.  

This acts to maximize the stiffness and thus the structural 

efficiency.  This strategy was utilized for this 

optimization.  The mass fraction constraint used was 

10% over the unaltered design space mass.  The von 

Mises stress design constraint was placed at 12 ksi to 

avoid exceeding the allowable strength limits (this was 

factor of safety adjusted).  This resulted in a feasible 

optimization solution that had acceptable margins of 

predicted strength and displacement.  In Figure 7 for the 

topology optimization results, the contours show an 

element density of 1.0 (red) for areas where material is 

absolutely needed. Contours showing element density of 

0.0 (blue) indicate void regions.  As can be seen from 

Figure 7, more material is needed in the front of the lander deck structure, but only straight stiffeners are needed to 

support the back of the deck. The regions of “needed” material constitute a map for how to reinforce the deck to 

reduce the minimum plate thickness to carry the load. 

 

B. Genetic Algorithm Optimization Results for Lander Deck Design 

In the genetic algorithm method, each solution 

in a design population is ranked based on a fitness 

(objective) function.  For this case, the sum of the 

total mass of the system and total compliance of 

the system is used as the fitness.   

 

           
 

Therefore, X-TOOLSS seeks to minimize the 

mass and compliance of the total system 

simultaneously, instead of constraining the mass 

fraction and minimizing compliance, as was done 

using Optistruct.  Because of the afore-mentioned 

issues of computational efficiency, the design 

space was truncated to 1184 elements by reducing 

the mesh density to help increase convergence 

speed.  Genetic algorithms are non-deterministic, 

so it is important to perform several runs to get 

confidence in the result.  These optimizations were run in parallel to decrease the total computational time.  Figure 8 

shows final results of two GA topology optimization runs.  Both runs converged to similar solutions giving adequate 

confidence that an optimum has been found and that neither run was subject to premature convergence.  

 

 

 

 

 

Figure 8:  GA Optimization Results for Runs 1 and 2 

Figure 7:  Gradient-Based Topology Optimization 

Results for Lander Deck 
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V. Comparison of Results 

A. Comparison of Algorithm Results 

As can be seen by comparing Figures 7 and 8, both algorithms converged to very similar solutions.  Because two 

different algorithms, totaling three runs, converged on the same solution, this design gives confidence that a good 

solution has been found. 

Several conclusions could be drawn about each of these algorithms.  

First, it was evident from this experience that gradients are indeed a 

much faster implementation of the topology optimization problem, as 

the solution was able to converge in 26 iterations.  However, several 

iterations of runs were needed to tweak the mass fraction constraint to 

find the lowest mass feasible design, resulting in a “manual” portion to 

the optimization.  This was not necessary for the GA implementation, 

as both objectives were minimized simultaneously.  As expected, the 

GA required a greater number of function evaluations (on the order of 

26000) for both runs.   Default settings in X-TOOLSS for mutation and 

crossover were used with only minor tuning to adjust the population 

size appropriately to maintain population diversity.   

Comparing Figs. 7 and 8, it appears that the GA has determined that 

an extra member is needed in the negative x-direction as compared 

with Optistruct.  This is because that GA must maintain a topology that 

has all loads and boundary conditions connected by material, which is 

required for the void-solid formulation to be solved using Finite 

Element Analysis.  This same constraint was not imposed by 

Optistruct.  Because all elements exist and only density varies using the 

SIMP method, the boundary conditions can have very low density elements at the boundary conditions.   To 

compare back to the GA results, the stress results show that the middle member identified is in fact unloaded.  This 

can be seen in Figure 9.  Therefore if this bottom-middle member is removed, the GA and gradient-based results are 

very similar. 

 

B.  Interpreted Optimization Results  

As can be seen in Section IV, both the GA and gradient-based algorithms converged to similar solutions. These 

results give a reasonable level of confidence that a global near-optimum design has been found using both of these 

methods.  The exact results of the optimization were not implemented, but were interpreted as a map to reinforce the 

top deck.  This allows the designer to use the results, but also take into account fabrication considerations.  

Determining a structurally efficient load path 

allowed the top deck to be as thin as possible to 

reduce mass. The results also gave insight into where 

plate material could be removed without any 

structural penalty after the design had matured 

further.  

 The final design for the deck (shown in Figure 

10) differs slightly from the results of topology 

optimization to address design concerns not taken 

into account by the load case used for the topology 

optimization. However, the basic reinforcement 

design is derived from the results of this study. 

 The finite element analysis of the final design 

showed positive margins of safety with respect to the 

12,000 pounds per square inch constraint.  Figure 1 

shows the RESOLVE Lander mock-up based on the 

optimal design approaches described in this paper. 

 

Figure 10:  Final Design Finite Element Model 

Figure 9: Stress Results for GA 

Optimization 
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VI. Conclusion 

Similar optimal designs for the RESOLVE mockup lander were obtained using GA-based and gradient-based 

topology optimization methods.  Figures 7 and 8 show the results obtained using the two methods match well 

providing confidence an optimal reinforcement pattern has been found for the planetary lander deck structure.  

Topology optimization proved to be a useful tool to shorten the preliminary design cycle and still produce robust 

structures.  The results also serve as a validation of the GA method for this design problem.  By using GAs on what 

may be considered a simple problem, we have verified their use in the structural design cycle by comparing them 

with more traditional methods.  In structural design cases other than topology optimization, GAs may prove to be 

useful by giving the designer more confidence a global optimum has been found.  Because they can handle non-

analytic functions and require no derivative information, their setup is simplified, and they may be more attractive 

where time to set up the problem outweighs the function evaluation penalties inherent in non-deterministic 

approaches. 

The results and lessons learned in this design process are being directly utilized in the design and development of 

a flight lunar pallet lander.  Genetic Algorithms were proven to be valid when compared to more traditional 

methods, and it is hoped to continue using genetic algorithms for design challenges other than topology 

optimization.   
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