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Abstract— Human exploration of the solar system requires 
fully autonomous systems when travelling more than 5 
light minutes from Earth. This autonomy is necessary to 
manage a large, complex spacecraft with limited crew 
members and skills available. The communication latency 
requires the vehicle to deal with events with only limited 
crew interaction in most cases. The engineering of these 
systems requires an extensive knowledge of the spacecraft 
systems, information theory, and autonomous algorithm 
characteristics. The characteristics of the spacecraft 
systems must be matched with the autonomous algorithm 
characteristics to reliably monitor and control the system. 
This presents a large system engineering problem. Recent 
work on product-focused, elegant system engineering will 
be applied to this application, looking at the full autonomy 
stack, the matching of autonomous systems to spacecraft 
systems, and the integration of different types of 
algorithms. Each of these areas will be outlined and a 
general approach defined for system engineering to 
provide the optimal solution to the given application 
context. 

Keywords-Autonomy, Goal-Function Tree, Integrated System 
Health Management, Spacecraft 

I.  INTRODUCTION 

Human missions beyond the Earth’s planetary system will 
require autonomous systems to control the spacecraft. 
Communications latency will require near term responses to 
system and environmental conditions be handled onboard the 
spacecraft in collaboration with the flight crew. Once the 
vehicle has travelled 2 light minutes from Earth, tactical 
situations will be handled onboard as response time will take 5 
minutes. While nominal communications have shown a 
tolerance to 5 minutes of communication delay (round trip)1, 
mission critical or crew safety issues will require more 
immediate responses. This latency will expand out to 20 

minutes one way (41 minutes response time) as illustrated in 
Figure 1. While autonomous systems will be working in 
conjunction with the crew, the limited number of crew 
members available will require many functions to be handled 
by the autonomous systems and only mission or life-
threatening situations involving direct crew interaction. The 
complexity of a human-rated spacecraft will amplify this 
situation, with life support, electrical power, thermal 
management, avionics, communication and tracking, structure, 
vehicle management, and propulsion all needing to be 
managed in an integrated fashion. In particular, the 
interactions among these systems and the environment can 
create many unique and unexpected situations to be managed. 

There is limited data on fully autonomous operations of 
spacecraft and the experiments that have been conducted have 
mixed results in successfully controlling the spacecraft.2 ,3 , 4  
There have been various proposals to test individual 
applications on the International Space Station (ISS).5,6   

 
Figure 1:  Communication Latencies from Earth 



 
Engineering such a complex and inaccessible system 

(relative to the Earth) is a challenge. The system’s interaction 
with itself and the environment has many complex effects. 
Understanding the physics in these situations is crucial to 
making decisions that maintain the vehicle integrity, crew 
safety, and mission success. Defining the state variables for 
the vehicle systems and their associated interaction effects 
provides a path to understand and properly manage the vehicle 
as a whole. State variables define the state of each physical 
and information system and provide a means to efficiently 
manage the system with a minimum set of measurements. 
With the state variables known, the specific autonomous 
algorithms can be matched to each system, keeping in mind 
the physics being managed and the strengths and weaknesses 
of each autonomous algorithm. This will optimize both the 
management of the system and the interaction among the 
various autonomous algorithms in managing the systems as a 
whole. This paper presents such an approach. We will briefly 
discuss state variables for a human-rated spacecraft in the 
Goal-Function-Tree context, and then give a short survey of 
various autonomous algorithms. The matching of the 
autonomous algorithms with the systems will then be 
discussed, defining a pathway to system engineering (SE) of 
human rated autonomous spacecraft. 

II. SPACECRAFT SYSTEMS 

Figure 2 illustrates a potential Human-Rated Beyond 
Earth Orbit (BEO) Spacecraft. The basic systems necessary 
for a BEO human mission include:  Propulsion, Structure, 
Thermal Management, Environmental Control and Life 
Support Systems (ECLSS), Electrical Power, Avionics, flight 
control system, Communication and Tracking, Vehicle 
Management (Guidance, Navigation and Control (GN&C) and 
Mission and Fault Management (M&FM)).  Each of these 
systems has unique physics and responses to various 
interactions. A comprehensive review is not possible here. The 
following provide a short summary of each of these systems. 

 

 
Figure 2:  Possible Mars Exploration Vehicle 

A. Vehicle Management 

Vehicle management consists of the functions that 
manage and control the vehicle as a whole. These include both 
GN&C, and M&FM.  GN&C has long implemented 
automated control based on the Kalman filter. 7  The 
algorithmic approach fits very well with propagating the 
kinematic state of the vehicle to future states.  M&FM provide 
the overall management of the vehicle systems, integrating the 
control loops across the vehicle and also provide management 
of failures as they are detected and diagnosed in flight. These 

specific algorithms are tied to the physics of the other 
subsystems as discussed in this section. They also constitute 
the mission execution, vehicle control, and vehicle health 
management functions as discussed in the autonomy stack 
below.   

 

B. Flight Control System 

For a spacecraft, flight control systems can be thrust 
vector control (TVC) systems, reaction control systems (RCS), 
or attitude control systems (ACS). TVC systems vector the 
thrust of the nozzle to affect the steering of the vehicle within 
a few degrees of the propulsion system center line. These 
systems can be hydraulic, electric, or hot gas driven. The 
physics in each of these systems differs greatly and the 
specific type will have unique control responses, operational 
lives, and vectoring force and accuracy. RCS and ACS 8 
systems are similar, RCS usually indicating a system with 
larger force thrusters than an ACS. These systems can be 
either pressure fed or pump fed. Again, the physics in these 
systems vary greatly in control responses, operational lives, 
and thrust level. All of these systems are managed by the 
GN&C control algorithms in a closed loop fashion through the 
attitude sensors.  

 

C. Thermal Management 

Thermal Management or Thermal Control systems (TCS) 
maintain the heat of the spacecraft including all systems and 
living areas within specified temperatures. The sources of heat 
across the spacecraft are many including propulsion system, 
electrical power system (especially if a nuclear reactor is 
used), ECLSS (which includes thermal management of living 
environments), avionics, and communications and tracking. 
Convection is not possible in micro gravity environments so 
heat transfer must be managed by conduction or radiation. 
Thus, heat from spacecraft systems and environments typically 
conduct heat into a transfer fluid which then passes through a 
radiator to radiate heat into space. 9  Because all spacecraft 
systems involve some level of heat generation, the thermal 
management system is highly coupled to other vehicle systems 
and must balance heat load and responses to variations across 
all systems and their operational requirements. Finite Element 
Models and Computational Fluid Dynamics are important to 
properly model these systems and the complex interactions 
they entail. 

 

D. Propulsion 

Human-rated spacecraft must have reliable propulsion 
available through the life of the mission (typically 48 
months10) and provide sufficient thrust profiles to maintain 
short planetary transfer times. The propulsion system includes 
the fuel and oxidizer storage systems, pumps to establish the 
mass flow rate, combustion chamber, and nozzle. Possible 
options for the propulsion system include chemical and 
nuclear thermal propulsion. The physics of these systems are 
again very different. Chemical propulsion systems have both 



oxidizer and fuel mixing at high rates and temperatures to 
produce thrust following the rocket equation. The heat of 
combustion is the source of the gas acceleration through the 
nozzle exit. Nuclear thermal propulsion uses heat transfer 
from the reactor to a fuel (no oxidizer needed) to provide the 
acceleration of the gas. In a cryogenic chemical system, the 
storage of cryogenic propellants is a large concern. These 
propellants must be available until the mission is complete 
without boiling off (becoming gas) over the long mission 
profile. Nuclear thermal propulsion involves a reactor core 
that may also serve as a source of electrical power generation. 
Propellant management is easier as higher temperature liquids 
may be effectively heated by the reactor core. Cooling loops 
for the core may involve high boiling point liquids to transfer 
excess heat.  

 

E. Structure 

Structure includes both the static structure and the 
mechanisms necessary to turn and point solar arrays, thermal 
radiators, and antennas. The static structures are monitored by 
the GN&C for flex moments which affect trajectory control. 
These structures are fairly passive and if modeled need to be 
modeled by finite element models. The dynamic mechanisms 
are more complicated and need to be monitored for 
environmental degradation, wear on parts, and thermal 
deformations.11 

 

F. Electrical power 

Electrical power systems (EPS) encompass power 
generation, power storage, and power distribution and 
regulation. EPS can be implemented in a number of ways. 
Power can be generated by solar arrays, fuel cells, or nuclear 
reactors. Power is stored primarily by batteries although heat 
engines converting power to mechanical (rotational) energy 
are also possible. Power distribution includes regulation and 
voltage conversion. Distribution is generally through electrical 
wiring and power circuitry. 12  Optical transmission is also 
possible but currently has lower power efficiency. For a 
human-rated spacecraft it is expected that several types of 
power generation systems will be employed including possible 
solar arrays and nuclear reactors. The physics of each of the 
systems varies greatly.  

  

G. Avionics 

Avionics consist of the flight computers, data networks 
and busses, instrumentation (sensors, data conditioning, data 
acquisition systems), and software. These systems interact 
with every part of the vehicle and become the nervous systems 
for the vehicle management functions. 13 The physics involved 
with microelectronics, electromagnetic wave propagation, and 
various sensors are broad and complex. Avionics are sensitive 
to several environmental, design, and fabrication 
characteristics. Environments for avionics must be well 
managed including temperature, humidity (crew cabin), 
pressure (crew cabin or zero pressure), shock and vibration, 

radiation, electrical, as well as dust and other contaminants. 
These must be controlled on the ground (during launch 
processing) and in space.14     

 

H. Communication and Tracking 

Communication systems include the transmitters, 
receivers, transmission lines, and antennas necessary to 
communicate with Earth, other ships (e.g., landers), satellites 
(e.g., planetary monitors or planetary communication 
satellites), and the planetary surface (i.e., landing party). These 
systems use a variety of signal transmission and encoding 
techniques that have varying susceptibility to noise sources 
and resulting bit error rates (BER).15 Tracking includes both 
tracking of remote antennas and tracking of other spacecraft or 
debris (e.g., meteorites) that may threaten the vehicle. These 
systems couple directly with the GN&C algorithms to provide 
communication stability and hazard avoidance. 

 

I. ECLSS 

Environmental Control and Life Support Systems consists 
of several chemical and biological processes to manage air 
quality, waste and recycling, food storage and preparation, 
temperature and humidity, and fire detection and suppression. 

 

III. SPACECRAFT SYSTEM STATE VARIABLES 

The state-based, goal-based system engineering  method 
espoused in this paper specifies that a Goal-Function Tree 
(GFT) model16 of the system should be constructed from the 
beginning of the SE process, and should be elaborated into 
further depth and detail as design choices are selected. The 
GFT provides a number of benefits, among which are a 
rigorous requirements (goal) definition and traceability in 
functional success space, beginning the development of fault 
trees by taking the logical complement of the GFT, analysis 
and definition of the required system health management and 
fault management to protect system goals, and most 
intriguingly for this paper, the creation of a physically and 
logically accurate tree structure that forms the starting point of 
the autonomous artificial intelligence for the system that can 
be used in system operations. While the SE and SHM/FM 
capabilities the GFT provides is important and useful, for a 
crewed Mars mission, the latter capability to provide the 
starting point of system autonomy development is essential. 

Since the rigor and physical accuracy of the GFT depends 
on the comprehensive and systematic use of state variables to 
define goals and functions, defining the state variables 
associated with goals is a required step. While it is beyond the 
scope of this paper to attempt to define a detailed GFT for a 
crewed Mars mission, some basic insights as to what the GFT 
will look like and the kinds of state variables that it will use 
can be provided here. For a crewed Mars mission, as with 
many other kinds of systems and missions, it is useful to 
consider proposed mission phases and the goals associated 
with them, and then to determine the state variables that must 
be controlled within relevant ranges for these goals to be met. 



In general for the GFT, there will be a unique tree structure for 
each major mission phase, which correspond to different 
ranges and values of state variables, and different state 
variables used during each phase. 

A crewed Mars mission requires the transportation of the 
crew from Earth to the surface of Mars and back to Earth, and 
then the accomplishment of some specific scientific and 
technical goals while on the surface (and possibly during the 
journeys to and from Mars as well). This immediately implies 
three kinds of goals: transportation goals, crew health and 
safety goals, and scientific and technical goals.  

At the top level, transportation goals can be stated rather 
quickly in terms of state variables, since position, velocity, and 
acceleration state variables completely define where the 
system must be at any given time within the mission, within 
specified bounds. To achieve these positions, velocities, and 
accelerations, the transportation system components will need 
to provide control of the vehicle’s attitude and attitude rates to 
point the vehicle in the proper directions, thrust to provide 
acceleration, and some means to rotate the space vehicle(s) in 
space, whether through thrusters, reaction wheels, or some 
other mechanism. Provision of thrust requires control of 
propellant speeds and combustion (or accelerations), which in 
turn will entail state variables that must be controlled through 
chemical or electrical state variables (if using electric 
propulsion, for example). During entry, descent, and landing, 
the entry and descent vehicle may use aerodynamic forces 
instead of thrust, and if aerodynamic surfaces are used, then 
the control of these surfaces will entail their own state 
variables representing the movement of these surfaces. If a 
rover is to be used on the surface of Mars, then movement will 
require control of wheel spin rates and pointing directions. For 
each key mission phase, even if the same state variables of 
position, velocity, and acceleration are controlled, the values 
and ranges to which they are controlled vary at each phase, 
and the lower level state variables that produce the 
accelerations or rotations change. From the point of view of 
the GFT, for transportation goals, the top level of the trees for 
each phase often look quite similar, since the point of the 
transportation goals is to achieve certain positions, velocities, 
and accelerations. However, the lower levels of the trees for 
each phase will differ as the physics and means of controlling 
them change, such as with rocket engines using gimbals, 
thrusters, aerodynamic surfaces, and wheel rotations.  

Like the transportation goals, the crew health and safety 
goals have strong similarities across mission phases. These too 
can be specified in terms of state variables. While the most 
direct measures of crew health relate to their individual life 
signs such as heart rate, respiration rate, food intake and 
defecation, water intake and urination, and the like, to achieve 
these the crew need breathable air, water, food, limited 
accelerations, controlled temperature ranges, time for activity 
and sleep, and so on. Each can be defined with state variables 
that can be readily defined: oxygen concentration, carbon 
dioxide concentration, atmospheric pressure, water and food 
mass, linear and rotational accelerations, air temperature, 
defecation and urination mass, etc. Since the needs of humans 

in these basic senses are relatively constant, these do not 
change much during the mission, though the means to provide 
them may change based on having a pressurized living area 
versus space suits, and limiting accelerations on the launch 
vehicle, in space, during entry, descent, and landing (EDL), in 
a rover, in a Mars ascent vehicle, and for Earth entry. Potable 
water might be brought from Earth, or processed and captured 
in situ from Martian soil. Recycling or disposal of waste can 
also be defined in terms of mass and of chemical and physical 
state variables. Other things needed for human comfort and 
happiness are perhaps less easy to define in terms of state 
variables, such as entertainment and so on, but some might be, 
such as color schemes and volume of living quarters for each 
individual. 

The purpose of the crewed Mars mission is to actually 
accomplish certain scientific and technical tasks, and to return 
the resulting information to Earth. Most of this information 
will be sent via communication systems, whose capacity is 
defined by the required transmission rates, which in turn are 
supported by radio frequency subsystem capabilities of 
radiated power, signal strength at various beam widths, and so 
on. Each of these scientific and technical tasks is generally 
describable in terms of the information to be gathered, with 
success often measured by the amount of data gathered, and of 
the relevant kind and quality. If the crew are unable to perform 
these tasks, then for each task not completed or only partially 
completed, this can be represented in state variable terms as 
losses to some fraction of the information that was specified as 
a goal for the mission. These goals could be altered during the 
mission, and likely will be as the crew finds it is able to 
accomplish more, less, or different goals than originally 
planned. 

Finally, all of these goals are achieved by the use of 
specific hardware, software, and procedures. Each of these 
have their relevant sets of state variables appropriate to the 
functions they perform to achieve their subgoals. Thus 
computers of certain processing speed and memory perform 
functions, and are powered by electrical power generated by 
some means, whether solar, nuclear, or chemical, and then 
distributed through a power distribution system. All of these 
things are readily specified in terms of computing and 
electrical state variables. The software itself inherently 
manipulates internal and external state variables, the latter 
through sensors and actuators operated through various control 
systems. The control systems themselves can be specified in 
terms of the state variables they control, and which do the 
controlling. As the system is defined in the SE process, they 
can be laid out in a GFT form, which in turn forms the basis 
for autonomous algorithms that control the vehicles. 

 

IV. AUTONOMY STACK 

Autonomy algorithms have specific functions that interact 
in a defined manner.17 These functions can be split at the full 
vehicle stack (Figure 3) and subsystem level (Figure 4). The 
autonomous functions necessary to manage a spacecraft 
include:  integrated system health management (ISHM), 18 



system control, mission execution, mission planning, and a 
database of mission objectives and constraints (such as limits 
on responses to protect crew safety).  In Figure 3, it can be 
seen that there are many management loops necessary to 
control the spacecraft. The inner-most loop is at the subsystem 
level and is broken more fully in Figure 4. The next loop is the 
vehicle management loop across all vehicle systems on the 
spacecraft. The mission execution loop involves the mission 
control functions such as guidance and navigation, control 
responses based on these updates, and adjustments to maintain 
mission objectives and constraints.  The mission planning loop 
involves updates and changes to mission plans based on 
vehicle system status, mission objectives, and mission 
constraints.  Mission planning can also result in revision of 
mission objectives and constraints with approval of the flight 
crew. 

 

 
Figure 3:  Autonomous System Stack 

At the subsystem level, ISHM is broken out into its 
component functions (Figure 4): system monitoring, 
diagnostics, and prognostics. System monitoring includes the 
data acquisition system functions to measure and collect state 
variable data. This information is passed to both system 
management control loops and to the vehicle control loops to 
ensure vehicle management is done with a proper view of the 
actual system state. Diagnostics determine the actual system 
state based on the state variable measurements and their 
defined ranges for nominal and off nominal performance. 
Prognostics predict future system states including remaining 
useful life in system operatrions and consumables (as 
applicable). Vehicle control functions are included at the 
system level where performance is calculated based on 
measurements, and system control is decided based on system 
current performance, diagnostics, and prognostics. Vehicle 
control also uses this information to effect coordinated 
changes between systems, particularly when system 
interactions are driving internal system responses. This is 
important to ensure a system response to a change in state 
does not adversely create a conflict in the state of an 
interacting system. 

   
Figure 4:  System Level Autonomous Management Loops 

V. CANDIDATE AUTONOMOUS ALGORITHMS FOR THE 

SPACECRAFT SYSTEMS 

The sole intent of implementing autonomous algorithms is 
to reliably control the spacecraft without, or with limited 
human intervention. This includes the ability to respond to 
abnormal situations such as sensor failures or loss of 
communication links within the spacecraft. The principal 
autonomous algorithms being considered have already been 
investigated by the aerospace and academic community with 
focus on their diverse applications. The algorithms 
investigated include expert systems, neural networks, 
Bayesian belief networks, model based reasoning, and fuzzy 
logic. These methods and their hybrids have been 
demonstrated in marine, space, industrial, and aviation 
applications. Many of the algorithms can be used for 
diagnostics, prognostics, and planning applications.  

 

A. Expert System 

Traditionally, an expert system is a computer program 
that simulates the judgment and behavior of a human or an 
organization that has expert knowledge and experience in a 
particular field. Typically an expert system contains a 
knowledge base containing accumulated experience and a set 
of rules for applying the knowledge base to each particular 
situation that is described to the software program (expert 
system). Sophisticated expert systems can be enhanced with 
additions to the knowledge base or to the set of rules. For an 
autonomous system, an expert system is viewed as the central 
authority in a distributed automatic and/or network of 
autonomous subsystems. Unlike its ground-based 
counterparts, for spacecraft, an onboard expert system will 
need to be hosted on an accommodating processing 
environment that could certainly impact the onboard avionics 
constraint parameters (e.g., thermal limits, weight, throughput, 
bandwidth). With the trending of current technologies, it is 
forecast that present day mission management (software) 
systems will incorporate more advanced algorithms and 
evolving into more "expert system like" systems. Verification 
and validation will be a challenge, but this is expected to be 
mitigated with the plethora of existing software engineering 
research on V&V for the presented algorithms (e.g., by 
NASA, Carnegie Mellon University, Software Engineering 
Institute).   

 



B. Neural Networks 

Neural networks (NN) have been popular in a wide 
variety of applications, particularly for pattern recognition and 
case-based reasoning applications. NN are theoretically 
analogous to the way the human brain is structured and 
processes information. In regards to their development they 
are mathematically based on gradient descent methods with a 
variety of hardware and software implementation schemes. 
Issues in training and initial conditions are vital and largely 
dependent on the specific application. NN are ideal for control 
of highly nonlinear systems, interpolation and real time 
adaptation in the event of spacecraft subsystem 
reconfiguration due to unforeseen system disturbances or loss 
of a related subsystem. Configurations for their 
implementations have been demonstrated in aerospace 
applications, for example, for control of actuators or model-
based applications in a variety of aviation applications such as 
dealing with a failed aileron and reconfiguring systems for 
degraded mode or fail safe applications and salvaging the 
aircraft, the mission, and protecting human life. A known 
application entails a neural flight control architecture based on 
an augmented model inversion controller. 19  This direct 
adaptive tracking controller integrated feedback linearization 
theory with both pre-trained and on-line learning neural 
networks. Neural networks can be viewed as quick response 
alternative control schemes for providing backup services or 
dealing with anomalous situations including using their pattern 
recognition strengths to isolate faults. Similar to other 
algorithms, they do have their issues such as extrapolation is 
often unreliable and accuracy of real-time learning (in 
unsupervised mode). For autonomous algorithm applications 
they are well suited for parallel processing. However, they 
may be very mathematically intense and can grow into a 
massive interconnection problem, where sometimes a global 
optimal solution may be difficult to reach. This can be 
mitigated with reasonably relaxed training constraint 
parameters and methodical design for the target application.   

 

C. Fuzzy Logic 

Another technology applicable to autonomous systems is 
fuzzy logic-based systems, largely based on classic 
mathematical set theory and analogous to neural networks. 
Like neural networks, fuzzy systems have been demonstrated 
in a variety of complex nonlinear aerospace and commercial 
applications. A priori knowledge of the subsystem is a 
necessity for training and development of fuzzy logic-based 
systems. Implementation is typically much simpler due to the 
relative ease of software implementation and/or hardware 
(such as fuzzy chips) as evident by their utility in applications 
such as control of household appliances, cameras, locomotive 
braking systems, and aerospace systems. Fuzzy systems are 
very analogous to a proportional-integral-derivative (PID) 
controller and have been demonstrated to be much more 
robust than classic controllers and dealing with uncertainty is 
inherent in their makeup. For spacecraft autonomy, fuzzy logic 
algorithms are prime candidates for their application to various 

subsystems such as augmenting control in caution and warning 
scenarios with possible degraded mode operations, ideal for 
control of TVC or backup systems (in the loop), local 
subsystem onboard control (e.g., separate health node to guide 
critical systems, like solid rocket boosters, to safety during a 
separation mode and can be considered for steering of 
spacecraft in uncertain states).  

 

D. Model-Based Reasoner 

A model-based reasoner (MBR) can take many forms 
depending on the application. For autonomous systems MBR 
have been demonstrated in actual space applications such as 
the NASA Ames Research Center-developed Livingston L2 
engine concept for the Path Finder mission.20,21 Models are 
developed using extensive domain knowledge and need to be 
implemented in a well-crafted software architecture using an 
efficient programming language and operating system capable 
of dealing with conflict resolution, efficient processing, and 
avoiding common issues in software processing in embedded 
systems for mission critical applications (i.e., software health 
management). There are numerous MBR applications for other 
applications in which to leverage/investigate other features to 
map to analogous spacecraft functions. Furthermore, MBR 
algorithms can be implemented as serving as the key 
reasoning sub-element in a mission manager system leading to 
a hybrid type of expert system. Principally, MBR algorithms 
are ideal for vehicle diagnostics for comparing expected 
subsystem behavior with actual behavior (analogous to a 
Kalman Filter providing model information a central control 
scheme). Diagnostics using MBR methods have been proven 
to provide very fast and reliable response. Like other 
autonomous algorithms, there are disadvantages such as V&V 
and inference using the latest reliable information. In general 
the biggest hurdle for this and all advanced algorithms for 
autonomous systems is technology infusion, an ongoing topic 
in prior and current forums such as those for prognostics, 
diagnostics, V&V, and related software engineering and 
aerospace industries.  

 

E. Bayesian Belief Networks 

Bayesian belief networks (BBN) have also been 
extensively applied in a variety of diverse applications and are 
ideal for supporting the credibility of the state(s) in a given 
system(s). The central method composed in the BBN is 
Bayes’s rule being used in a cook book script method for 
propagating information in order to assess the qualitative state 
of a system and/or its subsystems. The method basically 
entails prior and likelihood beliefs to propagate throughout a 
network of system state nodes represented as state variables. 
These nodes then statistically ascertain the state of the 
subsystem represented by the associated state variable. Again, 
BBN are heavily dependent on a priori system knowledge and 
their implementation needs to be carefully integrated as a 
passive system providing credible information to an existing 
expert system or other like central authority. BBNs have been 
extensively applied in aerospace systems such as air breathing 



jet systems and they’ve also been effective as sensor data 
qualification systems.22 

The presented autonomous algorithms above will each 
have memory and processing needs requiring a commensurate 
processing architecture. This architecture will need to be 
flexible and extensible to accommodate mission plans, 
scalable, and be configurable. The architecture will also need 
to support the processing and management of data. Learning 
will be a key topic for each of the proposed autonomous 
algorithms. With knowledge of each of the spacecraft 
subsystems, the learning algorithms can be determined and 
depending on the complexity of the subsystem or mission 
phase, training may be able to be performed unsupervised, 
otherwise, will need to be addressed in delayed human-in-the-
loop response. The principal aim of any spacecraft 
autonomous algorithm is to manage vehicle functions and 
subsystems to reliably guide the spacecraft, whether it's an 
expert system for the whole spacecraft or a single autonomous 
subsystem (such as an engine controller). The spacecraft 
central computer and/or its vehicle's subsystems will 
especially need to have capabilities to reliably reason on 
known and unforeseen failure scenarios. As stated above, 
technology infusion will be successful once trust of the 
algorithms is proven in flight like (test bed) environments and 
supported with a high fidelity flight avionics computing 
architecture.  

VI. AUTONOMOUS ALGORITHM INTEGRATION 

The complexity of the integration of the autonomous 
algorithms is many faceted.  As presented above there are 
three main aspects to integrating the algorithms with the 
vehicle systems and with each other:  System level 
management, vehicle level management, execution and 
planning. At the system level, the key is understanding the 
physics of the system and selecting an autonomous algorithm 
that can effectively (take the necessary actions based on all 
interactions) and responsively (take the necessary action in a 
timely manner) manage the physics. These physics are driven 
by the internal system processes, interactions with other 
systems, and interactions with the environment, all of which 
must be managed by the algorithm. At the vehicle level, the 
focus is on integration of the systems into a cohesive and 
response management system. The physics effects on the 
vehicle at this level are essential to taking proper responses to 
planned and unplanned conditions. The interactions between 
systems are managed to ensure systems respond cooperatively, 
not competitively, such that systems do not counter each 
other’s actions leaving the vehicle in a failed state. The 
mission execution function mitigates these affects through 
adjustment to system control parameters in response to 
specific physical events. Mission planning involves the proper 
knowledge of the current vehicle states, the progress toward 
specific mission objectives, and re-planning (with crew 
approval) to ensure future vehicle states will stay within 
mission objectives and constraints. Note that the Earth-based 
controls will also be involved with the strategic mission 

aspects of re-planning as well as the crew for the tactical 
mission aspects of re-planning. 

System-level algorithm matching involves knowledge of 
the system transfer functions which include external system 
and environment interactions. These algorithms will be 
controlling the system responses, hence, control theory is 
important in implementation. The physics will define the poles 
and zeros of the control system and the relative proximity of 
the system response to these locations. Essential in this, is the 
particular transfer function. These functions must be defined 
and matched with the characteristics of the autonomous 
algorithms. Expert Systems, Neural Networks, Fuzzy Logic, 
and Model-Based Reasoners are all candidates for spacecraft 
systems. 

Following the discussion of the spacecraft systems above, 
vehicle management GN&C algorithms are well matched to 
the fuzzy logic Kalman Filter. The ability of the filter logic to 
consider both the current and future states well adapts this 
algorithm to the physics of the vehicle. M&FM algorithms are 
directly coupled to the systems and must be matched to the 
specific physics of each system. Flight control systems are a 
direct application of control theory and the autonomy 
management functions must incorporate these aspects. These 
systems require quick responses in operation, so the algorithm 
will need to support this. Neural Networks or Expert Systems 
are candidates to provide the autonomous control in these 
cases. Thermal Management Systems interconnect through all 
the vehicle systems. The autonomy will need to be well suited 
for determining the impacts of these interactions, locating the 
sources of unexpected perturbations, and projecting the impact 
of mitigations in one area across all systems. Thermal 
responses are slow in propagation relative to other effects. 
Thus, Model Based Reasoners are good candidates for 
management of this type of system. Propulsion systems entail 
both slow, long term effects (such as fluid management and 
leaks) with non-linear quick reactions during engine firing. 
Thus, a combination of neural networks and expert systems or 
possibly Fuzzy Logic would be necessary to manage these 
systems. Structure and mechanisms are somewhat static as 
compared to the more dynamic engine or control thruster 
operations. Finite elements models are typically used to 
accurately design these systems for stress, strain, fracture 
control, loads, flexure, etc. If this level of modeling is 
required, a fuzzy logic or Bayesian belief algorithm may 
provide the best application to be able to consider aggregate 
points without executing detailed finite element analysis in 
response to anomalies. If this level of modeling is not 
necessary on board, fuzzy logic, Bayesian belief, or an expert 
system would provide a good approach. Electrical Power 
Systems and Avionics are highly interconnected. Management 
of bandwidth on shared resources is critical. This becomes 
acute if failures segment portions of the system. The 
architectures will need to be robust to handle these 
consequences, and so the autonomy will need to be able to 
handle the architecture and responses to failures. Model-Based 
Reasoners are well suited to make these kinds of adaptive 
control applications, where the model can be adapted to match 



the architectural changes as necessary in flight. 
Communications applications are similar with bandwidth and 
location of remote transceivers essential. Power management 
is also critical to signal to noise ratios in communication. 
Model-Based Reasoners then provide a good solution for the 
management of communication. Tracking involves defining 
relative states between the vehicle and other external objects. 
Thus fuzzy logic Kalman Filters, similar to GN&C, provide a 
clear choice for tracking system management. ECLSS includes 
many chemical and biological aspects that must be managed. 
Crew safety and health constraints are essential to the 
operation of ECLSS. Thus, expert systems may provide the 
best approach to autonomy for ECLSS applications.  

At the vehicle level, the integration aspects are essential. 
A full physical understanding resides at the vehicle level. 
Algorithms at this level look at the current state of the vehicle, 
interaction responses between the systems and environments, 
the prognosticated state of the vehicle, mission objectives, and 
mission constraints to manage the total vehicle execution of 
the mission. Thus, algorithms that can handle both the 
physical understanding and future trends is essential. Model-
Based Reasoners or Expert Systems are both candidates for 
this type of autonomy. Each can handle the physical equations 
and also the prognostics of future states along the current 
mission plan. The Goal-Function Tree described above, which 
was developed during the SE process, can be used as one basis 
for the Expert System tree structures needed for vehicle-level 
reasoning, and as described in the next paragraph, planning. 

Planning requires a much more focused view on potential 
future states of the vehicle given the current state and path to 
the future state. The algorithm must deal flexibly with mission 
objectives, as some failure states, may lead to an abort of 
certain mission objectives. System constraints will need to be 
maintained, though the crew can relax these if vehicle failures 
lead to a differing operating mode. In considering these 
aspects, Bayesian Belief Networks have the basis to execute 
mission planning tasks. 

As can be seen, autonomous systems will not be a single 
algorithm but multiple algorithms, each matched to the 
specific system or vehicle function it is performing. The 
integration of these functions is an area of future work in 
spacecraft autonomy. Applications looking at autonomous 
system cooperation will be essential to the development of 
human rated spacecraft operated away from the Earth 
planetary system. 

VII. SUMMARY 

Human exploration outside of the Earth planetary system 
(beyond Earth orbit) requires autonomous operation of the 
vehicle to deal with communication latencies, crew size limits, 
and vehicle complexity. A fully autonomous vehicle of this 
complexity will require multiple autonomous algorithms 
working cooperatively within a set of mission objectives and 
system constraints. The understanding of the physics of the 
systems, system interactions, and environmental interactions is 
essential to the system engineering of this complex system. 
The Goal-Function Tree methodology provides a system 

engineering approach to define the vehicle state variables and 
their interactions. Using these state variables and the GFT 
structured hierarchy, among other resources, specific 
autonomous algorithms can be chosen based on their ability to 
properly handle the system physics. Algorithms at the vehicle 
level will also need to handle future projected states to enable 
safe mission execution and planning. Verification and 
validation approaches will need to be defined for these 
algorithms, both individually and as an integrated set. The 
integration responses of these algorithms are essential to a 
successful human mission and will require further study, 
development, and evaluation. 
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